ABSTRACT
How the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations remains poorly understood. Vertebrate animals perceive odours through G protein-coupled odorant receptors (ORs)1. In humans, around 400 ORs enable the sense of smell. The OR family comprises two main classes: class I ORs are tuned to carboxylic acids whereas class II ORs, which represent most of the human repertoire, respond to a wide variety of odorants2. A fundamental challenge in understanding olfaction is the inability to visualize odorant binding to ORs. Here we uncover molecular properties of odorant-OR interactions by using engineered ORs crafted using a consensus protein design strategy3. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modelling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled the determination of four cryogenic electron microscopy structures of distinct consORs with specific ligand recognition properties. The structure of a class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and generated a homology model of a related member of the human OR51 family with high predictive power. Structures of three class II consORs revealed distinct modes of odorant-binding and activation mechanisms between class I and class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
ABSTRACT
Our sense of smell enables us to navigate a vast space of chemically diverse odour molecules. This task is accomplished by the combinatorial activation of approximately 400 odorant G protein-coupled receptors encoded in the human genome1-3. How odorants are recognized by odorant receptors remains unclear. Here we provide mechanistic insight into how an odorant binds to a human odorant receptor. Using cryo-electron microscopy, we determined the structure of the active human odorant receptor OR51E2 bound to the fatty acid propionate. Propionate is bound within an occluded pocket in OR51E2 and makes specific contacts critical to receptor activation. Mutation of the odorant-binding pocket in OR51E2 alters the recognition spectrum for fatty acids of varying chain length, suggesting that odorant selectivity is controlled by tight packing interactions between an odorant and an odorant receptor. Molecular dynamics simulations demonstrate that propionate-induced conformational changes in extracellular loop 3 activate OR51E2. Together, our studies provide a high-resolution view of chemical recognition of an odorant by a vertebrate odorant receptor, providing insight into how this large family of G protein-coupled receptors enables our olfactory sense.
Subject(s)
Cryoelectron Microscopy , Odorants , Propionates , Receptors, Odorant , Humans , Odorants/analysis , Propionates/chemistry , Propionates/metabolism , Receptors, Odorant/chemistry , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Receptors, Odorant/ultrastructure , Smell/physiology , Molecular Dynamics Simulation , Mutation , Binding Sites/genetics , Substrate Specificity/geneticsABSTRACT
Cooperative interactions in protein-protein interfaces demonstrate the interdependency or the linked network-like behavior and their effect on the coupling of proteins. Cooperative interactions also could cause ripple or allosteric effects at a distance in protein-protein interfaces. Although they are critically important in protein-protein interfaces, it is challenging to determine which amino acid pair interactions are cooperative. In this work, we have used Bayesian network modeling, an interpretable machine learning method, combined with molecular dynamics trajectories to identify the residue pairs that show high cooperativity and their allosteric effect in the interface of G protein-coupled receptor (GPCR) complexes with Gα subunits. Our results reveal six GPCR:Gα contacts that are common to the different Gα subtypes and show strong cooperativity in the formation of interface. Both the C terminus helix5 and the core of the G protein are codependent entities and play an important role in GPCR coupling. We show that a promiscuous GPCR coupling to different Gα subtypes, makes all the GPCR:Gα contacts that are specific to each Gα subtype (Gαs, Gαi, and Gαq). This work underscores the potential of data-driven Bayesian network modeling in elucidating the intricate dependencies and selectivity determinants in GPCR:G protein complexes, offering valuable insights into the dynamic nature of these essential cellular signaling components.
Subject(s)
Bayes Theorem , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/chemistry , Humans , Molecular Dynamics Simulation , Protein Binding , GTP-Binding Protein alpha Subunits/metabolism , GTP-Binding Protein alpha Subunits/chemistry , GTP-Binding Protein alpha Subunits/geneticsABSTRACT
Naturally occurring missense variants of G protein-coupled receptors with loss of function have been linked to metabolic disease in case studies and in animal experiments. The glucagon receptor, one such G protein-coupled receptor, is involved in maintaining blood glucose and amino acid homeostasis; however, loss-of-function mutations of this receptor have not been systematically characterized. Here, we observed fewer glucagon receptor missense variants than expected, as well as lower allele diversity and fewer variants with trait associations as compared with other class B1 receptors. We performed molecular pharmacological phenotyping of 38 missense variants located in the receptor extracellular domain, at the glucagon interface, or with previously suggested clinical implications. These variants were characterized in terms of cAMP accumulation to assess glucagon-induced Gαs coupling, and of recruitment of ß-arrestin-1/2. Fifteen variants were impaired in at least one of these downstream functions, with six variants affected in both cAMP accumulation and ß-arrestin-1/2 recruitment. For the eight variants with decreased Gαs signaling (D63ECDN, P86ECDS, V96ECDE, G125ECDC, R2253.30H, R3085.40W, V3686.59M, and R3787.35C) binding experiments revealed preserved glucagon affinity, although with significantly reduced binding capacity. Finally, using the UK Biobank, we found that variants with wildtype-like Gαs signaling did not associate with metabolic phenotypes, whereas carriers of cAMP accumulation-impairing variants displayed a tendency toward increased risk of obesity and increased body mass and blood pressure. These observations are in line with the essential role of the glucagon system in metabolism and support that Gαs is the main signaling pathway effecting the physiological roles of the glucagon receptor.
Subject(s)
Receptors, Glucagon , Animals , Glucagon/metabolism , Humans , Mutation, Missense , Receptors, G-Protein-Coupled/metabolism , Receptors, Glucagon/chemistry , Receptors, Glucagon/genetics , Receptors, Glucagon/metabolism , Signal Transduction , beta-Arrestin 2/metabolismABSTRACT
Cooperative interactions in protein-protein interfaces demonstrate the interdependency or the linked network-like behavior of interface interactions and their effect on the coupling of proteins. Cooperative interactions also could cause ripple or allosteric effects at a distance in protein-protein interfaces. Although they are critically important in protein-protein interfaces it is challenging to determine which amino acid pair interactions are cooperative. In this work we have used Bayesian network modeling, an interpretable machine learning method, combined with molecular dynamics trajectories to identify the residue pairs that show high cooperativity and their allosteric effect in the interface of G protein-coupled receptor (GPCR) complexes with G proteins. Our results reveal a strong co-dependency in the formation of interface GPCR:G protein contacts. This observation indicates that cooperativity of GPCR:G protein interactions is necessary for the coupling and selectivity of G proteins and is thus critical for receptor function. We have identified subnetworks containing polar and hydrophobic interactions that are common among multiple GPCRs coupling to different G protein subtypes (Gs, Gi and Gq). These common subnetworks along with G protein-specific subnetworks together confer selectivity to the G protein coupling. This work underscores the potential of data-driven Bayesian network modeling in elucidating the intricate dependencies and selectivity determinants in GPCR:G protein complexes, offering valuable insights into the dynamic nature of these essential cellular signaling components.
ABSTRACT
A central challenge in olfaction is understanding how the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations. Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans, ~400 ORs enable the sense of smell. The OR family is composed of two major classes: Class I ORs are tuned to carboxylic acids while Class II ORs, representing the vast majority of the human repertoire, respond to a wide variety of odorants. How ORs recognize chemically diverse odorants remains poorly understood. A fundamental bottleneck is the inability to visualize odorant binding to ORs. Here, we uncover fundamental molecular properties of odorant-OR interactions by employing engineered ORs crafted using a consensus protein design strategy. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modeling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled four cryoEM structures of distinct consORs with unique ligand recognition properties. The structure of a Class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and yielded a homology model of a related member of the human OR51 family with high predictive power. Structures of three Class II consORs revealed distinct modes of odorant-binding and activation mechanisms between Class I and Class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
ABSTRACT
G protein-coupled receptors engage both G proteins and ß-arrestins, and their coupling can be biased by ligands and mutations. Here, to resolve structural elements and mechanisms underlying effector coupling to the angiotensin II (AngII) type 1 receptor (AT1R), we combined alanine scanning mutagenesis of the entire sequence of the receptor with pharmacological profiling of Gαq and ß-arrestin engagement to mutant receptors and molecular dynamics simulations. We showed that Gαq coupling to AT1R involved a large number of residues spread across the receptor, whereas fewer structural regions of the receptor contributed to ß-arrestin coupling regulation. Residue stretches in transmembrane domain 4 conferred ß-arrestin bias and represented an important structural element in AT1R for functional selectivity. Furthermore, we identified allosteric small-molecule binding sites that were enclosed by communities of residues that produced biased signaling when mutated. Last, we showed that allosteric communication within AT1R emanating from the Gαq coupling site spread beyond the orthosteric AngII-binding site and across different regions of the receptor, including currently unresolved structural regions. Our findings reveal structural elements and mechanisms within AT1R that bias Gαq and ß-arrestin coupling and that could be harnessed to design biased receptors for research purposes and to develop allosteric modulators.
Subject(s)
Receptor, Angiotensin, Type 1 , Signal Transduction , beta-Arrestins/genetics , beta-Arrestins/metabolism , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , beta-Arrestin 1/metabolism , GTP-Binding Proteins/metabolism , Angiotensin II/metabolismABSTRACT
BACKGROUND: Glucagon-like peptide-2 (GLP-2) is a pro-glucagon-derived hormone secreted from intestinal enteroendocrine L cells with actions on gut and bones. GLP-2(1-33) is cleaved by DPP-4, forming GLP-2(3-33), having low intrinsic activity and competitive antagonism properties at GLP-2 receptors. We created radioligands based on these two molecules. EXPERIMENTAL APPROACH: The methionine in position 10 of GLP-2(1-33) and GLP-2(3-33) was substituted with tyrosine (M10Y) enabling oxidative iodination, creating [125 I]-hGLP-2(1-33,M10Y) and [125 I]-hGLP-2(3-33,M10Y). Both were characterized by competition binding, on-and-off-rate determination and receptor activation. Receptor expression was determined by target-tissue autoradiography and immunohistochemistry. KEY RESULTS: Both M10Y-substituted peptides induced cAMP production via the GLP-2 receptor comparable to the wildtype peptides. GLP-2(3-33,M10Y) maintained the antagonistic properties of GLP-2(3-33). However, hGLP-2(1-33,M10Y) had lower arrestin recruitment than hGLP-2(1-33). High affinities for the hGLP-2 receptor were observed using [125 I]-hGLP-2(1-33,M10Y) and [125 I]-hGLP-2(3-33,M10Y) with KD values of 59.3 and 40.6 nM. The latter (with antagonistic properties) had higher Bmax and faster on and off rates compared to the former (full agonist). Both bound the hGLP-1 receptor with low affinity (Ki of 130 and 330 nM, respectively). Autoradiography in wildtype mice revealed strong labelling of subepithelial myofibroblasts, confirmed by immunohistochemistry using a GLP-2 receptor specific antibody that in turn was confirmed in GLP-2 receptor knock-out mice. CONCLUSION AND IMPLICATIONS: Two new radioligands with different binding kinetics, one a full agonist and the other a weak partial agonist with antagonistic properties were developed and subepithelial myofibroblasts identified as a major site for GLP-2 receptor expression.
Subject(s)
Glucagon-Like Peptide-2 Receptor , Peptides , Animals , Binding, Competitive , Glucagon-Like Peptide-2 Receptor/agonists , Glucagon-Like Peptide-2 Receptor/antagonists & inhibitors , Humans , Mice , Peptide Fragments/metabolism , Peptides/pharmacologyABSTRACT
Extensive ligand-receptor promiscuity in the chemokine signaling system balances beneficial redundancy and specificity. However, this feature poses a major challenge to selectively modulate the system pharmacologically. Here, we identified a conserved cluster of three aromatic receptor residues that anchors the second extracellular loop (ECL2) to the top of receptor transmembrane helices (TM) 4 and 5 and enables recognition of both shared and specific characteristics of interacting chemokines. This cluster was essential for the activation of several chemokine receptors. Furthermore, characteristic motifs of the ß1 strand and 30s loop make the two main CC-chemokine subgroups-the macrophage inflammatory proteins (MIPs) and monocyte chemoattractant proteins (MCPs)-differentially dependent on this cluster in the promiscuous receptors CCR1, CCR2, and CCR5. The cluster additionally enabled CCR1 and CCR5 to discriminate between closely related MIPs based on the N terminus of the chemokine. G protein signaling and ß-arrestin2 recruitment assays confirmed the importance of the conserved cluster in receptor discrimination of chemokine ligands. This extracellular site may facilitate the development of chemokine-related therapeutics.
Subject(s)
Chemokines , Receptors, Chemokine , Chemokines/metabolism , Ligands , Protein Structure, Secondary , Receptors, CCR5/metabolism , Receptors, Chemokine/genetics , Receptors, Chemokine/metabolism , Signal TransductionABSTRACT
The glucose-dependent insulinotropic polypeptide (GIP) is a 42-residue metabolic hormone that is actively being targeted for its regulatory role of glycemia and energy balance. Limited structural data of its receptor has made ligand design tedious. This study investigates the structure and function of the GIP receptor (GIPR), using a homology model based on the GLP-1 receptor. Molecular dynamics combined with in vitro mutational data were used to pinpoint residues involved in ligand binding and/or receptor activation. Significant differences in binding mode were identified for the naturally occurring agonists GIP(1-30)NH2 and GIP(1-42) compared with high potency antagonists GIP(3-30)NH2 and GIP(5-30)NH2. Residues R1832.60, R1902.67, and R3005.40 are shown to be key for activation of the GIPR, and evidence suggests that a disruption of the K293ECL2-E362ECL3 salt bridge by GIPR antagonists strongly reduces GIPR activation. Combinatorial use of these findings can benefit rational design of ligands targeting the GIPR.
Subject(s)
Glucagon-Like Peptide-1 Receptor/chemistry , Glucagon-Like Peptide-1 Receptor/metabolism , Receptors, Gastrointestinal Hormone/chemistry , Receptors, Gastrointestinal Hormone/metabolism , Binding Sites , Gastric Inhibitory Polypeptide/metabolism , Humans , Hydrogen Bonding , Models, Molecular , Molecular Dynamics Simulation , Mutation , Protein Conformation , Receptors, Gastrointestinal Hormone/antagonists & inhibitors , Receptors, Gastrointestinal Hormone/genetics , Structural Homology, ProteinABSTRACT
Biased ligands that selectively confer activity in one pathway over another are pharmacologically important because biased signaling may reduce on-target side effects and improve drug efficacy. Here, we describe an N-terminal modification in the incretin hormone glucagon-like peptide (GLP-1) that alters the signaling capabilities of the GLP-1 receptor (GLP-1R) by making it G protein biased over internalization but was originally designed to confer DPP-4 resistance and thereby prolong the half-life of GLP-1. Despite similar binding affinity, cAMP production, and calcium mobilization, substitution of a single amino acid (Ala8 to Val8) in the N-terminus of GLP-1(7-36)NH2 (GLP-1 Val8) severely impaired its ability to internalize GLP-1R compared to endogenous GLP-1. In-depth binding kinetics analyses revealed shorter residence time for GLP-1 Val8 as well as a slower observed association rate. Molecular dynamics (MD) displayed weaker and less interactions of GLP-1 Val8 with GLP-1R, as well as distinct conformational changes in the receptor compared to GLP-1. In vitro validation of the MD, by receptor alanine substitutions, confirmed stronger impairments of GLP-1 Val8-mediated signaling compared to GLP-1. In a perfused rat pancreas, acute stimulation with GLP-1 Val8 resulted in a lower insulin and somatostatin secretion compared to GLP-1. Our study illustrates that profound differences in molecular pharmacological properties, which are essential for the therapeutic targeting of the GLP-1 system, can be induced by subtle changes in the N-terminus of GLP-1. This information could facilitate the development of optimized GLP-1R agonists.
ABSTRACT
Glucose-dependent insulinotropic polypeptide (GIP) and its receptor (GIPR) are part of the incretin system that regulates glucose homeostasis. A series of GIPR residues putatively important for ligand binding and receptor activation were mutated and pharmacologically evaluated using GIPR selective agonists in cAMP accumulation, ERK1/2 phosphorylation (pERK1/2) and ß-arrestin 2 recruitment assays. The impact of mutation on ligand efficacy was determined by operational modelling of experimental data for each mutant, with results mapped onto the full-length, active-state GIPR structure. Two interaction networks, comprising transmembrane helix (TM) 7, TM1 and TM2, and extracellular loop (ECL) 2, TM5 and ECL3 were revealed, respectively. Both networks were critical for Gαs-mediated cAMP accumulation and the recruitment of ß-arrestin 2, however, cAMP response was more sensitive to alanine substitution, with most mutated residues displaying reduced signaling. Unlike the other two assays, activation of ERK1/2 was largely independent of the network involving ECL2, TM5 and ECL3, indicating that pERK1/2 is at least partially distinct from Gαs or ß-arrestin pathways and this network is also crucial for potential biased agonism at GIPR. Collectively, our work advances understanding of the structure-function relationship of GIPR and provides a framework for the design and/or interpretation of GIP analogues with unique signaling profiles.
Subject(s)
Gastric Inhibitory Polypeptide/genetics , Gastric Inhibitory Polypeptide/metabolism , Receptors, Gastrointestinal Hormone/genetics , Receptors, Gastrointestinal Hormone/metabolism , Amino Acid Sequence , Animals , Binding Sites/drug effects , Binding Sites/physiology , COS Cells , Chlorocebus aethiops , Dose-Response Relationship, Drug , Gastric Inhibitory Polypeptide/chemistry , Gastric Inhibitory Polypeptide/pharmacology , HEK293 Cells , Humans , Mutation/physiology , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Protein Structure, Secondary , Receptors, Gastrointestinal Hormone/chemistryABSTRACT
The concept of ligand-receptor binding kinetics has been broadly applied in drug development pipelines focusing on G protein-coupled receptors (GPCRs). The ligand residence time (RT) for a receptor describes how long a ligand-receptor complex exists, and is defined as the reciprocal of the dissociation rate constant (k off). RT has turned out to be a valuable parameter for GPCR researchers focusing on drug development as a good predictor of in vivo efficacy. The positive correlation between RT and in vivo efficacy has been established for several drugs targeting class A GPCRs (e.g., the neurokinin-1 receptor (NK1R), the ß2 adrenergic receptor (ß2AR), and the muscarinic 3 receptor (M3R)) and for drugs targeting class B1 (e.g., the glucagon-like peptide 1 receptor (GLP-1R)). Recently, the association rate constant (k on) has gained similar attention as another parameter affecting in vivo efficacy. In the current perspective, we address the importance of studying ligand-receptor binding kinetics for therapeutic targeting of GPCRs, with an emphasis on how binding kinetics can be altered by subtle molecular changes in the ligands and/or the receptors and how such changes affect treatment outcome. Moreover, we speculate on the impact of binding kinetic parameters for functional selectivity and sustained receptor signaling from endosomal compartments; phenomena that have gained increasing interest in attempts to improve therapeutic targeting of GPCRs.
ABSTRACT
Enzymatic cleavage of endogenous peptides is a commonly used principle to initiate, modulate and terminate action for instance among cytokines and peptide hormones. The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and the related hormone glucagon-like peptide-2 (GLP-2) are all rapidly N-terminally truncated with severe loss of intrinsic activity. The most abundant circulating form of full length GIP(1-42) is GIP(3-42) (a dipeptidyl peptidase-4 (DPP-4) product). GIP(1-30)NH2 is another active form resulting from prohormone convertase 2 (PC2) cleavage of proGIP. Like GIP(1-42), GIP(1-30)NH2 is a substrate for DPP-4 generating GIP(3-30)NH2 which, compared to GIP(3-42), binds with higher affinity and very efficiently inhibits GIP receptor (GIPR) activity with no intrinsic activity. Here, we review the action of these four and multiple other N- and C-terminally truncated forms of GIP with an emphasis on molecular pharmacology, i.e. ligand binding, subsequent receptor activation and desensitization. Our overall conclusion is that the N-terminus is essential for receptor activation as GIP N-terminal truncation leads to decreased/lost intrinsic activity and antagonism (similar to GLP-1 and GLP-2), whereas the C-terminal extension of GIP(1-42), as compared to GLP-1, GLP-2 and glucagon (29-33 amino acids), has no apparent impact on the GIPR in vitro, but may play a role for other properties such as stability and tissue distribution. A deeper understanding of the molecular interaction of naturally occurring and designed GIP-based peptides, and their impact in vivo, may contribute to a future therapeutic targeting of the GIP system - either with agonists or with antagonists, or both.
Subject(s)
Gastric Inhibitory Polypeptide/metabolism , Peptide Fragments/metabolism , Receptors, Gastrointestinal Hormone/metabolism , Animals , Gastric Inhibitory Polypeptide/chemistry , Humans , Peptide Fragments/chemistry , Receptors, Gastrointestinal Hormone/chemistry , Structure-Activity RelationshipABSTRACT
In patients with type 2 diabetes mellitus (T2DM), the insulinotropic action of the GIP system is desensitized, whereas this is not the case for the GLP-1 system. This has raised an interesting discussion of whether GIP agonists or antagonists are most suitable for future treatment of T2DM together with GLP-1-based therapies. Homozygous carriers of the GIP receptor (GIPR) variant, [E354Q], display lower bone mineral density, increased bone fracture risk and slightly increased blood glucose. Here, we present an in-depth molecular pharmacological phenotyping of GIPR-[E354Q]. In silico modelling suggested similar interaction of the endogenous agonist GIP(1-42) to [E354Q] as to GIPR wt. This was supported by homologous competition binding in COS-7 cells revealing GIPR wt-like affinities of GIP(1-42) with Kd values of ~2 nmol/L and wt-like agonist association rates (Kon ). In contrast, the dissociation rates (Koff ) were slower, resulting in 25% higher agonist residence time for GIPR-[E354Q]. Moreover, in Gαs signalling (cAMP production) GIP(1-42) was ~2-fold more potent and more efficacious on GIPR-[E354Q] compared to wt with 17.5% higher basal activity. No difference from GIPR wt was found in the recruitment of ß-arrestin 2, whereas the agonist-induced internalization rate was 2.1- to 2.3-fold faster for [E354Q]. Together with the previously described impaired recycling of [E354Q], our findings with enhanced signalling and internalization rate possibly explained by an altered ligand-binding kinetics will lead to receptor desensitization and down-regulation. This could explain the long-term functional impairment of the GIP system in bone metabolism and blood sugar maintenance for [E354Q] carriers and may shed light on the desensitization of the insulinotropic action of GIP in patients with T2DM.
Subject(s)
Gastric Inhibitory Polypeptide/metabolism , Animals , COS Cells , Chlorocebus aethiops , Gastric Inhibitory Polypeptide/agonists , Gastric Inhibitory Polypeptide/chemistry , HEK293 Cells , Humans , Molecular Structure , Signal Transduction , beta-ArrestinsABSTRACT
Glucagon-like peptides (GLP-1 and GLP-2) are two proglucagon-derived intestinal hormones that mediate distinct physiological functions through two related receptors (GLP-1R and GLP-2R) which are important drug targets for metabolic disorders and Crohn's disease, respectively. Despite great progress in GLP-1R structure determination, our understanding on the differences of peptide binding and signal transduction between these two receptors remains elusive. Here we report the electron microscopy structure of the human GLP-2R in complex with GLP-2 and a Gs heterotrimer. To accommodate GLP-2 rather than GLP-1, GLP-2R fine-tunes the conformations of the extracellular parts of transmembrane helices (TMs) 1, 5, 7 and extracellular loop 1 (ECL1). In contrast to GLP-1, the N-terminal histidine of GLP-2 penetrates into the receptor core with a unique orientation. The middle region of GLP-2 engages with TM1 and TM7 more extensively than with ECL2, and the GLP-2 C-terminus closely attaches to ECL1, which is the most protruded among 9 class B G protein-coupled receptors (GPCRs). Functional studies revealed that the above three segments of GLP-2 are essential for GLP-2 recognition and receptor activation, especially the middle region. These results provide new insights into the molecular basis of ligand specificity in class B GPCRs and may facilitate the development of more specific therapeutics.
Subject(s)
Glucagon-Like Peptide-2 Receptor/metabolism , Amino Acid Sequence , Binding Sites , Cryoelectron Microscopy , GTP-Binding Proteins/metabolism , Glucagon-Like Peptide-2 Receptor/chemistry , Glucagon-Like Peptide-2 Receptor/ultrastructure , HEK293 Cells , Humans , Ligands , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Conformation , Structural Homology, ProteinABSTRACT
Chemokines undergo post-translational modification such as N-terminal truncations. Here, we describe how N-terminal truncation of full length CCL3(1-70) affects its activity at CCR1. Truncated CCL3(5-70) has 10-fold higher potency and enhanced efficacy in ß-arrestin recruitment, but less than 2-fold increased potencies in G protein signaling determined by calcium release, cAMP and IP3 formation. Small positive ago-allosteric ligands modulate the two CCL3 variants differently as the metal ion chelator bipyridine in complex with zinc (ZnBip) enhances the binding of truncated, but not full length CCL3, while a size-increase of the chelator to a chloro-substituted terpyridine (ZnClTerp), eliminates its allosteric, but not agonistic action. By employing a series of receptor mutants and in silico modeling we describe residues of importance for chemokine and small molecule binding. Notably, the chemokine receptor-conserved Glu2877.39 interacts with the N-terminal amine of truncated CCL3(5-70) and with Zn2+ of ZnBip, thereby bridging their binding sites and enabling the positive allosteric effect. Our study emphasizes that small allosteric molecules may act differently toward chemokine variants and thus selectively modulate interactions of specific chemokine subsets with their cognate receptors.
ABSTRACT
The recent crystal structures of CC chemokine receptors 2 and 9 (CCR2 and CCR9) have provided structural evidence for an allosteric, intracellular binding site. The high conservation of residues involved in this site suggests its presence in most chemokine receptors, including the close homologue CCR1. By using [3H]CCR2-RA-[ R], a high-affinity, CCR2 intracellular ligand, we report an intracellular binding site in CCR1, where this radioligand also binds with high affinity. In addition, we report the synthesis and biological characterization of a series of pyrrolone derivatives for CCR1 and CCR2, which allowed us to identify several high-affinity intracellular ligands, including selective and potential multitarget antagonists. Evaluation of selected compounds in a functional [35S]GTPγS assay revealed that they act as inverse agonists in CCR1, providing a new manner of pharmacological modulation. Thus, this intracellular binding site enables the design of selective and multitarget inhibitors as a novel therapeutic approach.