Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 186(12): 2705-2718.e17, 2023 06 08.
Article in English | MEDLINE | ID: mdl-37295406

ABSTRACT

Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes.


Subject(s)
Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Microbiota , Neoplasms , Humans , Gastrointestinal Microbiome/genetics , Feces/microbiology , Metagenome , Anti-Bacterial Agents , Neoplasms/drug therapy
2.
Annu Rev Immunol ; 33: 747-85, 2015.
Article in English | MEDLINE | ID: mdl-25706098

ABSTRACT

Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.


Subject(s)
Interleukins/genetics , Interleukins/metabolism , Animals , Disease Susceptibility , Gene Expression Regulation , Humans , Interleukins/chemistry , Lymphocytes/immunology , Lymphocytes/metabolism , Organ Specificity/genetics , Organ Specificity/immunology , Signal Transduction , Interleukin-22
3.
Nat Immunol ; 21(9): 1022-1033, 2020 09.
Article in English | MEDLINE | ID: mdl-32661364

ABSTRACT

The majority of tumor-infiltrating T cells exhibit a terminally exhausted phenotype, marked by a loss of self-renewal capacity. How repetitive antigenic stimulation impairs T cell self-renewal remains poorly defined. Here, we show that persistent antigenic stimulation impaired ADP-coupled oxidative phosphorylation. The resultant bioenergetic compromise blocked proliferation by limiting nucleotide triphosphate synthesis. Inhibition of mitochondrial oxidative phosphorylation in activated T cells was sufficient to suppress proliferation and upregulate genes linked to T cell exhaustion. Conversely, prevention of mitochondrial oxidative stress during chronic T cell stimulation allowed sustained T cell proliferation and induced genes associated with stem-like progenitor T cells. As a result, antioxidant treatment enhanced the anti-tumor efficacy of chronically stimulated T cells. These data reveal that loss of ATP production through oxidative phosphorylation limits T cell proliferation and effector function during chronic antigenic stimulation. Furthermore, treatments that maintain redox balance promote T cell self-renewal and enhance anti-tumor immunity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mitochondria/metabolism , Neoplasms/immunology , Adenosine Diphosphate/metabolism , Animals , Antigens, Neoplasm/immunology , Antioxidants/pharmacology , Cell Proliferation , Cell Self Renewal , Clonal Anergy/genetics , Energy Metabolism , Immune Tolerance , Lymphocyte Activation , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Oxidative Phosphorylation
4.
Immunity ; 56(2): 353-368.e6, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36736321

ABSTRACT

The severity of T cell-mediated gastrointestinal (GI) diseases such as graft-versus-host disease (GVHD) and inflammatory bowel diseases correlates with a decrease in the diversity of the host gut microbiome composition characterized by loss of obligate anaerobic commensals. The mechanisms underpinning these changes in the microbial structure remain unknown. Here, we show in multiple specific pathogen-free (SPF), gnotobiotic, and germ-free murine models of GI GVHD that the initiation of the intestinal damage by the pathogenic T cells altered ambient oxygen levels in the GI tract and caused dysbiosis. The change in oxygen levels contributed to the severity of intestinal pathology in a host intestinal HIF-1α- and a microbiome-dependent manner. Regulation of intestinal ambient oxygen levels with oral iron chelation mitigated dysbiosis and reduced the severity of the GI GVHD. Thus, targeting ambient intestinal oxygen levels may represent a novel, non-immunosuppressive strategy to mitigate T cell-driven intestinal diseases.


Subject(s)
Gastrointestinal Diseases , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Mice , Dysbiosis , Intestines/pathology , Graft vs Host Disease/pathology
5.
Immunity ; 56(8): 1876-1893.e8, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37480848

ABSTRACT

Acute graft-versus-host disease (aGVHD) remains a major limitation of allogeneic stem cell transplantation (SCT), and severe intestinal manifestation is the major cause of early mortality. Intestinal microbiota control MHC class II (MHC-II) expression by ileal intestinal epithelial cells (IECs) that promote GVHD. Here, we demonstrated that genetically identical mice of differing vendor origins had markedly different intestinal microbiota and ileal MHC-II expression, resulting in discordant GVHD severity. We utilized cohousing and antibiotic treatment to characterize the bacterial taxa positively and negatively associated with MHC-II expression. A large proportion of bacterial MHC-II inducers were vancomycin sensitive, and peri-transplant oral vancomycin administration attenuated CD4+ T cell-mediated GVHD. We identified a similar relationship between pre-transplant microbes, HLA class II expression, and both GVHD and mortality in a large clinical SCT cohort. These data highlight therapeutically tractable mechanisms by which pre-transplant microbial taxa contribute to GVHD independently of genetic disparity.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , Vancomycin , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Homologous/adverse effects
6.
Immunity ; 55(10): 1779-1798, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36182669

ABSTRACT

Immunocompromised individuals and particularly those with hematologic malignancies are at increased risk for SARS-CoV-2-associated morbidity and mortality due to immunologic deficits that limit prevention, treatment, and clearance of the virus. Understanding the natural history of viral infections in people with impaired immunity due to underlying conditions, immunosuppressive therapy, or a combination thereof has emerged as a critical area of investigation during the COVID-19 pandemic. Studies focused on these individuals have provided key insights into aspects of innate and adaptive immunity underlying both the antiviral immune response and excess inflammation in the setting of COVID-19. This review presents what is known about distinct states of immunologic vulnerability to SARS-CoV-2 and how this information can be harnessed to improve prevention and treatment strategies for immunologically high-risk populations.


Subject(s)
COVID-19 , SARS-CoV-2 , Adaptive Immunity , Antiviral Agents , Humans , Pandemics/prevention & control
7.
Blood ; 144(2): 171-186, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38579288

ABSTRACT

ABSTRACT: Multiple myeloma is a plasma cell malignancy that is currently incurable with conventional therapies. Following the success of CD19-targeted chimeric antigen receptor (CAR) T cells in leukemia and lymphoma, CAR T cells targeting B-cell maturation antigen (BCMA) more recently demonstrated impressive activity in relapsed and refractory myeloma patients. However, BCMA-directed therapy can fail due to weak expression of BCMA on myeloma cells, suggesting that novel approaches to better address this antigen-low disease may improve patient outcomes. We hypothesized that engineered secretion of the proinflammatory cytokine interleukin-18 (IL-18) and multiantigen targeting could improve CAR T-cell activity against BCMA-low myeloma. In a syngeneic murine model of myeloma, CAR T cells targeting the myeloma-associated antigens BCMA and B-cell activating factor receptor (BAFF-R) failed to eliminate myeloma when these antigens were weakly expressed, whereas IL-18-secreting CAR T cells targeting these antigens promoted myeloma clearance. IL-18-secreting CAR T cells developed an effector-like T-cell phenotype, promoted interferon-gamma production, reprogrammed the myeloma bone marrow microenvironment through type-I/II interferon signaling, and activated macrophages to mediate antimyeloma activity. Simultaneous targeting of weakly-expressed BCMA and BAFF-R with dual-CAR T cells enhanced T-cell:target-cell avidity, increased overall CAR signal strength, and stimulated antimyeloma activity. Dual-antigen targeting augmented CAR T-cell secretion of engineered IL-18 and facilitated elimination of larger myeloma burdens in vivo. Our results demonstrate that combination of engineered IL-18 secretion and multiantigen targeting can eliminate myeloma with weak antigen expression through distinct mechanisms.


Subject(s)
B-Cell Maturation Antigen , Immunotherapy, Adoptive , Interleukin-18 , Multiple Myeloma , Animals , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Multiple Myeloma/pathology , Mice , Interleukin-18/immunology , Immunotherapy, Adoptive/methods , B-Cell Maturation Antigen/immunology , Humans , Receptors, Chimeric Antigen/immunology , Disease Models, Animal , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor
8.
Nature ; 588(7837): 303-307, 2020 12.
Article in English | MEDLINE | ID: mdl-33239790

ABSTRACT

The gut microbiota influences development1-3 and homeostasis4-7 of the mammalian immune system, and is associated with human inflammatory8 and immune diseases9,10 as well as responses to immunotherapy11-14. Nevertheless, our understanding of how gut bacteria modulate the immune system remains limited, particularly in humans, where the difficulty of direct experimentation makes inference challenging. Here we study hundreds of hospitalized-and closely monitored-patients with cancer receiving haematopoietic cell transplantation as they recover from chemotherapy and stem-cell engraftment. This aggressive treatment causes large shifts in both circulatory immune cell and microbiota populations, enabling the relationships between the two to be studied simultaneously. Analysis of observed daily changes in circulating neutrophil, lymphocyte and monocyte counts and more than 10,000 longitudinal microbiota samples revealed consistent associations between gut bacteria and immune cell dynamics. High-resolution clinical metadata and Bayesian inference allowed us to compare the effects of bacterial genera in relation to those of immunomodulatory medications, revealing a considerable influence of the gut microbiota-together and over time-on systemic immune cell dynamics. Our analysis establishes and quantifies the link between the gut microbiota and the human immune system, with implications for microbiota-driven modulation of immunity.


Subject(s)
Gastrointestinal Microbiome/immunology , Leukocytes/cytology , Leukocytes/immunology , Age Factors , Bayes Theorem , Fecal Microbiota Transplantation , Female , Humans , Leukocyte Count , Lymphocytes/cytology , Lymphocytes/immunology , Monocytes/cytology , Monocytes/immunology , Neutrophils/cytology , Neutrophils/immunology , Reproducibility of Results
9.
Blood ; 141(12): 1389-1401, 2023 03 23.
Article in English | MEDLINE | ID: mdl-36399701

ABSTRACT

Graft-versus-host disease (GVHD) is a major cause of morbidity and mortality following allogeneic hematopoietic transplantation. In experimental models, interleukin-22 promotes epithelial regeneration and induces innate antimicrobial molecules. We conducted a multicenter single-arm phase 2 study evaluating the safety and efficacy of a novel recombinant human interleukin-22 dimer, F-652, used in combination with systemic corticosteroids for treatment of newly diagnosed lower gastrointestinal acute GVHD. The most common adverse events were cytopenias and electrolyte abnormalities, and there were no dose-limiting toxicities. Out of 27 patients, 19 (70%; 80% confidence interval, 56%-79%) achieved a day-28 treatment response, meeting the prespecified primary endpoint. Responders exhibited a distinct fecal microbiota composition characterized by expansion of commensal anaerobes, which correlated with increased overall microbial α-diversity, suggesting improvement of GVHD-associated dysbiosis. This work demonstrates a potential approach for combining immunosuppression with tissue-supportive strategies to enhance recovery of damaged mucosa and promote microbial health in patients with gastrointestinal GVHD. This trial was registered at www.clinicaltrials.gov as NCT02406651.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Humans , Hematopoietic Stem Cell Transplantation/adverse effects , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , Lower Gastrointestinal Tract , Adrenal Cortex Hormones/therapeutic use , Interleukin-22
10.
Nature ; 572(7771): 665-669, 2019 08.
Article in English | MEDLINE | ID: mdl-31435014

ABSTRACT

Intestinal commensal bacteria can inhibit dense colonization of the gut by vancomycin-resistant Enterococcus faecium (VRE), a leading cause of hospital-acquired infections1,2. A four-strained consortium of commensal bacteria that contains Blautia producta BPSCSK can reverse antibiotic-induced susceptibility to VRE infection3. Here we show that BPSCSK reduces growth of VRE by secreting a lantibiotic that is similar to the nisin-A produced by Lactococcus lactis. Although the growth of VRE is inhibited by BPSCSK and L. lactis in vitro, only BPSCSK colonizes the colon and reduces VRE density in vivo. In comparison to nisin-A, the BPSCSK lantibiotic has reduced activity against intestinal commensal bacteria. In patients at high risk of VRE infection, high abundance of the lantibiotic gene is associated with reduced density of E. faecium. In germ-free mice transplanted with patient-derived faeces, resistance to VRE colonization correlates with abundance of the lantibiotic gene. Lantibiotic-producing commensal strains of the gastrointestinal tract reduce colonization by VRE and represent potential probiotic agents to re-establish resistance to VRE.


Subject(s)
Bacteriocins/metabolism , Bacteriocins/pharmacology , Enterococcus faecium/drug effects , Lactococcus lactis/metabolism , Probiotics , Vancomycin Resistance/drug effects , Vancomycin-Resistant Enterococci/drug effects , Animals , Anti-Bacterial Agents/biosynthesis , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteriocins/genetics , Bacteriocins/isolation & purification , Enterococcus faecium/growth & development , Enterococcus faecium/isolation & purification , Feces/microbiology , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/microbiology , Germ-Free Life , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/growth & development , Humans , Lactococcus lactis/chemistry , Lactococcus lactis/growth & development , Lactococcus lactis/physiology , Mice , Microbial Sensitivity Tests , Microbiota/genetics , Nisin/chemistry , Nisin/pharmacology , Symbiosis/drug effects , Vancomycin/pharmacology , Vancomycin-Resistant Enterococci/growth & development , Vancomycin-Resistant Enterococci/isolation & purification
11.
Proc Natl Acad Sci U S A ; 119(17): e2121028119, 2022 04 26.
Article in English | MEDLINE | ID: mdl-35439062

ABSTRACT

Secondary lymphoid organs (SLOs) (including the spleen and lymph nodes [LNs]) are critical both for the maintenance of naive T (TN) lymphocytes and for the initiation and coordination of immune responses. How they age, including the exact timing, extent, physiological relevance, and the nature of age-related changes, remains incompletely understood. We used "time stamping" to indelibly mark newly generated naive T cells (also known as recent thymic emigrants) (RTEs) in mice, and followed their presence, phenotype, and retention in SLOs. We found that SLOs involute asynchronously. Skin-draining LNs atrophied by 6 to 9 mo in life, whereas deeper tissue-draining LNs atrophied by 18 to 20 mo, as measured by the loss of both TN numbers and the fibroblastic reticular cell (FRC) network. Time-stamped RTEs at all ages entered SLOs and successfully completed postthymic differentiation, but the capacity of older SLOs to maintain TN numbers was reduced with aging, and that trait did not depend on the age of TNs. However, in SLOs of older mice, these cells exhibited an emigration phenotype (CCR7loS1P1hi), which correlated with an increase of the cells of the same phenotype in the blood. Finally, upon intradermal immunization, RTEs generated in mice barely participated in de novo immune responses and failed to produce well-armed effector cells detectable in blood as early as by 7 to 8 mo of age. These results highlight changes in structure and function of superficial secondary lymphoid organs in laboratory mice that are earlier than expected and are consistent with the long-appreciated reduction of cutaneous immunity with aging.


Subject(s)
Lymph Nodes , Skin , Aging , Animals , Atrophy/pathology , Mice , Mice, Inbred C57BL , Skin/pathology
12.
Blood ; 140(22): 2385-2397, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35969834

ABSTRACT

Following allogeneic hematopoietic cell transplantation (allo-HCT), the gastrointestinal (GI) tract is frequently affected by acute graft-versus-host disease (aGVHD), the pathophysiology of which is associated with a dysbiotic microbiome. Since microbial composition varies along the length of the GI tract, the authors hypothesized that microbiome features correlate with the pattern of organ involvement after allo-HCT. We evaluated 266 allo-HCT recipients from whom 1303 stool samples were profiled by 16S ribosomal gene sequencing. Patients were classified according to which organs were affected by aGVHD. In the 20 days prior to disease onset, GVHD patients had lower abundances of members of the class Clostridia, lower counts of butyrate producers, and lower ratios of strict-to-facultative (S/F) anaerobic bacteria compared with allograft recipients who were free of GVHD. GI GVHD patients showed significant reduction in microbial diversity preonset. Patients with lower GI aGVHD had lower S/F anaerobe ratios compared with those with isolated upper GI aGVHD. In the 20 days after disease onset, dysbiosis was observed only in GVHD patients with GI involvement, particularly those with lower-tract disease. Importantly, Clostridial and butyrate-producer abundance as well as S/F anaerobe ratio were predictors of longer overall survival; higher abundance of butyrate producers and higher S/F anaerobe ratio were associated with decreased risk of GVHD-related death. These findings suggest that the intestinal microbiome can serve as a biomarker for outcomes of allo-HCT patients with GVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Microbiota , Humans , Graft vs Host Disease/microbiology , Hematopoietic Stem Cell Transplantation/adverse effects , Feces/microbiology , Dysbiosis/etiology , Bacteria , Butyrates
13.
Blood ; 139(18): 2758-2769, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35061893

ABSTRACT

Low intestinal microbial diversity is associated with poor outcomes after allogeneic hematopoietic cell transplantation (HCT). Using 16S rRNA sequencing of 2067 stool samples and flow cytometry data from 2370 peripheral blood samples drawn from 894 patients who underwent allogeneic HCT, we have linked features of the early post-HCT microbiome with subsequent immune cell recovery. We examined lymphocyte recovery and microbiota features in recipients of both unmodified and CD34-selected allografts. We observed that fecal microbial diversity was an independent predictor of CD4 T-cell count 3 months after HCT in recipients of a CD34-selected allograft, who are dependent on de novo lymphopoiesis for their immune recovery. In multivariate models using clinical factors and microbiota features, we consistently observed that increased fecal relative abundance of genus Staphylococcus during the early posttransplant period was associated with worse CD4 T-cell recovery. Our observations suggest that the intestinal bacteria, or the factors they produce, can affect early lymphopoiesis and the homeostasis of allograft-derived T cells after transplantation.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , CD4-Positive T-Lymphocytes , Humans , Lymphocyte Count , RNA, Ribosomal, 16S , Transplantation, Homologous
14.
Blood ; 139(15): 2392-2405, 2022 04 14.
Article in English | MEDLINE | ID: mdl-34653248

ABSTRACT

The intestinal microbiota is essential for the fermentation of dietary fiber into short-chain fatty acids (SCFA) such as butyrate, acetate, and propionate. SCFAs can bind to the G-protein-coupled receptors GPR43 and GPR109A (HCAR2), with varying affinities to promote cellular effects in metabolism or changes in immune function. We explored the role of GPR109A as the main receptor for butyrate in mouse models of allogeneic hematopoietic cell transplantation (allo-HCT) and graft-versus-host disease (GVHD). Deletion of GPR109A in allo-HCT recipients did not affect GVHD, but transplantation of T cells from GPR109A knockout (KO) (Gpr109a-/-) mice into allo-HCT recipient mice significantly reduced GVHD morbidity and mortality compared with recipients of wild-type (WT) T cells. Recipients of Gpr109a-/- T cells exhibited less GVHD-associated target organ pathology and decreased proliferation and homing of alloreactive T cells to target tissues. Although Gpr109a-/- T cells did not exhibit immune deficits at a steady state, following allo-activation, Gpr109a-/- T cells underwent increased apoptosis and were impaired mitochondrial oxidative phosphorylation, which was reversible through antioxidant treatment with N-acetylcysteine (NAC). In conclusion, we found that GPR109A expression by allo-activated T cells is essential for metabolic homeostasis and expansion, which are necessary features to induce GVHD after allo-HCT.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Animals , Butyrates , Fatty Acids, Volatile/physiology , Mice , T-Lymphocytes
15.
Blood ; 137(11): 1527-1537, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33512409

ABSTRACT

We previously described clinically relevant reductions in fecal microbiota diversity in patients undergoing allogeneic hematopoietic cell transplantation (allo-HCT). Recipients of high-dose chemotherapy and autologous HCT (auto-HCT) incur similar antibiotic exposures and nutritional alterations. To characterize the fecal microbiota in the auto-HCT population, we analyzed 1161 fecal samples collected from 534 adult recipients of auto-HCT for lymphoma, myeloma, and amyloidosis in an observational study conducted at 2 transplantation centers in the United States. By using 16S ribosomal gene sequencing, we assessed fecal microbiota composition and diversity, as measured by the inverse Simpson index. At both centers, the diversity of early pretransplant fecal microbiota was lower in patients than in healthy controls and decreased further during the course of transplantation. Loss of diversity and domination by specific bacterial taxa occurred during auto-HCT in patterns similar to those with allo-HCT. Above-median fecal intestinal diversity in the periengraftment period was associated with decreased risk of death or progression (progression-free survival hazard ratio, 0.46; 95% confidence interval, 0.26-0.82; P = .008), adjusting for disease and disease status. This suggests that further investigation into the health of the intestinal microbiota in auto-HCT patients and posttransplant outcomes should be undertaken.


Subject(s)
Feces/microbiology , Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Adult , Aged , Female , Humans , Male , Middle Aged , Transplantation, Homologous
16.
Immunity ; 41(4): 579-91, 2014 Oct 16.
Article in English | MEDLINE | ID: mdl-25308334

ABSTRACT

Atg16L1 mediates the cellular degradative process of autophagy and is considered a critical regulator of inflammation based on its genetic association with inflammatory bowel disease. Here we find that Atg16L1 deficiency leads to an exacerbated graft-versus-host disease (GVHD) in a mouse model of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Atg16L1-deficient allo-HSCT recipients with GVHD displayed increased T cell proliferation due to increased dendritic cell (DC) numbers and costimulatory molecule expression. Reduced autophagy within DCs was associated with lysosomal abnormalities and decreased amounts of A20, a negative regulator of DC activation. These results broaden the function of Atg16L1 and the autophagy pathway to include a role in limiting a DC-mediated response during inflammatory disease, such as GVHD.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Carrier Proteins/immunology , Dendritic Cells/immunology , Graft vs Host Disease/immunology , Animals , Autophagy/immunology , Autophagy-Related Proteins , B7-1 Antigen/biosynthesis , B7-2 Antigen/biosynthesis , CD40 Antigens/biosynthesis , Carrier Proteins/genetics , Cell Proliferation , Cells, Cultured , Colitis/immunology , Cysteine Endopeptidases/biosynthesis , Disease Models, Animal , Female , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Hematopoietic Stem Cell Transplantation , Homeodomain Proteins/genetics , Immediate-Early Proteins/biosynthesis , Inflammation/immunology , Intracellular Signaling Peptides and Proteins/biosynthesis , Lymphocyte Activation/immunology , Lysosomes/pathology , Membrane Proteins/biosynthesis , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptors, Antigen, T-Cell, gamma-delta/immunology , Transplantation, Homologous , Tumor Necrosis Factor alpha-Induced Protein 3
17.
Cancer ; 128(21): 3850-3859, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36041227

ABSTRACT

BACKGROUND: Dysgeusia is a common but understudied complication in patients undergoing autologous hematopoietic cell transplantation (auto-HCT). We assessed the feasibility of using chemical gustometry (CG) to measure dysgeusia and explored its associations with symptom burden, nutrition, chemotherapy pharmacokinetics (PK), and the oral microbiome. METHODS: We conducted a single-center, prospective feasibility study (NCT03276481) of patients with multiple myeloma undergoing auto-HCT. CG was performed longitudinally testing five flavors (sweet, sour, salty, bitter, umami) to calculate a total taste score (maximum score, 30). We measured caloric intake and patient-reported symptoms, assessing their correlation with oral microbiota composition and salivary and blood melphalan PK exposure. RESULTS: Among all 45 patients, 39 (87%) completed at least four (>60%) and 22 (49%) completed all six CG assessments. Median total CG scores remained stable over time but were lowest at day +7 (27, range 24-30) with recovery by day +100. Symptom burden was highest by day +10 (area under the curve, 2.9; range, 1.0-4.6) corresponding with the lowest median overall caloric intake (1624 kcal; range, 1345-2267). Higher serum/salivary melphalan levels correlated with higher patient-reported dysgeusia and lower caloric intake. Oral microbiota α-diversity was stable early and increased slightly by day +100. CONCLUSIONS: Assessment of dysgeusia by CG is feasible after auto-HCT. Most dysgeusia, symptom burden, and lowest caloric intake occurred during the blood count nadir. Higher melphalan concentrations correlated with more dysgeusia and poorer caloric intake. Future studies will aim to modulate melphalan exposure by PK-targeted dosing and characterize patient taste preferences to personalize diets for improved nutritional intake. LAY SUMMARY: Taste changes after cancer treatments are very common. We used chemical gustometry (taste testing) to study taste changes and to better understand why patients with multiple myeloma experience this symptom after autologous hematopoietic cell transplantation. We found that taste testing was feasible, taste changes peaked when blood counts were lowest, and most patients recovered their taste by 100 days after transplantation. Taste changes correlated with lower food intake and with higher levels of chemotherapy in the body. Future work will focus on using personalized chemotherapy doses to reduce taste changes and to match patients' individual taste preferences with their diets.


Subject(s)
Hematopoietic Stem Cell Transplantation , Multiple Myeloma , Dysgeusia/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Melphalan , Multiple Myeloma/therapy , Prospective Studies , Transplantation, Autologous/adverse effects
18.
Blood ; 135(26): 2388-2401, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32232483

ABSTRACT

A goal in precision medicine is to use patient-derived material to predict disease course and intervention outcomes. Here, we use mechanistic observations in a preclinical animal model to design an ex vivo platform that recreates genetic susceptibility to T-cell-mediated damage. Intestinal graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation. We found that intestinal GVHD in mice deficient in Atg16L1, an autophagy gene that is polymorphic in humans, is reversed by inhibiting necroptosis. We further show that cocultured allogeneic T cells kill Atg16L1-mutant intestinal organoids from mice, which was associated with an aberrant epithelial interferon signature. Using this information, we demonstrate that pharmacologically inhibiting necroptosis or interferon signaling protects human organoids derived from individuals harboring a common ATG16L1 variant from allogeneic T-cell attack. Our study provides a roadmap for applying findings in animal models to individualized therapy that targets affected tissues.


Subject(s)
Graft vs Host Disease/prevention & control , Intestinal Diseases/prevention & control , Organoids , T-Lymphocytes/immunology , Acrylamides/pharmacology , Animals , Autophagy , Autophagy-Related Proteins/deficiency , Autophagy-Related Proteins/genetics , Bone Marrow Transplantation/adverse effects , Coculture Techniques , Colon/abnormalities , Female , Genetic Predisposition to Disease , Graft vs Host Disease/immunology , Graft vs Host Disease/pathology , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Inflammatory Bowel Diseases/pathology , Intestinal Diseases/immunology , Intestinal Diseases/pathology , Intestinal Mucosa/immunology , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Necroptosis/drug effects , Nitriles , Paneth Cells/pathology , Precision Medicine , Pyrazoles/pharmacology , Pyrimidines , Radiation Chimera , Receptor-Interacting Protein Serine-Threonine Kinases/deficiency , Sulfonamides/pharmacology , T-Lymphocytes/transplantation
19.
Blood ; 136(1): 130-136, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32430495

ABSTRACT

Studies of the relationship between the gastrointestinal microbiota and outcomes in allogeneic hematopoietic stem cell transplantation (allo-HCT) have thus far largely focused on early complications, predominantly infection and acute graft-versus-host disease (GVHD). We examined the potential relationship of the microbiome with chronic GVHD (cGVHD) by analyzing stool and plasma samples collected late after allo-HCT using a case-control study design. We found lower circulating concentrations of the microbe-derived short-chain fatty acids (SCFAs) propionate and butyrate in day 100 plasma samples from patients who developed cGVHD, compared with those who remained free of this complication, in the initial case-control cohort of transplant patients and in a further cross-sectional cohort from an independent transplant center. An additional cross-sectional patient cohort from a third transplant center was analyzed; however, serum (rather than plasma) was available, and the differences in SCFAs observed in the plasma samples were not recapitulated. In sum, our findings from the primary case-control cohort and 1 of 2 cross-sectional cohorts explored suggest that the gastrointestinal microbiome may exert immunomodulatory effects in allo-HCT patients at least in part due to control of systemic concentrations of microbe-derived SCFAs.


Subject(s)
Butyrates/blood , Gastrointestinal Microbiome , Graft vs Host Disease/microbiology , Propionates/blood , Adult , Allografts , Bacteria/isolation & purification , Bacteria/metabolism , Case-Control Studies , Chronic Disease , Dysbiosis/etiology , Dysbiosis/microbiology , Feces/microbiology , Graft vs Host Disease/blood , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Metabolome , Ribotyping
20.
Clin Infect Dis ; 73(11): e4627-e4635, 2021 12 06.
Article in English | MEDLINE | ID: mdl-31976518

ABSTRACT

BACKGROUND: Gram-negative bloodstream infections (BSIs) represent a significant complication facing allogeneic hematopoietic cell transplant (allo-HCT) recipients, as a result of intestinal translocation during neutropenia. In this study we sought to better understand how the composition of the intestinal microbiota is connected to risk of gram-negative BSIs, expanding on our prior work in these patients. METHODS: Fecal specimens were collected from recipients of allo-HCT and analyzed using 16S ribosomal RNA gene sequencing. Samples and clinical data extending from the pretransplant conditioning period through stem cell engraftment were used in the analysis. Intestinal domination (relative abundance ≥ 30%) by gram-negative bacteria was used as predictor of gram-negative BSI using Cox proportional hazards modeling. Further analysis of microbiota composition was performed at the genus level. RESULTS: Seven hundred eight allo-HCT subjects were studied (7.5% developed gram-negative infection), with 4768 fecal samples for analysis. Gram-negative intestinal domination was associated with subsequent BSI, which was observed overall and individually at the genus level: Escherichia, Klebsiella, Enterobacter, Pseudomonas, and Stenotrophomonas. Fluoroquinolone prophylaxis was associated with decreased BSI and intestinal colonization by gram-negative microbes. In fluoroquinolone-prophylaxed patients, Escherichia coli was more frequently observed as breakthrough, both in terms of intestinal colonization and BSIs, compared with nonprophylaxed patients. Initial colonization by members of Ruminococcaceae and Bacteroidetes were associated with protection against gram-negative BSI. CONCLUSIONS: Gram-negative intestinal colonization is highly predictive of BSI in the setting of allo-HCT. Fluoroquinolones appear to reduce these infections by influencing gut colonization.


Subject(s)
Bacteremia , Gastrointestinal Microbiome , Hematopoietic Stem Cell Transplantation , Sepsis , Bacteremia/microbiology , Gram-Negative Bacteria , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , Retrospective Studies , Sepsis/complications
SELECTION OF CITATIONS
SEARCH DETAIL