Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Anal Chem ; 83(11): 4206-13, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21495670

ABSTRACT

A surface plasmon resonance (SPR) optical biosensor method was developed for the detection of paralytic shellfish poisoning (PSP) toxins in shellfish. This application was transferred in the form of a prototype kit to seven laboratories using Biacore Q SPR optical biosensor instrumentation for interlaboratory evaluation. Each laboratory received 20 shellfish samples across a range of species including blind duplicates for analysis. The samples consisted of 4 noncontaminated samples spiked in duplicate with a low level of PSP toxins (240 µg STXdiHCl equivalents/kg), a high level of saxitoxin (825 µg STXdiHCl/kg), 2 noncontaminated, and 14 naturally contaminated samples. All 7 participating laboratories completed the study, and HorRat values obtained were <1 demonstrating that the method performance was acceptable. Mean recoveries expressed as STXdiHCl equivalents/kg were 94.6 ± 16.8% for the low level PSP toxin mix and 98.6 ± 5.6% for the high level of saxitoxin. Relative standard deviations for within-laboratory variations (RSD(r): repeatability) and between-laboratory variations (RSD(R) = reproducibility) ranged from 1.8 to 9.6% and 2.9 to 18.3% respectively. This first ever reported SPR biosensor interlaboratory study demonstrated this PSP application to be an empowering tool in the drive toward the reduction and replacement of the mouse bioassay within Europe.


Subject(s)
Marine Toxins/analysis , Shellfish/analysis , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Laboratories , Pilot Projects , Saxitoxin/analysis
3.
Toxins (Basel) ; 2(4): 878-904, 2010 04.
Article in English | MEDLINE | ID: mdl-22069615

ABSTRACT

Various species of algae can produce marine toxins under certain circumstances. These toxins can then accumulate in shellfish such as mussels, oysters and scallops. When these contaminated shellfish species are consumed severe intoxication can occur. The different types of syndromes that can occur after consumption of contaminated shellfish, the corresponding toxins and relevant legislation are discussed in this review. Amnesic Shellfish Poisoning (ASP), Paralytic Shellfish Poisoning (PSP), Diarrheic Shellfish Poisoning (DSP) and Azaspiracid Shellfish Poisoning (AZP) occur worldwide, Neurologic Shellfish Poisoning (NSP) is mainly limited to the USA and New Zealand while the toxins causing DSP and AZP occur most frequently in Europe. The latter two toxin groups are fat-soluble and can therefore also be classified as lipophilic marine toxins. A detailed overview of the official analytical methods used in the EU (mouse or rat bioassay) and the recently developed alternative methods for the lipophilic marine toxins is given. These alternative methods are based on functional assays, biochemical assays and chemical methods. From the literature it is clear that chemical methods offer the best potential to replace the animal tests that are still legislated worldwide. Finally, an overview is given of the situation of marine toxins in The Netherlands. The rat bioassay has been used for monitoring DSP and AZP toxins in The Netherlands since the 1970s. Nowadays, a combination of a chemical method and the rat bioassay is often used. In The Netherlands toxic events are mainly caused by DSP toxins, which have been found in Dutch shellfish for the first time in 1961, and have reoccurred at irregular intervals and in varying concentrations. From this review it is clear that considerable effort is being undertaken by various research groups to phase out the animal tests that are still used for the official routine monitoring programs.


Subject(s)
Marine Toxins/toxicity , Animals , Humans , Marine Toxins/analysis , Marine Toxins/chemistry , Mice , Netherlands , Rats , Shellfish Poisoning/etiology
4.
Regul Toxicol Pharmacol ; 41(1): 66-72, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15649828

ABSTRACT

Glycoalkaloids in potatoes may induce gastro-intestinal and systemic effects, by cell membrane disruption and acetylcholinesterase inhibition, respectively. The present single dose study was designed to evaluate the toxicity and pharmacokinetics of orally administered potato glycoalkaloids (alpha-chaconine and alpha-solanine). It is the first published human volunteer study were pharmacokinetic data were obtained for more than 24 h post-dose. Subjects (2-3 per treatment) received one of the following six treatments: (1-3) solutions with total glycoalkaloid (TGA) doses of 0.30, 0.50 or 0.70 mg/kg body weight (BW), or (4-6) mashed potatoes with TGA doses of 0.95, 1.10 or 1.25 mg/kg BW. The mashed potatoes had a TGA concentration of nearly 200 mg/kg fresh weight (the presently recognised upper limit of safety). None of these treatments induced acute systemic effects. One subject who received the highest dose of TGA (1.25 mg/kg BW) became nauseous and started vomiting about 4 h post-dose, possibly due to local glycoalkaloid toxicity (although the dosis is lower than generally reported in the literature to cause gastro-intestinal disturbances). Most relevant, the clearance of glycoalkaloids usually takes more than 24 h, which implicates that the toxicants may accumulate in case of daily consumption.


Subject(s)
Solanine/analogs & derivatives , Solanine/adverse effects , Solanum tuberosum , Adult , Area Under Curve , Biological Availability , Dose-Response Relationship, Drug , Female , Half-Life , Humans , Male , Middle Aged , Solanine/blood , Solanine/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL