Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428397

ABSTRACT

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.


Subject(s)
Glycoproteins , Molecular Dynamics Simulation , Humans , Cryoelectron Microscopy , Glycoproteins/chemistry , Glycosylation , Polysaccharides/chemistry
2.
Cell ; 185(17): 3201-3213.e19, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35985289

ABSTRACT

The T cell receptor (TCR) expressed by T lymphocytes initiates protective immune responses to pathogens and tumors. To explore the structural basis of how TCR signaling is initiated when the receptor binds to peptide-loaded major histocompatibility complex (pMHC) molecules, we used cryogenic electron microscopy to determine the structure of a tumor-reactive TCRαß/CD3δγε2ζ2 complex bound to a melanoma-specific human class I pMHC at 3.08 Å resolution. The antigen-bound complex comprises 11 subunits stabilized by multivalent interactions across three structural layers, with clustered membrane-proximal cystines stabilizing the CD3-εδ and CD3-εγ heterodimers. Extra density sandwiched between transmembrane helices reveals the involvement of sterol lipids in TCR assembly. The geometry of the pMHC/TCR complex suggests that efficient TCR scanning of pMHC requires accurate pre-positioning of T cell and antigen-presenting cell membranes. Comparisons of the ligand-bound and unliganded receptors, along with molecular dynamics simulations, indicate that TCRs can be triggered in the absence of spontaneous structural rearrangements.


Subject(s)
Neoplasms , Receptors, Antigen, T-Cell , Humans , Major Histocompatibility Complex , Peptides/chemistry , Protein Binding , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Receptors, Antigen, T-Cell, alpha-beta/metabolism
3.
Mol Cell ; 81(22): 4635-4649.e8, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34715013

ABSTRACT

Polyamines are small, organic polycations that are ubiquitous and essential to all forms of life. Currently, how polyamines are transported across membranes is not understood. Recent studies have suggested that ATP13A2 and its close homologs, collectively known as P5B-ATPases, are polyamine transporters at endo-/lysosomes. Loss-of-function mutations of ATP13A2 in humans cause hereditary early-onset Parkinson's disease. To understand the polyamine transport mechanism of ATP13A2, we determined high-resolution cryoelectron microscopy (cryo-EM) structures of human ATP13A2 in five distinct conformational intermediates, which together, represent a near-complete transport cycle of ATP13A2. The structural basis of the polyamine specificity was revealed by an endogenous polyamine molecule bound to a narrow, elongated cavity within the transmembrane domain. The structures show an atypical transport path for a water-soluble substrate, in which polyamines may exit within the cytosolic leaflet of the membrane. Our study provides important mechanistic insights into polyamine transport and a framework to understand the functions and mechanisms of P5B-ATPases.


Subject(s)
Polyamines/chemistry , Proton-Translocating ATPases/chemistry , Animals , Biological Transport , Catalysis , Cryoelectron Microscopy , Cytosol/metabolism , Humans , Lipids/chemistry , Lysosomes/chemistry , Molecular Dynamics Simulation , Parkinson Disease/metabolism , Phosphorylation , Protein Conformation , Protein Domains , Saccharomyces cerevisiae/metabolism , Spodoptera
4.
EMBO J ; 42(18): e113378, 2023 09 18.
Article in English | MEDLINE | ID: mdl-37431920

ABSTRACT

In virus-host interactions, nucleic acid-directed first lines of defense that allow viral clearance without compromising growth are of paramount importance. Plants use the RNA interference pathway as a basal antiviral immune system, but additional RNA-based mechanisms of defense also exist. The infectivity of a plant positive-strand RNA virus, alfalfa mosaic virus (AMV), relies on the demethylation of viral RNA by the recruitment of the cellular N6-methyladenosine (m6 A) demethylase ALKBH9B, but how demethylation of viral RNA promotes AMV infection remains unknown. Here, we show that inactivation of the Arabidopsis cytoplasmic YT521-B homology domain (YTH)-containing m6 A-binding proteins ECT2, ECT3, and ECT5 is sufficient to restore AMV infectivity in partially resistant alkbh9b mutants. We further show that the antiviral function of ECT2 is distinct from its previously demonstrated function in the promotion of primordial cell proliferation: an ect2 mutant carrying a small deletion in its intrinsically disordered region is partially compromised for antiviral defense but not for developmental functions. These results indicate that the m6 A-YTHDF axis constitutes a novel branch of basal antiviral immunity in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , RNA Viruses , Antiviral Agents , Plant Proteins/metabolism , RNA-Binding Proteins/metabolism , Arabidopsis/metabolism , RNA, Viral/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism
5.
Mol Cell ; 73(2): 339-353.e6, 2019 01 17.
Article in English | MEDLINE | ID: mdl-30581147

ABSTRACT

Membrane targeting of the BECN1-containing class III PI 3-kinase (PI3KC3) complexes is pivotal to the regulation of autophagy. The interaction of PI3KC3 complex II and its ubiquitously expressed inhibitor, Rubicon, was mapped to the first ß sheet of the BECN1 BARA domain and the UVRAG BARA2 domain by hydrogen-deuterium exchange and cryo-EM. These data suggest that the BARA ß sheet 1 unfolds to directly engage the membrane. This mechanism was confirmed using protein engineering, giant unilamellar vesicle assays, and molecular simulations. Using this mechanism, a BECN1 ß sheet-1 derived peptide activates both PI3KC3 complexes I and II, while HIV-1 Nef inhibits complex II. These data reveal how BECN1 switches on and off PI3KC3 binding to membranes. The observations explain how PI3KC3 inhibition by Rubicon, activation by autophagy-inducing BECN1 peptides, and inhibition by HIV-1 Nef are mediated by the switchable ability of the BECN1 BARA domain to partially unfold and insert into membranes.


Subject(s)
Autophagy , Beclin-1/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Autophagy-Related Proteins , Beclin-1/chemistry , Beclin-1/genetics , Binding Sites , Class III Phosphatidylinositol 3-Kinases/chemistry , Class III Phosphatidylinositol 3-Kinases/genetics , Cryoelectron Microscopy , Enzyme Activation , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Molecular Dynamics Simulation , Phosphatidylinositol Phosphates/metabolism , Protein Binding , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Signal Transduction , Structure-Activity Relationship , nef Gene Products, Human Immunodeficiency Virus/genetics , nef Gene Products, Human Immunodeficiency Virus/metabolism
6.
PLoS Genet ; 19(10): e1010980, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37816028

ABSTRACT

YT521-B homology (YTH) domain proteins act as readers of N6-methyladenosine (m6A) in mRNA. Members of the YTHDF clade determine properties of m6A-containing mRNAs in the cytoplasm. Vertebrates encode three YTHDF proteins whose possible functional specialization is debated. In land plants, the YTHDF clade has expanded from one member in basal lineages to eleven so-called EVOLUTIONARILY CONSERVED C-TERMINAL REGION1-11 (ECT1-11) proteins in Arabidopsis thaliana, named after the conserved YTH domain placed behind a long N-terminal intrinsically disordered region (IDR). ECT2, ECT3 and ECT4 show genetic redundancy in stimulation of primed stem cell division, but the origin and implications of YTHDF expansion in higher plants are unknown, as it is unclear whether it involves acquisition of fundamentally different molecular properties, in particular of their divergent IDRs. Here, we use functional complementation of ect2/ect3/ect4 mutants to test whether different YTHDF proteins can perform the same function when similarly expressed in leaf primordia. We show that stimulation of primordial cell division relies on an ancestral molecular function of the m6A-YTHDF axis in land plants that is present in bryophytes and is conserved over YTHDF diversification, as it appears in all major clades of YTHDF proteins in flowering plants. Importantly, although our results indicate that the YTH domains of all arabidopsis ECT proteins have m6A-binding capacity, lineage-specific neo-functionalization of ECT1, ECT9 and ECT11 happened after late duplication events, and involves altered properties of both the YTH domains, and, especially, of the IDRs. We also identify two biophysical properties recurrent in IDRs of YTHDF proteins able to complement ect2 ect3 ect4 mutants, a clear phase separation propensity and a charge distribution that creates electric dipoles. Human and fly YTHDFs do not have IDRs with this combination of properties and cannot replace ECT2/3/4 function in arabidopsis, perhaps suggesting different molecular activities of YTHDF proteins between major taxa.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Animals , Humans , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , RNA, Messenger/metabolism , Multigene Family , Intracellular Signaling Peptides and Proteins/genetics
7.
PLoS Comput Biol ; 19(1): e1010822, 2023 01.
Article in English | MEDLINE | ID: mdl-36693110

ABSTRACT

The steady emergence of SARS-CoV-2 variants gives us a real-time view of the interplay between viral evolution and the host immune defense. The spike protein of SARS-CoV-2 is the primary target of antibodies. Here, we show that steric accessibility to antibodies provides a strong predictor of mutation activity in the spike protein of SARS-CoV-2 variants, including Omicron. We introduce an antibody accessibility score (AAS) that accounts for the steric shielding effect of glycans at the surface of spike. We find that high values of the AAS correlate strongly with the sites of mutations in the spike proteins of newly emerging SARS-CoV-2 variants. We use the AAS to assess the escapability of variant spike proteins, i.e., their ability to escape antibody-based immune responses. The high calculated escapability of the Omicron variant BA.5 with respect to both wild-type (WT) vaccination and BA.1 infection is consistent with its rapid spread despite high rates of vaccination and prior infection with earlier variants. We calculated the AAS from structural and molecular dynamics simulation data that were available early in the pandemic, in the spring of 2020. The AAS thus allows us to prospectively assess the ability of variant spike proteins to escape antibody-based immune responses and to pinpoint regions of expected mutation activity in future variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Antibodies , Mutation , Antibodies, Viral , Antibodies, Neutralizing
8.
PLoS Comput Biol ; 17(4): e1008790, 2021 04.
Article in English | MEDLINE | ID: mdl-33793546

ABSTRACT

The primary immunological target of COVID-19 vaccines is the SARS-CoV-2 spike (S) protein. S is exposed on the viral surface and mediates viral entry into the host cell. To identify possible antibody binding sites, we performed multi-microsecond molecular dynamics simulations of a 4.1 million atom system containing a patch of viral membrane with four full-length, fully glycosylated and palmitoylated S proteins. By mapping steric accessibility, structural rigidity, sequence conservation, and generic antibody binding signatures, we recover known epitopes on S and reveal promising epitope candidates for structure-based vaccine design. We find that the extensive and inherently flexible glycan coat shields a surface area larger than expected from static structures, highlighting the importance of structural dynamics. The protective glycan shield and the high flexibility of its hinges give the stalk overall low epitope scores. Our computational epitope-mapping procedure is general and should thus prove useful for other viral envelope proteins whose structures have been characterized.


Subject(s)
Computational Biology , Epitope Mapping/methods , Epitopes/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Binding Sites, Antibody , COVID-19/virology , COVID-19 Vaccines/immunology , Epitopes/immunology , Immunogenicity, Vaccine , Protein Conformation , Spike Glycoprotein, Coronavirus/immunology
9.
Proc Natl Acad Sci U S A ; 116(20): 9843-9852, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31036655

ABSTRACT

We develop a detailed description of protein translational and rotational diffusion in concentrated solution on the basis of all-atom molecular dynamics simulations in explicit solvent. Our systems contain up to 540 fully flexible proteins with 3.6 million atoms. In concentrated protein solutions (100 mg/mL and higher), the proteins ubiquitin and lysozyme, as well as the protein domains third IgG-binding domain of protein G and villin headpiece, diffuse not as isolated particles, but as members of transient clusters between which they constantly exchange. A dynamic cluster model nearly quantitatively explains the increase in viscosity and the decrease in protein diffusivity with protein volume fraction, which both exceed the predictions from widely used colloid models. The Stokes-Einstein relations for translational and rotational diffusion remain valid, but the effective hydrodynamic radius grows linearly with protein volume fraction. This increase follows the observed increase in cluster size and explains the more dramatic slowdown of protein rotation compared with translation. Baxter's sticky-sphere model of colloidal suspensions captures the concentration dependence of cluster size, viscosity, and rotational and translational diffusion. The consistency between simulations and experiments for a diverse set of soluble globular proteins indicates that the cluster model applies broadly to concentrated protein solutions, with equilibrium dissociation constants for nonspecific protein-protein binding in the Kd ≈ 10-mM regime.


Subject(s)
Proteins/chemistry , Colloids , Diffusion , Hydrodynamics , Molecular Dynamics Simulation , Viscosity
10.
Blood ; 133(4): 366-376, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30305279

ABSTRACT

Von Willebrand factor (VWF) is a key player in the regulation of hemostasis by promoting recruitment of platelets to sites of vascular injury. An array of 6 C domains forms the dimeric C-terminal VWF stem. Upon shear force activation, the stem adopts an open conformation allowing the adhesion of VWF to platelets and the vessel wall. To understand the underlying molecular mechanism and associated functional perturbations in disease-related variants, knowledge of high-resolution structures and dynamics of C domains is of paramount interest. Here, we present the solution structure of the VWF C4 domain, which binds to the platelet integrin and is therefore crucial for the VWF function. In the structure, we observed 5 intra- and inter-subdomain disulfide bridges, of which 1 is unique in the C4 domain. The structure further revealed an unusually hinged 2-subdomain arrangement. The hinge is confined to a very short segment around V2547 connecting the 2 subdomains. Together with 2 nearby inter-subdomain disulfide bridges, this hinge induces slow conformational changes and positional alternations of both subdomains with respect to each other. Furthermore, the structure demonstrates that a clinical gain-of-function VWF variant (Y2561) is more likely to have an effect on the arrangement of the C4 domain with neighboring domains rather than impairing platelet integrin binding.


Subject(s)
Blood Platelets/metabolism , Integrins/metabolism , von Willebrand Factor/chemistry , von Willebrand Factor/metabolism , Amino Acid Sequence , Disulfides/metabolism , Humans , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Domains , Solutions , Structure-Activity Relationship
11.
Nucleic Acids Res ; 47(8): 4319-4333, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30805612

ABSTRACT

Maleless (MLE) is an evolutionary conserved member of the DExH family of helicases in Drosophila. Besides its function in RNA editing and presumably siRNA processing, MLE is best known for its role in remodelling non-coding roX RNA in the context of X chromosome dosage compensation in male flies. MLE and its human orthologue, DHX9 contain two tandem double-stranded RNA binding domains (dsRBDs) located at the N-terminal region. The two dsRBDs are essential for localization of MLE at the X-territory and it is presumed that this involves binding roX secondary structures. However, for dsRBD1 roX RNA binding has so far not been described. Here, we determined the solution NMR structure of dsRBD1 and dsRBD2 of MLE in tandem and investigated its role in double-stranded RNA (dsRNA) binding. Our NMR and SAXS data show that both dsRBDs act as independent structural modules in solution and are canonical, non-sequence-specific dsRBDs featuring non-canonical KKxAXK RNA binding motifs. NMR titrations combined with filter binding experiments and isothermal titration calorimetry (ITC) document the contribution of dsRBD1 to dsRNA binding in vitro. Curiously, dsRBD1 mutants in which dsRNA binding in vitro is strongly compromised do not affect roX2 RNA binding and MLE localization in cells. These data suggest alternative functions for dsRBD1 in vivo.


Subject(s)
Chromosomal Proteins, Non-Histone/chemistry , DNA Helicases/chemistry , Drosophila Proteins/chemistry , Drosophila melanogaster/chemistry , RNA, Long Noncoding/chemistry , Transcription Factors/chemistry , Amino Acid Sequence , Animals , Binding Sites , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Cloning, Molecular , DNA Helicases/genetics , DNA Helicases/metabolism , Dosage Compensation, Genetic , Double-Stranded RNA Binding Motif , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Kinetics , Male , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Transcription Factors/genetics , Transcription Factors/metabolism
12.
J Chem Phys ; 153(2): 024116, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32668929

ABSTRACT

Translational diffusion coefficients are routinely estimated from molecular dynamics simulations. Linear fits to mean squared displacement (MSD) curves have become the de facto standard, from simple liquids to complex biomacromolecules. Nonlinearities in MSD curves at short times are handled with a wide variety of ad hoc practices, such as partial and piece-wise fitting of the data. Here, we present a rigorous framework to obtain reliable estimates of the self-diffusion coefficient and its statistical uncertainty. We also assess in a quantitative manner if the observed dynamics is, indeed, diffusive. By accounting for correlations between MSD values at different times, we reduce the statistical uncertainty of the estimator and, thereby, increase its efficiency. With a Kolmogorov-Smirnov test, we check for possible anomalous diffusion. We provide an easy-to-use Python data analysis script for the estimation of self-diffusion coefficients. As an illustration, we apply the formalism to molecular dynamics simulation data of pure TIP4P-D water and a single ubiquitin protein. In another paper [S. von Bülow, J. T. Bullerjahn, and G. Hummer, J. Chem. Phys. 153, 021101 (2020)], we demonstrate its ability to recognize deviations from regular diffusion caused by systematic errors in a common trajectory "unwrapping" scheme that is implemented in popular simulation and visualization software.

13.
J Chem Phys ; 153(2): 021101, 2020 Jul 14.
Article in English | MEDLINE | ID: mdl-32668935

ABSTRACT

In molecular dynamics simulations under periodic boundary conditions, particle positions are typically wrapped into a reference box. For diffusion coefficient calculations using the Einstein relation, the particle positions need to be unwrapped. Here, we show that a widely used heuristic unwrapping scheme is not suitable for long simulations at constant pressure. Improper accounting for box-volume fluctuations creates, at long times, unphysical trajectories and, in turn, grossly exaggerated diffusion coefficients. We propose an alternative unwrapping scheme that resolves this issue. At each time step, we add the minimal displacement vector according to periodic boundary conditions for the instantaneous box geometry. Here and in another paper [J. T. Bullerjahn, S. von Bülow, and G. Hummer, J. Chem. Phys. 153, 024116 (2020)], we apply the new unwrapping scheme to extensive molecular dynamics and Brownian dynamics simulation data. We provide practitioners with a formula to assess if and by how much earlier results might have been affected by the widely used heuristic unwrapping scheme.

14.
Angew Chem Int Ed Engl ; 59(51): 23025-23029, 2020 12 14.
Article in English | MEDLINE | ID: mdl-32804430

ABSTRACT

The structure and flexibility of RNA depends sensitively on the microenvironment. Using pulsed electron-electron double-resonance (PELDOR)/double electron-electron resonance (DEER) spectroscopy combined with advanced labeling techniques, we show that the structure of double-stranded RNA (dsRNA) changes upon internalization into Xenopus laevis oocytes. Compared to dilute solution, the dsRNA A-helix is more compact in cells. We recapitulate this compaction in a densely crowded protein solution. Atomic-resolution molecular dynamics simulations of dsRNA semi-quantitatively capture the compaction, and identify non-specific electrostatic interactions between proteins and dsRNA as a possible driver of this effect.


Subject(s)
Oocytes/chemistry , RNA, Double-Stranded/chemistry , Animals , Electron Spin Resonance Spectroscopy , Molecular Dynamics Simulation , Nucleic Acid Conformation , Oocytes/cytology , Spin Labels , Static Electricity , Xenopus laevis
15.
J Chem Theory Comput ; 19(11): 3406-3417, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37257090

ABSTRACT

In molecular dynamics simulations in the NPT ensemble at constant pressure, the size and shape of the periodic simulation box fluctuate with time. For particle images far from the origin, the rescaling of the box by the barostat results in unbounded position displacements. Special care is thus required when a particle trajectory is unwrapped from a projection into the central box under periodic boundary conditions to a trajectory in full three-dimensional space, e.g., for the calculation of translational diffusion coefficients. Here, we review and compare different schemes in use for trajectory unwrapping. We also specify the corresponding rewrapping schemes to put an unwrapped trajectory back into the central box. On this basis, we then identify a scheme for the calculation of diffusion coefficients from NPT simulations, which is a primary application of trajectory unwrapping. In this scheme, the wrapped and unwrapped trajectory are mutually consistent and their statistical properties are preserved. We conclude with advice on best practice for the consistent unwrapping of constant-pressure simulation trajectories and the calculation of accurate translational diffusion coefficients.

16.
J Chem Theory Comput ; 17(1): 525-537, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33307683

ABSTRACT

Disordered proteins and nucleic acids can condense into droplets that resemble the membraneless organelles observed in living cells. MD simulations offer a unique tool to characterize the molecular interactions governing the formation of these biomolecular condensates, their physicochemical properties, and the factors controlling their composition and size. However, biopolymer condensation depends sensitively on the balance between different energetic and entropic contributions. Here, we develop a general strategy to fine-tune the potential energy function for molecular dynamics simulations of biopolymer phase separation. We rebalance protein-protein interactions against solvation and entropic contributions to match the excess free energy of transferring proteins between dilute solution and condensate. We illustrate this formalism by simulating liquid droplet formation of the FUS low-complexity domain (LCD) with a rebalanced MARTINI model. By scaling the strength of the nonbonded interactions in the coarse-grained MARTINI potential energy function, we map out a phase diagram in the plane of protein concentration and interaction strength. Above a critical scaling factor of αc ≈ 0.6, FUS-LCD condensation is observed, where α = 1 and 0 correspond to full and repulsive interactions in the MARTINI model. For a scaling factor α = 0.65, we recover experimental densities of the dilute and dense phases, and thus the excess protein transfer free energy into the droplet and the saturation concentration where FUS-LCD condenses. In the region of phase separation, we simulate FUS-LCD droplets of four different sizes in stable equilibrium with the dilute phase and slabs of condensed FUS-LCD for tens of microseconds, and over one millisecond in aggregate. We determine surface tensions in the range of 0.01-0.4 mN/m from the fluctuations of the droplet shape and from the capillary-wave-like broadening of the interface between the two phases. From the dynamics of the protein end-to-end distance, we estimate shear viscosities from 0.001 to 0.02 Pa s for the FUS-LCD droplets with scaling factors α in the range of 0.625-0.75, where we observe liquid droplets. Significant hydration of the interior of the droplets keeps the proteins mobile and the droplets fluid.


Subject(s)
RNA-Binding Protein FUS/chemistry , Molecular Dynamics Simulation , Particle Size , Phase Transition , Protein Interaction Maps , RNA-Binding Protein FUS/metabolism , Surface Tension , Thermodynamics , Viscosity
17.
Science ; 369(6508)2020 09 04.
Article in English | MEDLINE | ID: mdl-32883836

ABSTRACT

Autophagosomes form de novo in a manner that is incompletely understood. Particularly enigmatic are autophagy-related protein 9 (Atg9)-containing vesicles that are required for autophagy machinery assembly but do not supply the bulk of the autophagosomal membrane. In this study, we reconstituted autophagosome nucleation using recombinant components from yeast. We found that Atg9 proteoliposomes first recruited the phosphatidylinositol 3-phosphate kinase complex, followed by Atg21, the Atg2-Atg18 lipid transfer complex, and the E3-like Atg12-Atg5-Atg16 complex, which promoted Atg8 lipidation. Furthermore, we found that Atg2 could transfer lipids for Atg8 lipidation. In selective autophagy, these reactions could potentially be coupled to the cargo via the Atg19-Atg11-Atg9 interactions. We thus propose that Atg9 vesicles form seeds that establish membrane contact sites to initiate lipid transfer from compartments such as the endoplasmic reticulum.


Subject(s)
Autophagosomes/metabolism , Autophagy-Related Proteins/metabolism , Cell Membrane/metabolism , Membrane Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Autophagosomes/chemistry , Autophagy-Related Protein 12/chemistry , Autophagy-Related Protein 12/metabolism , Autophagy-Related Protein 5/chemistry , Autophagy-Related Protein 5/metabolism , Autophagy-Related Protein 8 Family/metabolism , Autophagy-Related Proteins/chemistry , Lipid Metabolism , Membrane Proteins/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Proteolipids/chemistry , Proteolipids/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Unilamellar Liposomes/metabolism
18.
Science ; 370(6513): 203-208, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32817270

ABSTRACT

The spike protein (S) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required for cell entry and is the primary focus for vaccine development. In this study, we combined cryo-electron tomography, subtomogram averaging, and molecular dynamics simulations to structurally analyze S in situ. Compared with the recombinant S, the viral S was more heavily glycosylated and occurred mostly in the closed prefusion conformation. We show that the stalk domain of S contains three hinges, giving the head unexpected orientational freedom. We propose that the hinges allow S to scan the host cell surface, shielded from antibodies by an extensive glycan coat. The structure of native S contributes to our understanding of SARS-CoV-2 infection and potentially to the development of safe vaccines.


Subject(s)
Betacoronavirus/chemistry , Molecular Dynamics Simulation , Spike Glycoprotein, Coronavirus/chemistry , Cryoelectron Microscopy , Electron Microscope Tomography , Glycosylation , Humans , Protein Domains , Protein Multimerization , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL