ABSTRACT
Despite its uniform appearance, the cerebellar cortex is highly heterogeneous in terms of structure, genetics and physiology. Purkinje cells (PCs), the principal and sole output neurons of the cerebellar cortex, can be categorized into multiple populations that differentially express molecular markers and display distinctive physiological features. Such features include action potential rate, but also their propensity for synaptic and intrinsic plasticity. However, the precise molecular and genetic factors that correlate with the differential physiological properties of PCs remain elusive. In this article, we provide a detailed overview of the cellular mechanisms that regulate PC activity and plasticity. We further perform a pathway analysis to highlight how molecular characteristics of specific PC populations may influence their physiology and plasticity mechanisms.
Subject(s)
Neuronal Plasticity , Purkinje Cells , Purkinje Cells/metabolism , Purkinje Cells/physiology , Animals , Neuronal Plasticity/genetics , Humans , Action Potentials/physiology , Synapses/physiology , Synapses/metabolism , Synapses/genetics , Cerebellar Cortex/cytology , Cerebellar Cortex/metabolism , Cerebellar Cortex/physiologyABSTRACT
Immunological aetiology is supported for a subgroup with obsessive compulsive disorder (OCD) and conceptualized as autoimmune OCD. The longitudinal clinical course is detailed for three severely ill cases with OCD and indications of immunological involvement with off-label rituximab treatment every six months. All cases showed clear and sustained gains regarding symptom burden and function for over 2.5 years. Brief Psychiatric Rating Scale and Yale-Brown Obsessive-Compulsive Inventory Scale scores decreased 67-100% and 44-92%, respectively. These complex cases, prior to rituximab, had very low functioning and disease duration has been eight, nine and 16 years respectively. All three patients had been unsuccessfully treated with at least two antidepressants or anxiolytics, one neuroleptic and cognitive behavioural therapy. Clinical phenotypes and findings were suggestive of possible autoimmune OCD. Indirect immunohistochemistry detected cerebral spinal fluid (CSF) antibodies in all three cases including a novel anti-neuronal staining pattern against mouse thalamic cells. Exploratory analyses of CSF markers and proteomics identified elevated levels of sCD27 and markers indicative of complement pathway activation when compared to CSF from healthy controls. Multidisciplinary collaboration, advanced clinical investigations and rituximab treatment are feasible in a psychiatric setting. The case histories provide a proof of principle for the newly proposed criteria for autoimmune OCD. The findings suggest that clinical red flags and biological measures may predict rituximab response in chronic treatment-resistant OCD. The report provides orientation that may inform the hypotheses and design of future treatment trials.
ABSTRACT
STAT3 gain-of-function (GOF) variants results in a heterogeneous clinical syndrome characterized by early onset immunodeficiency, multi-organ autoimmunity, and lymphoproliferation. While 191 documented cases with STAT3 GOF variants have been reported, the impact of individual variants on immune regulation and the broad clinical spectrum remains unclear. We developed a Stat3p.L387R mouse model, mirroring a variant identified in a family exhibiting common STAT3 GOF symptoms, and rare phenotypes including pulmonary hypertension and retinal vasculitis. In vitro experiments revealed increased STAT3 phosphorylation, nuclear migration, and DNA binding of the variant. Our Stat3p.L387R model displayed similar traits from previous Stat3GOF strains, such as splenomegaly and lymphadenopathy. Notably, Stat3p.L387R/+ mice exhibited heightened embryonic lethality compared to prior Stat3GOF/+ models and ocular abnormalities were observed. This research underscores the variant-specific pathology in Stat3p.L387R/+ mice, highlighting the ability to recapitulate human STAT3 GOF syndrome in patient-specific transgenic murine models. Additionally, such models could facilitate tailored treatment development.
Subject(s)
Disease Models, Animal , Gain of Function Mutation , STAT3 Transcription Factor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Animals , Mice , Humans , Gain of Function Mutation/genetics , Female , Male , Mice, Transgenic , Phenotype , Phosphorylation , Mice, Inbred C57BLABSTRACT
BACKGROUND: The signal transducer and activator of transcription 6 (STAT6) signaling pathway plays a central role in allergic inflammation. To date, however, there have been no descriptions of STAT6 gain-of-function variants leading to allergies in humans. OBJECTIVE: We report a STAT6 gain-of-function variant associated with early-onset multiorgan allergies in a family with 3 affected members. METHODS: Exome sequencing and immunophenotyping of T-helper cell subsets were conducted. The function of the STAT6 protein was analyzed by Western blot, immunofluorescence, electrophoretic mobility shift assays, and luciferase assays. Gastric organoids obtained from the index patient were used to study downstream effector cytokines. RESULTS: We identified a heterozygous missense variant (c.1129G>A;p.Glu377Lys) in the DNA binding domain of STAT6 that was de novo in the index patient's father and was inherited by 2 of his 3 children. Severe atopic dermatitis and food allergy were key presentations. Clinical heterogeneity was observed among the affected individuals. Higher levels of peripheral blood TH2 lymphocytes were detected. The mutant STAT6 displayed a strong preference for nuclear localization, increased DNA binding affinity, and spontaneous transcriptional activity. Moreover, gastric organoids showed constitutive activation of STAT6 downstream signaling molecules. CONCLUSIONS: A germline STAT6 gain-of-function variant results in spontaneous activation of the STAT6 signaling pathway and is associated with an early-onset and severe allergic phenotype in humans. These observations enhance our knowledge of the molecular mechanisms underlying allergic diseases and will potentially contribute to novel therapeutic interventions.
Subject(s)
Food Hypersensitivity , Gain of Function Mutation , Child , Humans , STAT6 Transcription Factor/genetics , STAT6 Transcription Factor/metabolism , Cytokines/metabolism , DNAABSTRACT
Trichothiodystrophy (TTD) is a rare hereditary neurodevelopmental disorder defined by sulfur-deficient brittle hair and nails and scaly skin, but with otherwise remarkably variable clinical features. The photosensitive TTD (PS-TTD) forms exhibits in addition to progressive neuropathy and other features of segmental accelerated aging and is associated with impaired genome maintenance and transcription. New factors involved in various steps of gene expression have been identified for the different non-photosensitive forms of TTD (NPS-TTD), which do not appear to show features of premature aging. Here, we identify alanyl-tRNA synthetase 1 and methionyl-tRNA synthetase 1 variants as new gene defects that cause NPS-TTD. These variants result in the instability of the respective gene products alanyl- and methionyl-tRNA synthetase. These findings extend our previous observations that TTD mutations affect the stability of the corresponding proteins and emphasize this phenomenon as a common feature of TTD. Functional studies in skin fibroblasts from affected individuals demonstrate that these new variants also impact on the rate of tRNA charging, which is the first step in protein translation. The extension of reduced abundance of TTD factors to translation as well as transcription redefines TTD as a syndrome in which proteins involved in gene expression are unstable.
Subject(s)
Alanine-tRNA Ligase/genetics , Methionine-tRNA Ligase/genetics , Trichothiodystrophy Syndromes/genetics , Alanine-tRNA Ligase/metabolism , Child , Enzyme Stability/genetics , Female , Humans , Methionine-tRNA Ligase/metabolism , Trichothiodystrophy Syndromes/enzymology , Trichothiodystrophy Syndromes/pathology , Whole Genome SequencingABSTRACT
CLEC16A is a membrane-associated C-type lectin protein that functions as a E3-ubiquitin ligase. CLEC16A regulates autophagy and mitophagy, and reportedly localizes to late endosomes. GWAS studies have associated CLEC16A SNPs to various auto-immune and neurological disorders, including multiple sclerosis and Parkinson disease. Studies in mouse models imply a role for CLEC16A in neurodegeneration. We identified bi-allelic CLEC16A truncating variants in siblings from unrelated families presenting with a severe neurodevelopmental disorder including microcephaly, brain atrophy, corpus callosum dysgenesis, and growth retardation. To understand the function of CLEC16A in neurodevelopment we used in vitro models and zebrafish embryos. We observed CLEC16A localization to early endosomes in HEK293T cells. Mass spectrometry of human CLEC16A showed interaction with endosomal retromer complex subunits and the endosomal ubiquitin ligase TRIM27. Expression of the human variant leading to C-terminal truncated CLEC16A, abolishes both its endosomal localization and interaction with TRIM27, suggesting a loss-of-function effect. CLEC16A knockdown increased TRIM27 adhesion to early endosomes and abnormal accumulation of endosomal F-actin, a sign of disrupted vesicle sorting. Mutagenesis of clec16a by CRISPR-Cas9 in zebrafish embryos resulted in accumulated acidic/phagolysosome compartments, in neurons and microglia, and dysregulated mitophagy. The autophagocytic phenotype was rescued by wild-type human CLEC16A but not the C-terminal truncated CLEC16A. Our results demonstrate that CLEC16A closely interacts with retromer components and regulates endosomal fate by fine-tuning levels of TRIM27 and polymerized F-actin on the endosome surface. Dysregulation of CLEC16A-mediated endosomal sorting is associated with neurodegeneration, but it also causes accumulation of autophagosomes and unhealthy mitochondria during brain development.
Subject(s)
Actins , Zebrafish , Animals , Humans , DNA-Binding Proteins/metabolism , Endosomes/genetics , Endosomes/metabolism , HEK293 Cells , Lectins, C-Type/genetics , Lectins, C-Type/chemistry , Lectins, C-Type/metabolism , Membrane Proteins/metabolism , Monosaccharide Transport Proteins/chemistry , Monosaccharide Transport Proteins/genetics , Monosaccharide Transport Proteins/metabolism , Nuclear Proteins/metabolism , Protein Transport , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitins/metabolism , Zebrafish/genetics , Zebrafish/metabolismABSTRACT
BACKGROUND: Indolent systemic mastocytosis (ISM) is characterized by pathologic accumulation of mast cells. The mechanism behind its phenotypic heterogeneity is not well understood. Interaction of mast cells with other immune cells might cause systemic inflammation and thereby associated symptoms. OBJECTIVE: We investigated peripheral leukocyte compartments and serum immune proteome in ISM. METHODS: Peripheral blood leukocyte phenotyping using flow cytometry in a cohort of 18 adults with ISM and 12 healthy controls. Targeted proteomics was performed to measure 169 proteins associated with inflammation on serum of another 20 ISM patients and 20 healthy controls. RESULTS: Proportions of plasmacytoid dendritic cells and monocytes were significantly decreased while TH2 cells were increased in peripheral blood of ISM patients. Furthermore, a shift from naive to memory T cells was observed. Hierarchical clustering of the serum proteome revealed 2 distinct subgroups within ISM patients. In subgroup A (n = 8), 62 proteins were significantly overexpressed, whereas those of subgroup B (n = 12) were comparable to healthy controls. Patients in subgroup A displayed upregulated signaling pathways downstream of Toll-like receptor 4, TNF-α, and IFN-γ. Fatigue was more often present in subgroup A compared to B (75% vs 33% respectively, P = .06). CONCLUSIONS: Altered distribution of leukocyte subsets and a proinflammatory proteome were observed in subsequent 2 cohorts of ISM patients. We hypothesize that neoplastic mast cells recruit and activate plasmacytoid dendritic cells, monocytes, and T cells, leading to a vicious cycle of inflammation.
Subject(s)
Mastocytosis, Systemic , Mastocytosis , Adult , Humans , Inflammation/complications , Leukocytes/pathology , Mastocytosis/diagnosis , Mastocytosis, Systemic/diagnosis , ProteomeABSTRACT
Brittle and "tiger-tail" hair is the diagnostic hallmark of trichothiodystrophy (TTD), a rare recessive disease associated with a wide spectrum of clinical features including ichthyosis, intellectual disability, decreased fertility, and short stature. As a result of premature abrogation of terminal differentiation, the hair is brittle and fragile and contains reduced cysteine content. Hypersensitivity to UV light is found in about half of individuals with TTD; all of these individuals harbor bi-allelic mutations in components of the basal transcription factor TFIIH, and these mutations lead to impaired nucleotide excision repair and basal transcription. Different genes have been found to be associated with non-photosensitive TTD (NPS-TTD); these include MPLKIP (also called TTDN1), GTF2E2 (also called TFIIEß), and RNF113A. However, a relatively large group of these individuals with NPS-TTD have remained genetically uncharacterized. Here we present the identification of an NPS-TTD-associated gene, threonyl-tRNA synthetase (TARS), found by next-generation sequencing of a group of uncharacterized individuals with NPS-TTD. One individual has compound heterozygous TARS variants, c.826A>G (p.Lys276Glu) and c.1912C>T (p.Arg638∗), whereas a second individual is homozygous for the TARS variant: c.680T>C (p.Leu227Pro). We showed that these variants have a profound effect on TARS protein stability and enzymatic function. Our results expand the spectrum of genes involved in TTD to include genes implicated in amino acid charging of tRNA, which is required for the last step in gene expression, namely protein translation. We previously proposed that some of the TTD-specific features derive from subtle transcription defects as a consequence of unstable transcription factors. We now extend the definition of TTD from a transcription syndrome to a "gene-expression" syndrome.
Subject(s)
Hair Diseases/pathology , Mutation , Threonine-tRNA Ligase/genetics , Trichothiodystrophy Syndromes/pathology , Alleles , Amino Acid Sequence , Case-Control Studies , Hair Diseases/genetics , Humans , Phenotype , Sequence Homology , Transcription Factor TFIIH/genetics , Trichothiodystrophy Syndromes/geneticsABSTRACT
The Mediator is an evolutionarily conserved, multi-subunit complex that regulates multiple steps of transcription. Mediator activity is regulated by the reversible association of a four-subunit module comprising CDK8 or CDK19 kinases, together with cyclin C, MED12 or MED12L, and MED13 or MED13L. Mutations in MED12, MED13, and MED13L were previously identified in syndromic developmental disorders with overlapping phenotypes. Here, we report CDK8 mutations (located at 13q12.13) that cause a phenotypically related disorder. Using whole-exome or whole-genome sequencing, and by international collaboration, we identified eight different heterozygous missense CDK8 substitutions, including 10 shown to have arisen de novo, in 12 unrelated subjects; a recurrent mutation, c.185C>T (p.Ser62Leu), was present in five individuals. All predicted substitutions localize to the ATP-binding pocket of the kinase domain. Affected individuals have overlapping phenotypes characterized by hypotonia, mild to moderate intellectual disability, behavioral disorders, and variable facial dysmorphism. Congenital heart disease occurred in six subjects; additional features present in multiple individuals included agenesis of the corpus callosum, ano-rectal malformations, seizures, and hearing or visual impairments. To evaluate the functional impact of the mutations, we measured phosphorylation at STAT1-Ser727, a known CDK8 substrate, in a CDK8 and CDK19 CRISPR double-knockout cell line transfected with wild-type (WT) or mutant CDK8 constructs. These experiments demonstrated a reduction in STAT1 phosphorylation by all mutants, in most cases to a similar extent as in a kinase-dead control. We conclude that missense mutations in CDK8 cause a developmental disorder that has phenotypic similarity to syndromes associated with mutations in other subunits of the Mediator kinase module, indicating probable overlap in pathogenic mechanisms.
Subject(s)
Cyclin-Dependent Kinase 8/genetics , Developmental Disabilities/genetics , Mediator Complex/genetics , Mutation, Missense , Brain/abnormalities , Child , Child, Preschool , Cyclin C/genetics , Cyclin-Dependent Kinases/genetics , Exome , Female , Heart Defects, Congenital/genetics , Heterozygote , Humans , Infant , Intellectual Disability/genetics , Male , Mutation , Phenotype , Phosphorylation , SyndromeABSTRACT
The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.
Subject(s)
Brain Diseases/pathology , Brain/abnormalities , Developmental Disabilities/pathology , Membrane Proteins/metabolism , Mitochondria/metabolism , Thioredoxins/metabolism , Adolescent , Adult , Brain Diseases/genetics , Brain Diseases/metabolism , Child , Child, Preschool , Cohort Studies , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/genetics , Mitochondria/pathology , Oxidation-Reduction , Prognosis , Skin/metabolism , Skin/pathology , Thioredoxins/genetics , TranscriptomeABSTRACT
Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.
Subject(s)
Arthrogryposis/genetics , Microcephaly/genetics , Neurodevelopmental Disorders/genetics , Sphingomyelin Phosphodiesterase/genetics , Arthrogryposis/pathology , Cell Lineage , Child , Endoplasmic Reticulum/metabolism , Female , Gene Expression Profiling , HEK293 Cells , Humans , Male , Microcephaly/pathology , Mitosis , Neurodevelopmental Disorders/pathology , Pedigree , RNA SplicingABSTRACT
OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.
Subject(s)
Hereditary Autoinflammatory Diseases , NF-kappa B , Protein Kinases/genetics , Amyloidosis , Animals , Cohort Studies , Gain of Function Mutation , Hereditary Autoinflammatory Diseases/genetics , Humans , Inflammation/genetics , Mice , Mutation , NF-kappa B/genetics , NF-kappa B/metabolism , Protein Kinases/metabolism , Quality of Life , Serum Amyloid A Protein , Syndrome , Tumor Necrosis Factor InhibitorsABSTRACT
PURPOSE: Although haploinsufficiency of ANKRD11 is among the most common genetic causes of neurodevelopmental disorders, the role of rare ANKRD11 missense variation remains unclear. We characterized clinical, molecular, and functional spectra of ANKRD11 missense variants. METHODS: We collected clinical information of individuals with ANKRD11 missense variants and evaluated phenotypic fit to KBG syndrome. We assessed pathogenicity of variants through in silico analyses and cell-based experiments. RESULTS: We identified 20 unique, mostly de novo, ANKRD11 missense variants in 29 individuals, presenting with syndromic neurodevelopmental disorders similar to KBG syndrome caused by ANKRD11 protein truncating variants or 16q24.3 microdeletions. Missense variants significantly clustered in repression domain 2 at the ANKRD11 C-terminus. Of the 10 functionally studied missense variants, 6 reduced ANKRD11 stability. One variant caused decreased proteasome degradation and loss of ANKRD11 transcriptional activity. CONCLUSION: Our study indicates that pathogenic heterozygous ANKRD11 missense variants cause the clinically recognizable KBG syndrome. Disrupted transrepression capacity and reduced protein stability each independently lead to ANKRD11 loss-of-function, consistent with haploinsufficiency. This highlights the diagnostic relevance of ANKRD11 missense variants, but also poses diagnostic challenges because the KBG-associated phenotype may be mild and inherited pathogenic ANKRD11 (missense) variants are increasingly observed, warranting stringent variant classification and careful phenotyping.
Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Intellectual Disability , Repressor Proteins , Tooth Abnormalities , Abnormalities, Multiple/genetics , Bone Diseases, Developmental/etiology , Bone Diseases, Developmental/genetics , Chromosome Deletion , Facies , Humans , Intellectual Disability/genetics , Mutation, Missense , Phenotype , Proteasome Endopeptidase Complex/genetics , Repressor Proteins/genetics , Tooth Abnormalities/diagnosis , Transcription Factors/geneticsABSTRACT
BACKGROUND: The field of pharmacogenomics focuses on the way a person's genome affects his or her response to a certain dose of a specified medication. The main aim is to utilize this information to guide and personalize the treatment in a way that maximizes the clinical benefits and minimizes the risks for the patients, thus fulfilling the promises of personalized medicine. Technological advances in genome sequencing, combined with the development of improved computational methods for the efficient analysis of the huge amount of generated data, have allowed the fast and inexpensive sequencing of a patient's genome, hence rendering its incorporation into clinical routine practice a realistic possibility. METHODS: This study exploited thoroughly characterized in functional level SNVs within genes involved in drug metabolism and transport, to train a classifier that would categorize novel variants according to their expected effect on protein functionality. This categorization is based on the available in silico prediction and/or conservation scores, which are selected with the use of recursive feature elimination process. Toward this end, information regarding 190 pharmacovariants was leveraged, alongside with 4 machine learning algorithms, namely AdaBoost, XGBoost, multinomial logistic regression, and random forest, of which the performance was assessed through 5-fold cross validation. RESULTS: All models achieved similar performance toward making informed conclusions, with RF model achieving the highest accuracy (85%, 95% CI: 0.79, 0.90), as well as improved overall performance (precision 85%, sensitivity 84%, specificity 94%) and being used for subsequent analyses. When applied on real world WGS data, the selected RF model identified 2 missense variants, expected to lead to decreased function proteins and 1 to increased. As expected, a greater number of variants were highlighted when the approach was used on NGS data derived from targeted resequencing of coding regions. Specifically, 71 variants (out of 156 with sufficient annotation information) were classified as to "Decreased function," 41 variants as "No" function proteins, and 1 variant in "Increased function." CONCLUSION: Overall, the proposed RF-based classification model holds promise to lead to an extremely useful variant prioritization and act as a scoring tool with interesting clinical applications in the fields of pharmacogenomics and personalized medicine.
Subject(s)
Computational Biology , Inactivation, Metabolic/genetics , Pharmacogenetics , Pharmacogenomic Variants/genetics , Algorithms , Genomics , Humans , Logistic Models , Machine Learning , Precision Medicine , Whole Genome SequencingABSTRACT
Economic evaluation is an integral component of informed public health decision-making in personalized medicine. However, performing economic evaluation assessments often requires specialized knowledge, expertise, and significant resources. To this end, developing generic models can significantly assist towards providing the necessary evidence for the cost-effectiveness of genome-guided therapeutic interventions, compared to the traditional drug treatment modalities. Here, we report a generic cost-utility analysis model, developed in R, which encompasses essential economic evaluation steps. Specifically, critical steps towards a comprehensive deterministic and probabilistic sensitivity analysis were incorporated in our model, while also providing an easy-to-use graphical user interface, which allows even non-experts in the field to produce a fully comprehensive cost-utility analysis report. To further demonstrate the model's reproducibility, two sets of data were assessed, one stemming from in-house clinical data and one based on previously published data. By implementing the generic model presented herein, we show that the model produces results in complete concordance with the traditionally performed cost-utility analysis for both datasets. Overall, this work demonstrates the potential of generic models to provide useful economic evidence for personalized medicine interventions.
Subject(s)
Reproducibility of Results , Cost-Benefit AnalysisABSTRACT
Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.
Subject(s)
Adenosine Triphosphate/metabolism , COVID-19/immunology , Cytokine Release Syndrome/etiology , Inflammation/etiology , Lidocaine/therapeutic use , Purinergic P2X Receptor Antagonists/therapeutic use , Receptors, Purinergic/physiology , Anti-Inflammatory Agents/therapeutic use , Critical Care , Cytokine Release Syndrome/drug therapy , Humans , Inflammation/drug therapy , Infusions, Subcutaneous , Lidocaine/administration & dosage , Lidocaine/pharmacology , Lymph Nodes/immunology , Lymphatic System/immunology , Male , Maximum Tolerated Dose , Middle Aged , Models, Immunological , Purinergic P2X Receptor Antagonists/administration & dosage , Purinergic P2X Receptor Antagonists/pharmacology , Receptors, Purinergic/drug effects , Receptors, Purinergic P1/drug effects , Receptors, Purinergic P1/physiology , Receptors, Purinergic P2X7/physiology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Signal Transduction , T-Lymphocytes, Regulatory/immunologyABSTRACT
Craniosynostosis, the premature ossification of cranial sutures, is a developmental disorder of the skull vault, occurring in approximately 1 in 2250 births. The causes are heterogeneous, with a monogenic basis identified in ~25% of patients. Using whole-genome sequencing, we identified a novel, de novo variant in BCL11B, c.7C>A, encoding an R3S substitution (p.R3S), in a male patient with coronal suture synostosis. BCL11B is a transcription factor that interacts directly with the nucleosome remodelling and deacetylation complex (NuRD) and polycomb-related complex 2 (PRC2) through the invariant proteins RBBP4 and RBBP7. The p.R3S substitution occurs within a conserved amino-terminal motif (RRKQxxP) of BCL11B and reduces interaction with both transcriptional complexes. Equilibrium binding studies and molecular dynamics simulations show that the p.R3S substitution disrupts ionic coordination between BCL11B and the RBBP4-MTA1 complex, a subassembly of the NuRD complex, and increases the conformational flexibility of Arg-4, Lys-5 and Gln-6 of BCL11B. These alterations collectively reduce the affinity of BCL11B p.R3S for the RBBP4-MTA1 complex by nearly an order of magnitude. We generated a mouse model of the BCL11B p.R3S substitution using a CRISPR-Cas9-based approach, and we report herein that these mice exhibit craniosynostosis of the coronal suture, as well as other cranial sutures. This finding provides strong evidence that the BCL11B p.R3S substitution is causally associated with craniosynostosis and confirms an important role for BCL11B in the maintenance of cranial suture patency.
Subject(s)
Chromatin Assembly and Disassembly , Cranial Sutures/growth & development , Craniosynostoses/metabolism , Mutation, Missense , Nucleosomes/metabolism , Osteogenesis , Repressor Proteins/genetics , Tumor Suppressor Proteins/genetics , Animals , Cranial Sutures/metabolism , Craniosynostoses/genetics , Craniosynostoses/physiopathology , DNA Mutational Analysis , Disease Models, Animal , Humans , Infant , Male , Mice , Protein Binding , Protein Conformation , Repressor Proteins/metabolism , Repressor Proteins/physiology , Retinoblastoma-Binding Protein 4/metabolism , Trans-Activators/metabolism , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/physiology , White People , Whole Genome SequencingABSTRACT
Next-generation sequencing is a powerful tool for the discovery of genes related to neurodevelopmental disorders (NDDs). Here, we report the identification of a distinct syndrome due to de novo or inherited heterozygous mutations in Tousled-like kinase 2 (TLK2) in 38 unrelated individuals and two affected mothers, using whole-exome and whole-genome sequencing technologies, matchmaker databases, and international collaborations. Affected individuals had a consistent phenotype, characterized by mild-borderline neurodevelopmental delay (86%), behavioral disorders (68%), severe gastro-intestinal problems (63%), and facial dysmorphism including blepharophimosis (82%), telecanthus (74%), prominent nasal bridge (68%), broad nasal tip (66%), thin vermilion of the upper lip (62%), and upslanting palpebral fissures (55%). Analysis of cell lines from three affected individuals showed that mutations act through a loss-of-function mechanism in at least two case subjects. Genotype-phenotype analysis and comparison of computationally modeled faces showed that phenotypes of these and other individuals with loss-of-function variants significantly overlapped with phenotypes of individuals with other variant types (missense and C-terminal truncating). This suggests that haploinsufficiency of TLK2 is the most likely underlying disease mechanism, leading to a consistent neurodevelopmental phenotype. This work illustrates the power of international data sharing, by the identification of 40 individuals from 26 different centers in 7 different countries, allowing the identification, clinical delineation, and genotype-phenotype evaluation of a distinct NDD caused by mutations in TLK2.
Subject(s)
Genetic Association Studies , Inheritance Patterns/genetics , Loss of Function Mutation/genetics , Neurodevelopmental Disorders/genetics , Protein Kinases/genetics , Adolescent , Adult , Base Sequence , Cell Line , Child , Child, Preschool , Facies , Female , Humans , Infant , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Translocation, Genetic , Young AdultABSTRACT
Glucose-6-phosphate dehydrogenase (G6PD) deficiency caused by genetic variants in the G6PD gene, constitutes the most common enzymopathy worldwide, affecting approximately 5% of the global population. While carriers are mostly asymptomatic, they are at substantial risk of acute hemolytic anemia upon certain infections or exposure to various medications. As such, information about G6PD activity status in a given patient can constitute an important parameter to guide clinical decision-making. Here, we leveraged whole genome sequencing data from 142,069 unrelated individuals across seven human populations to provide a global comprehensive map of G6PD variability. By integrating established functional classifications with stringent computational predictions using 13 partly orthogonal algorithms for uncharacterized and novel variants, we reveal the large extent of ethnogeographic variability in G6PD deficiency and highlight its population-specific genetic composition. Overall, estimated disease prevalence in males ranged between 12.2% in Africans, 2.7-3.5% across Asia and 2.1% in Middle Easterners to < 0.3% in Europeans, Finnish and Amish. In Africans, the major deficient alleles were A-202A/376 G (minor allele frequency 11.6%) and A-968 C/376 G (0.5%). In contrast, G6PD deficiency in Middle Easterners was primarily due to the Mediterranean allele (1.3%) and the population-specific Cairo variant (0.4%). In South Asia, the most prevalent deficient alleles were Mediterranean (1.7%), Kerala (1.1%), Gond (0.9%) and Orissa (0.2%), whereas in East Asian populations the Canton (1.1%), Kaiping (0.7%) and Viangchan (0.3%) variants were predominant. Combined, our analyses provide a large dataset of G6PD variability across major ethnogeographic groups and can instruct population-specific genotyping strategies to optimize genetically guided therapeutic interventions.
Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase/genetics , Ethnicity , Female , Genetic Variation , Genotype , Geography , Glucosephosphate Dehydrogenase Deficiency/epidemiology , Glucosephosphate Dehydrogenase Deficiency/ethnology , Glucosephosphate Dehydrogenase Deficiency/genetics , Humans , Male , PrevalenceABSTRACT
FINDbase (http://www.findbase.org) is a comprehensive data resource recording the prevalence of clinically relevant genomic variants in various populations worldwide, such as pathogenic variants underlying genetic disorders as well as pharmacogenomic biomarkers that can guide drug treatment. Here, we report significant new developments and technological advancements in the database architecture, leading to a completely revamped database structure, querying interface, accompanied with substantial extensions of data content and curation. In particular, the FINDbase upgrade further improves the user experience by introducing responsive features that support a wide variety of mobile and stationary devices, while enhancing computational runtime due to the use of a modern Javascript framework such as ReactJS. Data collection is significantly enriched, with the data records being divided in a Public and Private version, the latter being accessed on the basis of data contribution, according to the microattribution approach, while the front end was redesigned to support the new functionalities and querying tools. The abovementioned updates further enhance the impact of FINDbase, improve the overall user experience, facilitate further data sharing by microattribution, and strengthen the role of FINDbase as a key resource for personalized medicine applications and personalized public health.