Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Acta Derm Venereol ; 96(7): 873-879, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-26976779

ABSTRACT

The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.


Subject(s)
Bony Callus/microbiology , Propionibacterium acnes/growth & development , Skin/microbiology , Staphylococcus epidermidis/growth & development , Humans , In Vitro Techniques , Microbial Sensitivity Tests , Microbiota , Polymerase Chain Reaction , Propionibacterium acnes/drug effects , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Staphylococcus epidermidis/drug effects , Stem Cells , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/growth & development , Tetracycline/pharmacology
2.
J Appl Toxicol ; 35(7): 831-41, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25424538

ABSTRACT

Previously, we identified 25 classifier genes that were able to assess immunotoxicity using human Jurkat T cells. The present study aimed to validate these classifiers. For that purpose, Jurkat cells were exposed for 6 h to subcytotoxic doses of nine immunotoxicants, five non-immunotoxicants and four compounds for which human immunotoxicity has not yet been fully established. RNA was isolated and subjected to Fluidigm quantitative real time (qRT)-PCR analysis. The sensitivity, specificity and accuracy of the screening assay as based on the nine immunotoxicants and five non-immunotoxicants used in this study were 100%, 80% and 93%, respectively, which is better than the performance in our previous study. Only one compound was classified as false positive (benzo-e-pyrene). Of the four potential (non-)immunotoxicants, chlorantraniliprole and Hidrasec were classified immunotoxic and Sunset yellow and imidacloprid as non-immunotoxic. ToxPi analysis of the PCR data provided insight in the molecular pathways that were affected by the compounds. The immunotoxicants 2,3-dichloro-propanol and cypermethrin, although structurally different, affected protein metabolism and cholesterol biosynthesis and transport. In addition, four compounds, i.e. chlorpyrifos, aldicarb, benzo-e-pyrene and anti-CD3, affected genes in cholesterol metabolism and transport, protein metabolism and transcription regulation. qRT-PCR on eight additional genes coding for similar processes as defined in ToxPi analyzes, supported these results. In conclusion, the 25 immunotoxic classifiers performed very well in a screening with new non-immunotoxic and immunotoxic compounds. Therefore, the Jurkat screening assay has great promise to be applied within a tiered approach for animal free testing of human immunotoxicity.


Subject(s)
Genetic Markers/drug effects , Immunotoxins/pharmacology , Jurkat Cells/drug effects , Aldicarb/pharmacology , Aldicarb/toxicity , Azo Compounds/pharmacology , Azo Compounds/toxicity , Benzopyrenes/pharmacology , Benzopyrenes/toxicity , Biomarkers, Pharmacological , Chlorohydrins/pharmacology , Chlorohydrins/toxicity , Chlorpyrifos/pharmacology , Chlorpyrifos/toxicity , Humans , Imidazoles/pharmacology , Imidazoles/toxicity , In Vitro Techniques , Neonicotinoids , Nitro Compounds/pharmacology , Nitro Compounds/toxicity , Pyrethrins/pharmacology , Pyrethrins/toxicity , Real-Time Polymerase Chain Reaction , Reproducibility of Results , Sensitivity and Specificity , Toxicity Tests , ortho-Aminobenzoates/pharmacology , ortho-Aminobenzoates/toxicity
5.
iScience ; 26(4): 106483, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37096035

ABSTRACT

In atopic dermatitis (AD), chronic skin inflammation is associated with skin barrier defects and skin microbiome dysbiosis including a lower abundance of Gram-positive anaerobic cocci (GPACs). We here report that, through secreted soluble factors, GPAC rapidly and directly induced epidermal host-defense molecules in cultured human keratinocytes and indirectly via immune-cell activation and cytokines derived thereof. Host-derived antimicrobial peptides known to limit the growth of Staphylococcus aureus-a skin pathogen involved in AD pathology-were strongly upregulated by GPAC-induced signaling through aryl hydrocarbon receptor (AHR)-independent mechanisms, with a concomitant AHR-dependent induction of epidermal differentiation genes and control of pro-inflammatory gene expression in organotypic human epidermis. By these modes of operandi, GPAC may act as an "alarm signal" and protect the skin from pathogenic colonization and infection in the event of skin barrier disruption. Fostering growth or survival of GPAC may be starting point for microbiome-targeted therapeutics in AD.

6.
J Invest Dermatol ; 142(7): 1947-1955.e6, 2022 07.
Article in English | MEDLINE | ID: mdl-34942199

ABSTRACT

Late cornified envelope proteins are predominantly expressed in the skin and other cornified epithelia. On the basis of sequence similarity, this 18-member homologous gene family has been subdivided into six groups. The LCE3 proteins have been the focus of dermatological research because the combined deletion of LCE3B and LCE3C genes (LCE3B/C-del) is a risk factor for psoriasis. We previously reported that LCE3B/C-del increases the expression of the LCE3A gene and that LCE3 proteins exert antibacterial activity. In this study, we analyzed the antimicrobial properties of other family members and the role of LCE3B/C-del in the modulation of microbiota composition of the skin and oral cavity. Differences in killing efficiency and specificity between the late cornified envelope proteins and their target microbes were found, and the amino acid content rather than the order of the well-conserved central domain of the LCE3A protein was found responsible for its antibacterial activity. In vivo, LCE3B/C-del correlated with a higher beta-diversity in the skin and oral microbiota. From these results, we conclude that all late cornified envelope proteins possess antimicrobial activity. Tissue-specific and genotype-dependent antimicrobial protein profiles impact skin and oral microbiota composition, which could direct toward LCE3B/C-del‒associated dysbiosis and a possible role for microbiota in the pathophysiology of psoriasis.


Subject(s)
Cornified Envelope Proline-Rich Proteins , Microbiota , Psoriasis , Cornified Envelope Proline-Rich Proteins/genetics , Gene Deletion , Genetic Predisposition to Disease , Humans , Microbiota/genetics , Polymorphism, Single Nucleotide , Psoriasis/genetics , Risk Factors
7.
J Antibiot (Tokyo) ; 72(9): 682-692, 2019 09.
Article in English | MEDLINE | ID: mdl-31171848

ABSTRACT

The emergence of multidrug resistant bacteria has prioritized the development of new antibiotics. N-substituted pantothenamides, analogs of the natural compound pantetheine, were reported to target bacterial coenzyme A biosynthesis, but these compounds have never reached the clinic due to their instability in biological fluids. Plasma-stable pantothenamide analogs could overcome these issues. We first synthesized a number of bioisosteres of the prototypic pantothenamide N7-Pan. A compound with an inverted amide bond (CXP18.6-012) was found to provide plasma-stability with minimal loss of activity compared to the parent compound N7-Pan. Next, we synthesized inverted pantothenamides with a large variety of side chains. Among these we identified a number of novel stable inverted pantothenamides with selective activity against Gram-positive bacteria such as staphylococci and streptococci, at low micromolar concentrations. These data provide future direction for the development of pantothenamides with clinical potential.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Staphylococcus/drug effects , Streptococcus/drug effects , Anti-Bacterial Agents/chemistry , Drug Stability , Microbial Sensitivity Tests , Molecular Structure
8.
J Invest Dermatol ; 137(11): 2380-2388, 2017 11.
Article in English | MEDLINE | ID: mdl-28634035

ABSTRACT

Terminally differentiating epidermal keratinocytes express a large number of structural and antimicrobial proteins that are involved in the physical barrier function of the stratum corneum and provide innate cutaneous host defense. Late cornified envelope (LCE) genes, located in the epidermal differentiation complex on chromosome 1, encode a family of 18 proteins of unknown function, whose expression is largely restricted to epidermis. Deletion of two members, LCE3B and LCE3C (LCE3B/C-del), is a widely-replicated psoriasis risk factor that interacts with the major psoriasis-psoriasis risk gene HLA-C*06. Here we performed quantitative trait locus analysis, utilizing RNA-seq data from human skin and found that LCE3B/C-del was associated with a markedly increased expression of LCE3A, a gene directly adjacent to LCE3B/C-del. We confirmed these findings in a 3-dimensional skin model using primary keratinocytes from LCE3B/C-del genotyped donors. Functional analysis revealed that LCE3 proteins, and LCE3A in particular, have defensin-like antimicrobial activity against a variety of bacterial taxa at low micromolar concentrations. No genotype-dependent effect was observed for the inside-out or outside-in physical skin barrier function. Our findings identify an unknown biological function for LCE3 proteins and suggest a role in epidermal host defense and LCE3B/C-del-mediated psoriasis risk.


Subject(s)
Cornified Envelope Proline-Rich Proteins/genetics , Gene Expression Regulation/immunology , Immunity, Innate/genetics , Psoriasis/genetics , Psoriasis/immunology , Anti-Bacterial Agents/immunology , Biopsy, Needle , Cells, Cultured/cytology , Cells, Cultured/metabolism , Female , Genetic Predisposition to Disease , Genotype , Humans , Immunohistochemistry , Keratinocytes , Linkage Disequilibrium , Male , Polymorphism, Single Nucleotide , Psoriasis/pathology , Real-Time Polymerase Chain Reaction/methods , Role
SELECTION OF CITATIONS
SEARCH DETAIL