Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
2.
Mol Ther ; 31(9): 2612-2632, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37452493

ABSTRACT

Rhabdomyosarcoma is the most common pediatric soft tissue tumor, comprising two major subtypes: the PAX3/7-FOXO1 fusion-negative embryonal and the PAX3/7-FOXO1 fusion-positive alveolar subtype. Here, we demonstrate that the expression levels of the transcriptional repressor TRPS1 are specifically enhanced in the embryonal subtype, resulting in impaired terminal myogenic differentiation and tumor growth. During normal myogenesis, expression levels of TRPS1 have to decrease to allow myogenic progression, as demonstrated by overexpression of TRPS1 in myoblasts impairing myotube formation. Consequentially, myogenic differentiation in embryonal rhabdomyosarcoma in vitro as well as in vivo can be achieved by reducing TRPS1 levels. Furthermore, we show that TRPS1 levels in RD cells, the bona fide model cell line for embryonal rhabdomyosarcoma, are regulated by miR-1 and that TRPS1 and MYOD1 share common genomic binding sites. The myogenin (MYOG) promoter is one of the critical targets of TRPS1 and MYOD1; we demonstrate that TRPS1 restricts MYOG expression and thereby inhibits terminal myogenic differentiation. Therefore, reduction of TRPS1 levels in embryonal rhabdomyosarcoma might be a therapeutic approach to drive embryonal rhabdomyosarcoma cells into myogenic differentiation, thereby generating postmitotic myotubes.


Subject(s)
MicroRNAs , Rhabdomyosarcoma, Embryonal , Humans , Child , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/metabolism , Rhabdomyosarcoma, Embryonal/pathology , Myogenin/genetics , Myogenin/metabolism , Cell Differentiation/genetics , MicroRNAs/genetics , Muscle Development/genetics , Cell Line, Tumor , Repressor Proteins
3.
Nature ; 540(7633): 428-432, 2016 12 15.
Article in English | MEDLINE | ID: mdl-27919074

ABSTRACT

The functionality of stem cells declines during ageing, and this decline contributes to ageing-associated impairments in tissue regeneration and function. Alterations in developmental pathways have been associated with declines in stem-cell function during ageing, but the nature of this process remains poorly understood. Hox genes are key regulators of stem cells and tissue patterning during embryogenesis with an unknown role in ageing. Here we show that the epigenetic stress response in muscle stem cells (also known as satellite cells) differs between aged and young mice. The alteration includes aberrant global and site-specific induction of active chromatin marks in activated satellite cells from aged mice, resulting in the specific induction of Hoxa9 but not other Hox genes. Hoxa9 in turn activates several developmental pathways and represents a decisive factor that separates satellite cell gene expression in aged mice from that in young mice. The activated pathways include most of the currently known inhibitors of satellite cell function in ageing muscle, including Wnt, TGFß, JAK/STAT and senescence signalling. Inhibition of aberrant chromatin activation or deletion of Hoxa9 improves satellite cell function and muscle regeneration in aged mice, whereas overexpression of Hoxa9 mimics ageing-associated defects in satellite cells from young mice, which can be rescued by the inhibition of Hoxa9-targeted developmental pathways. Together, these data delineate an altered epigenetic stress response in activated satellite cells from aged mice, which limits satellite cell function and muscle regeneration by Hoxa9-dependent activation of developmental pathways.


Subject(s)
Cellular Senescence , Epistasis, Genetic , Growth and Development/genetics , Homeodomain Proteins/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Stress, Physiological/genetics , Aging , Animals , Cellular Senescence/genetics , Chromatin/genetics , Chromatin/metabolism , Female , Homeodomain Proteins/biosynthesis , Homeodomain Proteins/genetics , Male , Mice , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Regeneration/genetics
4.
Cell Mol Life Sci ; 76(13): 2559-2570, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30976839

ABSTRACT

Skeletal muscle regeneration is a finely tuned process involving the activation of various cellular and molecular processes. Satellite cells, the stem cells of skeletal muscle, are indispensable for skeletal muscle regeneration. Their functionality is critically modulated by intrinsic signaling pathways as well as by interactions with the stem cell niche. Here, we discuss the properties of satellite cells, including heterogeneity regarding gene expression and/or their phenotypic traits and the contribution of satellite cells to skeletal muscle regeneration. We also summarize the process of regeneration with a specific emphasis on signaling pathways, cytoskeletal rearrangements, the importance of miRNAs, and the contribution of non-satellite cells such as immune cells, fibro-adipogenic progenitor cells, and PW1-positive/Pax7-negative interstitial cells.


Subject(s)
Adult Stem Cells/cytology , Muscle Development , Muscle, Skeletal/cytology , Muscle, Skeletal/physiology , Regeneration , Adult , Cell Differentiation , Humans
5.
Development ; 143(17): 3128-42, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27578179

ABSTRACT

Canonical Wnt/ß-catenin signaling plays an important role in myogenic differentiation, but its physiological role in muscle fibers remains elusive. Here, we studied activation of Wnt/ß-catenin signaling in adult muscle fibers and muscle stem cells in an Axin2 reporter mouse. Axin2 is a negative regulator and a target of Wnt/ß-catenin signaling. In adult muscle fibers, Wnt/ß-catenin signaling is only detectable in a subset of fast fibers that have a significantly smaller diameter than other fast fibers. In the same fibers, immunofluorescence staining for YAP/Taz and Tead1 was detected. Wnt/ß-catenin signaling was absent in quiescent and activated satellite cells. Upon injury, Wnt/ß-catenin signaling was detected in muscle fibers with centrally located nuclei. During differentiation of myoblasts expression of Axin2, but not of Axin1, increased together with Tead1 target gene expression. Furthermore, absence of Axin1 and Axin2 interfered with myoblast proliferation and myotube formation, respectively. Treatment with the canonical Wnt3a ligand also inhibited myotube formation. Wnt3a activated TOPflash and Tead1 reporter activity, whereas neither reporter was activated in the presence of Dkk1, an inhibitor of canonical Wnt signaling. We propose that Axin2-dependent Wnt/ß-catenin signaling is involved in myotube formation and, together with YAP/Taz/Tead1, associated with reduced muscle fiber diameter of a subset of fast fibers.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Axin Protein/metabolism , DNA-Binding Proteins/metabolism , Phosphoproteins/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway/physiology , beta Catenin/metabolism , Acyltransferases , Adaptor Proteins, Signal Transducing/genetics , Animals , Axin Protein/genetics , Cell Cycle Proteins , DNA-Binding Proteins/genetics , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Muscle Development/genetics , Muscle Development/physiology , Phosphoproteins/genetics , TEA Domain Transcription Factors , Transcription Factors/genetics , Wnt Signaling Pathway/genetics , Wnt3A Protein/genetics , Wnt3A Protein/metabolism , YAP-Signaling Proteins
6.
EMBO Rep ; 16(8): 1022-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26113365

ABSTRACT

The mammalian target of rapamycin complex 1 (mTORC1) is a central regulator of physiological adaptations in response to changes in nutrient supply. Major downstream targets of mTORC1 signalling are the mRNA translation regulators p70 ribosomal protein S6 kinase 1 (S6K1p70) and the 4E-binding proteins (4E-BPs). However, little is known about vertebrate mRNAs that are specifically controlled by mTORC1 signalling and are engaged in regulating mTORC1-associated physiology. Here, we show that translation of the CCAAT/enhancer binding protein beta (C/EBPß) mRNA into the C/EBPß-LIP isoform is suppressed in response to mTORC1 inhibition either through pharmacological treatment or through calorie restriction. Our data indicate that the function of 4E-BPs is required for suppression of LIP. Intriguingly, mice lacking the cis-regulatory upstream open reading frame (uORF) in the C/EBPß-mRNA, which is required for mTORC1-stimulated translation into C/EBPß-LIP, display an improved metabolic phenotype with features also found under calorie restriction. Thus, our data suggest that translational adjustment of C/EBPß-isoform expression is one of the key processes that direct metabolic adaptation in response to changes in mTORC1 activity.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/genetics , Lipid Metabolism , Multiprotein Complexes/metabolism , RNA, Messenger/genetics , TOR Serine-Threonine Kinases/metabolism , Adipogenesis/genetics , Animals , CCAAT-Enhancer-Binding Protein-beta/deficiency , CCAAT-Enhancer-Binding Protein-beta/metabolism , Caloric Restriction , Fatty Acids/metabolism , Gene Expression Regulation , Mechanistic Target of Rapamycin Complex 1 , Mice , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/genetics , Open Reading Frames , Oxidation-Reduction , Phenotype , Protein Biosynthesis , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Signal Transduction , Sirolimus , TOR Serine-Threonine Kinases/antagonists & inhibitors , TOR Serine-Threonine Kinases/genetics
7.
Proc Natl Acad Sci U S A ; 110(41): 16474-9, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24065826

ABSTRACT

Extensive analyses of mice carrying null mutations in paired box 7 (Pax7) have confirmed the progressive loss of the satellite cell lineage in skeletal muscle, resulting in severe muscle atrophy and death. A recent study using floxed alleles and tamoxifen-induced inactivation concluded that after 3 wk of age, Pax7 was entirely dispensable for satellite cell function. Here, we demonstrate that Pax7 is an absolute requirement for satellite cell function in adult skeletal muscle. Following Pax7 deletion, satellite cells and myoblasts exhibit cell-cycle arrest and dysregulation of myogenic regulatory factors. Maintenance of Pax7 deletion through continuous tamoxifen administration prevented regrowth of Pax7-expressing satellite cells and a profound muscle regeneration deficit that resembles the phenotype of skeletal muscle following genetically engineered ablation of satellite cells. Therefore, we conclude that Pax7 is essential for regulating the expansion and differentiation of satellite cells during both neonatal and adult myogenesis.


Subject(s)
Muscle Development/physiology , Muscle, Skeletal/physiology , PAX7 Transcription Factor/metabolism , Regeneration/physiology , Satellite Cells, Skeletal Muscle/physiology , Animals , Blotting, Western , Female , Fluorescent Antibody Technique , Mice , Muscle, Skeletal/cytology , Satellite Cells, Skeletal Muscle/metabolism , Tamoxifen
8.
Bioessays ; 35(3): 231-41, 2013 Mar.
Article in English | MEDLINE | ID: mdl-22886714

ABSTRACT

Cell-based therapies for degenerative diseases of the musculature remain on the verge of feasibility. Myogenic cells are relatively abundant, accessible, and typically harbor significant proliferative potential ex vivo. However, their use for therapeutic intervention is limited due to several critical aspects of their complex biology. Recent insights based on mouse models have advanced our understanding of the molecular mechanisms controlling the function of myogenic progenitors significantly. Moreover, the discovery of atypical myogenic cell types with the ability to cross the blood-muscle barrier has opened exciting new therapeutic avenues. In this paper, we outline the major problems that are currently associated with the manipulation of myogenic cells and discuss promising strategies to overcome these obstacles.


Subject(s)
Muscle, Skeletal/cytology , Stem Cell Transplantation , Stem Cells/cytology , Animals , Cell Communication , Humans , Satellite Cells, Skeletal Muscle/cytology , Stem Cell Niche
9.
Proc Natl Acad Sci U S A ; 109(50): 20614-9, 2012 Dec 11.
Article in English | MEDLINE | ID: mdl-23185011

ABSTRACT

Duchenne muscular dystrophy (DMD) is a devastating genetic muscular disorder of childhood marked by progressive debilitating muscle weakness and wasting, and ultimately death in the second or third decade of life. Wnt7a signaling through its receptor Fzd7 accelerates and augments regeneration by stimulating satellite stem cell expansion through the planar cell polarity pathway, as well as myofiber hypertrophy through the AKT/mammalian target of rapamycin (mTOR) anabolic pathway. We investigated the therapeutic potential of the secreted factor Wnt7a for focal treatment of dystrophic DMD muscles using the mdx mouse model, and found that Wnt7a treatment efficiently induced satellite cell expansion and myofiber hypertrophy in treated mucles in mdx mice. Importantly, Wnt7a treatment resulted in a significant increase in muscle strength, as determined by generation of specific force. Furthermore, Wnt7a reduced the level of contractile damage, likely by inducing a shift in fiber type toward slow-twitch. Finally, we found that Wnt7a similarly induced myotube hypertrophy and a shift in fiber type toward slow-twitch in human primary myotubes. Taken together, our findings suggest that Wnt7a is a promising candidate for development as an ameliorative treatment for DMD.


Subject(s)
Muscular Dystrophy, Animal/drug therapy , Wnt Proteins/therapeutic use , Animals , Electrochemotherapy , Gene Knockdown Techniques , Genetic Therapy , Humans , MEF2 Transcription Factors , Male , Mice , Mice, Inbred C57BL , Mice, Inbred mdx , Muscle Contraction/physiology , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Muscular Dystrophy, Animal/genetics , Muscular Dystrophy, Animal/pathology , Muscular Dystrophy, Animal/physiopathology , Myogenic Regulatory Factors/genetics , Myogenic Regulatory Factors/metabolism , Plasmids/administration & dosage , Plasmids/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Regeneration/physiology , Signal Transduction , Wnt Proteins/genetics , Wnt Proteins/physiology
10.
Front Mol Neurosci ; 17: 1356326, 2024.
Article in English | MEDLINE | ID: mdl-38419795

ABSTRACT

Guanosine diphosphate-mannose pyrophosphorylase B (GMPPB) catalyzes the conversion of mannose-1-phosphate and GTP to GDP-mannose, which is required as a mannose donor for the biosynthesis of glycan structures necessary for proper cellular functions. Mutations in GMPPB have been associated with various neuromuscular disorders such as muscular dystrophy and myasthenic syndromes. Here, we report that GMPPB protein abundance increases during brain and skeletal muscle development, which is accompanied by an increase in overall protein mannosylation. To model the human disorder in mice, we generated heterozygous GMPPB KO mice using CIRSPR/Cas9. While we were able to obtain homozygous KO mice from heterozygous matings at the blastocyst stage, homozygous KO embryos were absent beyond embryonic day E8.5, suggesting that the homozygous loss of GMPPB results in early embryonic lethality. Since patients with GMPPB loss-of-function manifest with neuromuscular disorders, we investigated the role of GMPPB in vitro. Thereby, we found that the siRNA-mediated knockdown of Gmppb in either primary myoblasts or the myoblast cell line C2C12 impaired myoblast differentiation and resulted in myotube degeneration. siRNA-mediated knockdown of Gmppb also impaired the neuron-like differentiation of N2A cells. Taken together, our data highlight the essential role of GMPPB during development and differentiation, especially in myogenic and neuronal cell types.

11.
NPJ Regen Med ; 9(1): 10, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38424446

ABSTRACT

Skeletal muscle function crucially depends on innervation while repair of skeletal muscle relies on resident muscle stem cells (MuSCs). However, it is poorly understood how innervation affects MuSC properties and thereby regeneration of skeletal muscle. Here, we report that loss of innervation causes precocious activation of MuSCs concomitant with the expression of markers of myogenic differentiation. This aberrant activation of MuSCs after loss of innervation is accompanied by profound alterations on the mRNA and protein level. Combination of muscle injury with loss of innervation results in impaired regeneration of skeletal muscle including shifts in myogenic populations concomitant with delayed maturation of regenerating myofibers. We further demonstrate that loss of innervation leads to alterations in myofibers and their secretome, which then affect MuSC behavior. In particular, we identify an increased secretion of Osteopontin and transforming growth factor beta 1 (Tgfb1) by myofibers isolated from mice which had undergone sciatic nerve transection. The altered secretome results in the upregulation of early activating transcription factors, such as Junb, and their target genes in MuSCs. However, the combination of different secreted factors from myofibers after loss of innervation is required to cause the alterations observed in MuSCs after loss of innervation. These data demonstrate that loss of innervation first affects myofibers causing alterations in their secretome which then affect MuSCs underscoring the importance of proper innervation for MuSC functionality and regeneration of skeletal muscle.

12.
Nature ; 450(7171): 819-24, 2007 Dec 06.
Article in English | MEDLINE | ID: mdl-18064002

ABSTRACT

Ventricular tachyarrhythmias are the main cause of sudden death in patients after myocardial infarction. Here we show that transplantation of embryonic cardiomyocytes (eCMs) in myocardial infarcts protects against the induction of ventricular tachycardia (VT) in mice. Engraftment of eCMs, but not skeletal myoblasts (SMs), bone marrow cells or cardiac myofibroblasts, markedly decreased the incidence of VT induced by in vivo pacing. eCM engraftment results in improved electrical coupling between the surrounding myocardium and the infarct region, and Ca2+ signals from engrafted eCMs expressing a genetically encoded Ca2+ indicator could be entrained during sinoatrial cardiac activation in vivo. eCM grafts also increased conduction velocity and decreased the incidence of conduction block within the infarct. VT protection is critically dependent on expression of the gap-junction protein connexin 43 (Cx43; also known as Gja1): SMs genetically engineered to express Cx43 conferred a similar protection to that of eCMs against induced VT. Thus, engraftment of Cx43-expressing myocytes has the potential to reduce life-threatening post-infarct arrhythmias through the augmentation of intercellular coupling, suggesting autologous strategies for cardiac cell-based therapy.


Subject(s)
Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/prevention & control , Connexin 43/metabolism , Myocardial Infarction/complications , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/transplantation , Animals , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Connexin 43/genetics , Embryo, Mammalian/cytology , Heart/physiology , Heart/physiopathology , Humans , Mice , Mice, Transgenic , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/cytology , Myocardium/pathology , Perfusion
13.
Exp Cell Res ; 317(8): 1169-78, 2011 May 01.
Article in English | MEDLINE | ID: mdl-21272575

ABSTRACT

During muscle development and regeneration of skeletal muscle in mice connexin43 (Cx43) and connexin39 (Cx39) are specifically expressed: Cx43 in satellite cells and myoblasts, whereas Cx39 is exclusively expressed in myogenin-positive cells. We generated Cx39 deficient mice by replacing the coding region of the Gjd4 gene by DNA coding for the enhanced green fluorescent protein eGFP. Adult Cx39 deficient mice exhibit no obvious phenotypic alterations of skeletal muscle compared to wild type mice in the resting state. However, myogenesis in Cx39 deficient embryos is accelerated as indicated by increased myogenin expression on ED13.5 and ED16.5 and increased expression of Cx43 in developing skeletal muscle. In addition, the regeneration process of skeletal muscle in Cx39 deficient mice is accelerated as shown by a 2day earlier onset of MyoD and myogenin expression, relative to wild type littermates. Interestingly, Cx43 expression was also upregulated in Cx39 deficient mice during regeneration of skeletal muscle. We hypothesize that Cx43 may compensate for the loss of Cx39 during myogenesis and regeneration.


Subject(s)
Connexins/metabolism , Muscle Development/physiology , Muscle, Skeletal/physiology , Regeneration/physiology , Animals , Connexin 43/genetics , Connexin 43/metabolism , Connexins/genetics , Embryo, Mammalian/anatomy & histology , Embryo, Mammalian/physiology , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/cytology , MyoD Protein/genetics , MyoD Protein/metabolism , Myogenin/genetics , Myogenin/metabolism
14.
Comput Struct Biotechnol J ; 20: 6348-6359, 2022.
Article in English | MEDLINE | ID: mdl-36420144

ABSTRACT

Wnt signaling is essential for embryonic development and tissue homeostasis. So far, little is known about the importance and functional relevance of the different regions in WNT proteins including regions in their C-terminus identified as hairpin and linker. However, it was shown that the C-terminus of WNT7A comprising the linker and the hairpin region is sufficient to elicit signaling. Here, we demonstrate that actually the hairpin region of WNT7A in its C-terminus is fully sufficient to induce non-canonical signaling in myogenic cells while the linker region alone did not show biological activity. Of note, all known non-canonical signaling branches of WNT7A signaling in skeletal muscle were activated by the hairpin region of WNT7A thereby inducing hypertrophy in myotubes, symmetric expansion of satellite stem cells and migration of myoblasts. Furthermore, we demonstrate that the linker region in the C-terminus of WNT7A binds to the FZD7 receptor while it does not activate non-canonical Wnt signaling. However, the hairpin and the linker region of WNT7A can activate canonical Wnt signaling independent of each other suggesting that specificity of downstream signaling might be depending on those specific regions in the C-terminus.

15.
Vitam Horm ; 116: 295-311, 2021.
Article in English | MEDLINE | ID: mdl-33752822

ABSTRACT

Regeneration of skeletal muscle is a finely tuned process which is depending on muscle stem cells, a population of stem cells in skeletal muscle which is also termed satellite cells. Muscle stem cells are a prerequisite for regeneration of skeletal muscle. Of note, the muscle stem cell population is heterogeneous and subpopulations can be identified depending on gene expression or phenotypic traits. However, all muscle stem cells express the transcription factor Pax7 and their functionality is tightly controlled by intrinsic signaling pathways and extrinsic signals. The latter ones include signals form the stem cell niche as well as circulating factors such as growth factors and hormones. Among them are Wnt proteins, growth factors like IGF-1 or FGF-2 and hormones such as thyroid hormones and the anti-aging hormone Klotho. A highly orchestrated interplay between those factors and muscle stem cells is important for their full functionality and ultimately regeneration of skeletal muscle as outlined here.


Subject(s)
Satellite Cells, Skeletal Muscle , Cell Differentiation/physiology , Muscle Development/genetics , Muscle, Skeletal/metabolism , Regeneration/physiology , Satellite Cells, Skeletal Muscle/metabolism , Stem Cells
16.
Front Cell Dev Biol ; 9: 721543, 2021.
Article in English | MEDLINE | ID: mdl-34676210

ABSTRACT

Myogenic differentiation, muscle stem cell functionality, and regeneration of skeletal muscle are cellular processes under tight control of various signaling pathways. Here, we investigated the role of non-canonical NF-κB signaling in myogenic differentiation, muscle stem cell functionality, and regeneration of skeletal muscle. We stimulated non-canonical NF-κB signaling with an agonistically acting antibody of the lymphotoxin beta receptor (LTßR). Interestingly, we found that stimulation of non-canonical NF-κB signaling through the LTßR agonist impairs myogenic differentiation, muscle stem cell function, and regeneration of skeletal muscle. Furthermore, we show that stimulation of non-canonical NF-κB signaling by the LTßR agonist coincides with activation of canonical NF-κB signaling. We suggest a direct crosstalk between canonical and non-canonical NF-κB signaling during myogenic differentiation which is required for proper myogenic differentiation and thereby regeneration of skeletal muscle.

17.
J Vis Exp ; (168)2021 02 15.
Article in English | MEDLINE | ID: mdl-33645580

ABSTRACT

Adult skeletal muscle tissue harbors a stem cell population that is indispensable for its ability to regenerate. Upon muscle damage, muscle stem cells leave their quiescent state and activate the myogenic program ultimately leading to the repair of damaged tissue concomitant with the replenishment of the muscle stem cell pool. Various factors influence muscle stem cell activity, among them intrinsic stimuli but also signals from the direct muscle stem cell environment, the stem cell niche. The isolation and culture of single myofibers with their associated muscle stem cells preserves most of the interaction of the stem cell with its niche and is, therefore, the closest possibility to study muscle stem cell functionality ex vivo. Here, a protocol for the isolation, culture, siRNA transfection and immunostaining of muscle stem cells on their respective myofibers from mouse EDL (extensor digitorum longus) muscles is provided. The experimental conditions outlined here allow the study and manipulation of muscle stem cells ex vivo including investigation of myogenic activity without the inherent need for in vivo animal experiments.


Subject(s)
Adult Stem Cells/cytology , Cell Culture Techniques/methods , Muscle Fibers, Skeletal/cytology , Stem Cells/cytology , Animals , Cells, Cultured , Collagenases/metabolism , Mice, Inbred C57BL , Muscle Development , RNA, Small Interfering/metabolism , Regeneration , Tissue Fixation , Transfection
18.
Cell Rep ; 35(10): 109223, 2021 06 08.
Article in English | MEDLINE | ID: mdl-34107247

ABSTRACT

During aging, the regenerative capacity of skeletal muscle decreases due to intrinsic changes in muscle stem cells (MuSCs) and alterations in their niche. Here, we use quantitative mass spectrometry to characterize intrinsic changes in the MuSC proteome and remodeling of the MuSC niche during aging. We generate a network connecting age-affected ligands located in the niche and cell surface receptors on MuSCs. Thereby, we reveal signaling by integrins, Lrp1, Egfr, and Cd44 as the major cell communication axes perturbed through aging. We investigate the effect of Smoc2, a secreted protein that accumulates with aging, primarily originating from fibro-adipogenic progenitors. Increased levels of Smoc2 contribute to the aberrant Integrin beta-1 (Itgb1)/mitogen-activated protein kinase (MAPK) signaling observed during aging, thereby causing impaired MuSC functionality and muscle regeneration. By connecting changes in the proteome of MuSCs to alterations of their niche, our work will enable a better understanding of how MuSCs are affected during aging.


Subject(s)
Extracellular Matrix/metabolism , Integrins/metabolism , Muscle, Skeletal/metabolism , Stem Cells/metabolism , Cell Differentiation , Humans
19.
J Clin Invest ; 131(9)2021 05 03.
Article in English | MEDLINE | ID: mdl-33755596

ABSTRACT

GDP-mannose-pyrophosphorylase-B (GMPPB) facilitates the generation of GDP-mannose, a sugar donor required for glycosylation. GMPPB defects cause muscle disease due to hypoglycosylation of α-dystroglycan (α-DG). Alpha-DG is part of a protein complex, which links the extracellular matrix with the cytoskeleton, thus stabilizing myofibers. Mutations of the catalytically inactive homolog GMPPA cause alacrima, achalasia, and mental retardation syndrome (AAMR syndrome), which also involves muscle weakness. Here, we showed that Gmppa-KO mice recapitulated cognitive and motor deficits. As structural correlates, we found cortical layering defects, progressive neuron loss, and myopathic alterations. Increased GDP-mannose levels in skeletal muscle and in vitro assays identified GMPPA as an allosteric feedback inhibitor of GMPPB. Thus, its disruption enhanced mannose incorporation into glycoproteins, including α-DG in mice and humans. This increased α-DG turnover and thereby lowered α-DG abundance. In mice, dietary mannose restriction beginning after weaning corrected α-DG hyperglycosylation and abundance, normalized skeletal muscle morphology, and prevented neuron degeneration and the development of motor deficits. Cortical layering and cognitive performance, however, were not improved. We thus identified GMPPA defects as the first congenital disorder of glycosylation characterized by α-DG hyperglycosylation, to our knowledge, and we have unraveled underlying disease mechanisms and identified potential dietary treatment options.


Subject(s)
Dystroglycans , Guanosine Diphosphate Mannose , Muscle, Skeletal/metabolism , Neuromuscular Diseases , Nucleotidyltransferases/deficiency , Animals , Dystroglycans/genetics , Dystroglycans/metabolism , Glycosylation , Guanosine Diphosphate Mannose/genetics , Guanosine Diphosphate Mannose/metabolism , Humans , Mice , Mice, Knockout , Neuromuscular Diseases/diet therapy , Neuromuscular Diseases/genetics , Neuromuscular Diseases/metabolism , Nucleotidyltransferases/metabolism
20.
Sci Transl Med ; 13(580)2021 02 10.
Article in English | MEDLINE | ID: mdl-33568522

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is a highly prevalent and intractable form of cardiac decompensation commonly associated with diastolic dysfunction. Here, we show that diastolic dysfunction in patients with HFpEF is associated with a cardiac deficit in nicotinamide adenine dinucleotide (NAD+). Elevating NAD+ by oral supplementation of its precursor, nicotinamide, improved diastolic dysfunction induced by aging (in 2-year-old C57BL/6J mice), hypertension (in Dahl salt-sensitive rats), or cardiometabolic syndrome (in ZSF1 obese rats). This effect was mediated partly through alleviated systemic comorbidities and enhanced myocardial bioenergetics. Simultaneously, nicotinamide directly improved cardiomyocyte passive stiffness and calcium-dependent active relaxation through increased deacetylation of titin and the sarcoplasmic reticulum calcium adenosine triphosphatase 2a, respectively. In a long-term human cohort study, high dietary intake of naturally occurring NAD+ precursors was associated with lower blood pressure and reduced risk of cardiac mortality. Collectively, these results suggest NAD+ precursors, and especially nicotinamide, as potential therapeutic agents to treat diastolic dysfunction and HFpEF in humans.


Subject(s)
Heart Failure , Animals , Cohort Studies , Heart Failure/drug therapy , Humans , Mice , Mice, Inbred C57BL , Niacinamide/pharmacology , Niacinamide/therapeutic use , Rats , Rats, Inbred Dahl , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL