Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Infect Dis ; 228(2): 212-223, 2023 07 14.
Article in English | MEDLINE | ID: mdl-37042518

ABSTRACT

Transmission-blocking interventions can play an important role in combating malaria worldwide. Recently, a highly potent Plasmodium falciparum transmission-blocking monoclonal antibody (TB31F) was demonstrated to be safe and efficacious in malaria-naive volunteers. Here we predict the potential public health impact of large-scale implementation of TB31F alongside existing interventions. We developed a pharmaco-epidemiological model, tailored to 2 settings of differing transmission intensity with already established insecticide-treated nets and seasonal malaria chemoprevention interventions. Community-wide annual administration (at 80% coverage) of TB31F over a 3-year period was predicted to reduce clinical incidence by 54% (381 cases averted per 1000 people per year) in a high-transmission seasonal setting, and 74% (157 cases averted per 1000 people per year) in a low-transmission seasonal setting. Targeting school-aged children gave the largest reduction in terms of cases averted per dose. An annual administration of the transmission-blocking monoclonal antibody TB31F may be an effective intervention against malaria in seasonal malaria settings.


Subject(s)
Malaria, Falciparum , Malaria , Child , Humans , Plasmodium falciparum , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Falciparum/drug therapy , Seasons , Malaria/prevention & control , Antibodies, Monoclonal/therapeutic use
2.
BMC Med ; 21(1): 137, 2023 04 07.
Article in English | MEDLINE | ID: mdl-37024868

ABSTRACT

BACKGROUND: Whole sporozoite immunization under chemoprophylaxis (CPS regime) induces long-lasting sterile homologous protection in the controlled human malaria infection model using Plasmodium falciparum strain NF54. The relative proficiency of liver-stage parasite development may be an important factor determining immunization efficacy. Previous studies show that Plasmodium falciparum strain NF135 produces relatively high numbers of large liver-stage schizonts in vitro. Here, we evaluate this strain for use in CPS immunization regimes. METHODS: In a partially randomized, open-label study conducted at the Radboudumc, Nijmegen, the Netherlands, healthy, malaria-naïve adults were immunized by three rounds of fifteen or five NF135-infected mosquito bites under mefloquine prophylaxis (cohort A) or fifteen NF135-infected mosquito bites and presumptive treatment with artemether/lumefantrine (cohort B). Cohort A participants were exposed to a homologous challenge 19 weeks after immunization. The primary objective of the study was to evaluate the safety and tolerability of CPS immunizations with NF135. RESULTS: Relatively high liver-to-blood inocula were observed during immunization with NF135 in both cohorts. Eighteen of 30 (60%) high-dose participants and 3/10 (30%) low-dose participants experienced grade 3 adverse events 7 to 21 days following their first immunization. All cohort A participants and two participants in cohort B developed breakthrough blood-stage malaria infections during immunizations requiring rescue treatment. The resulting compromised immunizations induced modest sterile protection against homologous challenge in cohort A (5/17; 29%). CONCLUSIONS: These CPS regimes using NF135 were relatively poorly tolerated and frequently required rescue treatment, thereby compromising immunization efficiency and protective efficacy. Consequently, the full potential of NF135 sporozoites for induction of immune protection remains inconclusive. Nonetheless, the high liver-stage burden achieved by this strain highlights it as an interesting potential candidate for novel whole sporozoite immunization approaches. TRIAL REGISTRATION: The trial was registered at ClinicalTrials.gov under identifier NCT03813108.


Subject(s)
Antimalarials , Insect Bites and Stings , Malaria Vaccines , Malaria , Adult , Animals , Humans , Antimalarials/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Immunization/methods , Insect Bites and Stings/drug therapy , Malaria/prevention & control , Malaria Vaccines/adverse effects , Plasmodium falciparum , Sporozoites
3.
Vaccine ; 41(29): 4319-4326, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37286408

ABSTRACT

INTRODUCTION: The rapid roll-out of novel COVID-19 vaccines made near real-time post-marketing safety surveillance essential to identify rare and long-term adverse events following immunization (AEFIs). In light of the ongoing booster vaccination campaigns, it is key to monitor changes in observed safety patterns post-vaccination. The effect of sequential COVID-19 vaccinations, as well as heterologous vaccination sequences, on the observed post-vaccination safety pattern, remains largely unknown. METHODS: The primary objective of this study was to describe the profile of spontaneously reported AEFIs following COVID-19 vaccination in the Netherlands, including the primary and booster series. Reports from consumers and healthcare professionals were collected via a COVID-19 vaccine-tailored online reporting form by the National Pharmacovigilance Centre Lareb (Lareb) between 6 January 2021 and 31 August 2022. The data were used to describe the most frequently reported AEFIs per vaccination moment, the consumer experienced burden per AEFI, and differences in AEFIs reported for homologous and heterologous vaccination sequences. RESULTS: Lareb received 227,884 spontaneous reports over a period of twenty months. Overall, a high degree of similarity in local and systemic AEFIs per vaccination moment was observed, with no apparent change in the number of reports of serious adverse events after multiple COVID-19 vaccinations. No differences in the pattern of reported AEFIs per vaccination sequence was observed. CONCLUSION: Spontaneous reported AEFIs demonstrated a similar reporting pattern for homologous and heterologous primary and booster series of COVID-19 vaccination in the Netherlands.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , COVID-19 Vaccines/adverse effects , Adverse Drug Reaction Reporting Systems , Netherlands/epidemiology , Immunization, Secondary/adverse effects , COVID-19/prevention & control , Vaccination/adverse effects
4.
Front Cell Infect Microbiol ; 12: 834850, 2022.
Article in English | MEDLINE | ID: mdl-35252038

ABSTRACT

During co-evolution Plasmodium parasites and vertebrates went through a process of selection resulting in defined and preferred parasite-host combinations. As such, Plasmodium falciparum (Pf) sporozoites can infect human hepatocytes while seemingly incompatible with host cellular machinery of other species. The compatibility between parasite invasion ligands and their respective human hepatocyte receptors plays a key role in Pf host selectivity. However, it is unclear whether the ability of Pf sporozoites to mature in cross-species infection also plays a role in host tropism. Here we used fresh hepatocytes isolated from porcine livers to study permissiveness to Pf sporozoite invasion and development. We monitored intra-hepatic development via immunofluorescence using anti-HSP70, MSP1, EXP1, and EXP2 antibodies. Our data shows that Pf sporozoites can invade non-human hepatocytes and undergo partial maturation with a significant decrease in schizont numbers between day three and day five. A possible explanation is that Pf sporozoites fail to form a parasitophorous vacuolar membrane (PVM) during invasion. Indeed, the observed aberrant EXP1 and EXP2 staining supports the presence of an atypical PVM. Functions of the PVM include the transport of nutrients, export of waste, and offering a protective barrier against intracellular host effectors. Therefore, an atypical PVM likely results in deficiencies that may detrimentally impact parasite development at multiple levels. In summary, despite successful invasion of porcine hepatocytes, Pf development arrests at mid-stage, possibly due to an inability to mobilize critical nutrients across the PVM. These findings underscore the potential of a porcine liver model for understanding the importance of host factors required for Pf mid-liver stage development.


Subject(s)
Plasmodium falciparum , Plasmodium , Animals , Hepatocytes/parasitology , Liver/parasitology , Protozoan Proteins , Schizonts , Sporozoites , Swine
5.
Lancet Infect Dis ; 22(11): 1596-1605, 2022 11.
Article in English | MEDLINE | ID: mdl-35963275

ABSTRACT

BACKGROUND: Malaria elimination requires interruption of the highly efficient transmission of Plasmodium parasites by mosquitoes. TB31F is a humanised monoclonal antibody that binds the gamete surface protein Pfs48/45 and inhibits fertilisation, thereby preventing further parasite development in the mosquito midgut and onward transmission. We aimed to evaluate the safety and efficacy of TB31F in malaria-naive participants. METHODS: In this open-label, first-in-human, dose-escalation, phase 1 clinical trial, healthy, malaria-naive, adult participants were administered a single intravenous dose of 0·1, 1, 3, or 10 mg/kg TB31F or a subcutaneous dose of 100 mg TB31F, and monitored until day 84 after administration at a single centre in the Netherlands. The primary outcome was the frequency and magnitude of adverse events. Additionally, TB31F serum concentrations were measured by ELISA. Transmission-reducing activity (TRA) of participant sera was assessed by standard membrane feeding assays with Anopheles stephensi mosquitoes and cultured Plasmodium falciparum gametocytes. The trial is registered with Clinicaltrials.gov, NCT04238689. FINDINGS: Between Feb 17 and Dec 10, 2020, 25 participants were enrolled and sequentially assigned to each dose (n=5 per group). No serious or severe adverse events occurred. In total, 33 grade 1 and six grade 2 related adverse events occurred in 20 (80%) of 25 participants across all groups. Serum of all participants administered 1 mg/kg, 3 mg/kg, or 10 mg/kg TB31F intravenously had more than 80% TRA for 28 days or more, 56 days or more, and 84 days or more, respectively. The TB31F serum concentration reaching 80% TRA was 2·1 µg/mL (95% CI 1·9-2·3). Extrapolating the duration of TRA from antibody kinetics suggests more than 80% TRA is maintained for 160 days (95% CI 136-193) following a single intravenous 10 mg/kg dose. INTERPRETATION: TB31F is a well tolerated and highly potent monoclonal antibody capable of completely blocking transmission of P falciparum parasites from humans to mosquitoes. In areas of seasonal transmission, a single dose might cover an entire malaria season. FUNDING: PATH's Malaria Vaccine Initiative.


Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Adult , Animals , Humans , Plasmodium falciparum , Antibodies, Monoclonal/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Malaria, Falciparum/parasitology
6.
Sci Transl Med ; 12(544)2020 05 20.
Article in English | MEDLINE | ID: mdl-32434847

ABSTRACT

Immunization with attenuated Plasmodium sporozoites can induce protection against malaria infection, as shown by Plasmodium falciparum (Pf) sporozoites attenuated by radiation in multiple clinical trials. As alternative attenuation strategy with a more homogeneous population of Pf sporozoites (PfSPZ), genetically engineered Plasmodium berghei sporozoites (SPZ) lacking the genes b9 and slarp induced sterile protection against malaria in mice. Consequently, PfSPZ-GA1 Vaccine, a Pf identical double knockout (Pf∆b9∆slarp), was generated as a genetically attenuated malaria parasite vaccine and tested for safety, immunogenicity, and preliminary efficacy in malaria-naïve Dutch volunteers. Dose-escalation immunizations up to 9.0 × 105 PfSPZ of PfSPZ-GA1 Vaccine were well tolerated without breakthrough blood-stage infection. Subsequently, groups of volunteers were immunized three times by direct venous inoculation with cryopreserved PfSPZ-GA1 Vaccine (9.0 × 105 or 4.5 × 105 PfSPZ, N = 13 each), PfSPZ Vaccine (radiation-attenuated PfSPZ, 4.5 × 105 PfSPZ, N = 13), or normal saline placebo at 8-week intervals, followed by exposure to mosquito bite controlled human malaria infection (CHMI). After CHMI, 3 of 25 volunteers from both PfSPZ-GA1 groups were sterilely protected, and the remaining 17 of 22 showed a patency ≥9 days (median patency in controls, 7 days; range, 7 to 9). All volunteers in the PfSPZ Vaccine control group developed parasitemia (median patency, 9 days; range, 7 to 12). Immunized groups exhibited a significant, dose-related increase in anti-Pf circumsporozoite protein (CSP) antibodies and Pf-specific interferon-γ (IFN-γ)-producing T cells. Although no definite conclusion can be drawn on the potential strength of protective efficacy of PfSPZ-GA1 Vaccine, the favorable safety profile and induced immune responses by PfSPZ-GA1 Vaccine warrant further clinical evaluation.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Animals , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Mice , Plasmodium falciparum , Sporozoites , Vaccines, Attenuated
SELECTION OF CITATIONS
SEARCH DETAIL