Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Mol Cell ; 74(5): 1086-1102.e5, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31101498

ABSTRACT

Kinase and phosphatase overexpression drives tumorigenesis and drug resistance. We previously developed a mass-cytometry-based single-cell proteomics approach that enables quantitative assessment of overexpression effects on cell signaling. Here, we applied this approach in a human kinome- and phosphatome-wide study to assess how 649 individually overexpressed proteins modulated cancer-related signaling in HEK293T cells in an abundance-dependent manner. Based on these data, we expanded the functional classification of human kinases and phosphatases and showed that the overexpression effects include non-catalytic roles. We detected 208 previously unreported signaling relationships. The signaling dynamics analysis indicated that the overexpression of ERK-specific phosphatases sustains proliferative signaling. This suggests a phosphatase-driven mechanism of cancer progression. Moreover, our analysis revealed a drug-resistant mechanism through which overexpression of tyrosine kinases, including SRC, FES, YES1, and BLK, induced MEK-independent ERK activation in melanoma A375 cells. These proteins could predict drug sensitivity to BRAF-MEK concurrent inhibition in cells carrying BRAF mutations.


Subject(s)
Carcinogenesis/genetics , Melanoma/genetics , Phosphoric Monoester Hydrolases/genetics , Phosphotransferases/genetics , Proto-Oncogene Proteins B-raf/genetics , Cell Proliferation/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Melanoma/enzymology , Melanoma/pathology , Mutation , Phosphorylation/genetics , Protein Kinase Inhibitors/pharmacology , Proteomics , Signal Transduction/drug effects
2.
Mol Cell ; 74(5): 951-965.e13, 2019 06 06.
Article in English | MEDLINE | ID: mdl-31047794

ABSTRACT

RNA-binding proteins (RBPs) and long non-coding RNAs (lncRNAs) are key regulators of gene expression, but their joint functions in coordinating cell fate decisions are poorly understood. Here we show that the expression and activity of the RBP TDP-43 and the long isoform of the lncRNA Neat1, the scaffold of the nuclear compartment "paraspeckles," are reciprocal in pluripotent and differentiated cells because of their cross-regulation. In pluripotent cells, TDP-43 represses the formation of paraspeckles by enhancing the polyadenylated short isoform of Neat1. TDP-43 also promotes pluripotency by regulating alternative polyadenylation of transcripts encoding pluripotency factors, including Sox2, which partially protects its 3' UTR from miR-21-mediated degradation. Conversely, paraspeckles sequester TDP-43 and other RBPs from mRNAs and promote exit from pluripotency and embryonic patterning in the mouse. We demonstrate that cross-regulation between TDP-43 and Neat1 is essential for their efficient regulation of a broad network of genes and, therefore, of pluripotency and differentiation.


Subject(s)
Cell Differentiation/genetics , DNA-Binding Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , RNA, Long Noncoding/genetics , Animals , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA-Binding Proteins/metabolism , Humans , Mice , MicroRNAs/genetics , Pluripotent Stem Cells/metabolism , Polyadenylation/genetics , RNA, Long Noncoding/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
3.
Mol Cell Proteomics ; 22(10): 100640, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37659604

ABSTRACT

The "Protein Abundances Across Organisms" database (PaxDb) is an integrative metaresource dedicated to protein abundance levels, in tissue-specific or whole-organism proteomes. PaxDb focuses on computing best-estimate abundances for proteins in normal/healthy contexts and expresses abundance values for each protein in "parts per million" in relation to all other protein molecules in the cell. The uniform data reprocessing, quality scoring, and integrated orthology relations have made PaxDb one of the preferred tools for comparisons between individual datasets, tissues, or organisms. In describing the latest version 5.0 of PaxDb, we particularly emphasize the data integration from various types of raw data and how we expanded the number of organisms and tissue groups as well as the proteome coverage. The current collection of PaxDb includes 831 original datasets from 170 species, including 22 Archaea, 81 Bacteria, and 67 Eukaryota. Apart from detailing the data update, we also present a comparative analysis of the human proteome subset of PaxDb against the two most widely used human proteome data resources: Human Protein Atlas and Genotype-Tissue Expression. Lastly, through our protein abundance data, we reveal an evolutionary trend in the usage of sulfur-containing amino acids in the proteomes of Fungi.

4.
Nucleic Acids Res ; 51(D1): D389-D394, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399505

ABSTRACT

The eggNOG (evolutionary gene genealogy Non-supervised Orthologous Groups) database is a bioinformatics resource providing orthology data and comprehensive functional information for organisms from all domains of life. Here, we present a major update of the database and website (version 6.0), which increases the number of covered organisms to 12 535 reference species, expands functional annotations, and implements new functionality. In total, eggNOG 6.0 provides a hierarchy of over 17M orthologous groups (OGs) computed at 1601 taxonomic levels, spanning 10 756 bacterial, 457 archaeal and 1322 eukaryotic organisms. OGs have been thoroughly annotated using recent knowledge from functional databases, including KEGG, Gene Ontology, UniProtKB, BiGG, CAZy, CARD, PFAM and SMART. eggNOG also offers phylogenetic trees for all OGs, maximising utility and versatility for end users while allowing researchers to investigate the evolutionary history of speciation and duplication events as well as the phylogenetic distribution of functional terms within each OG. Furthermore, the eggNOG 6.0 website contains new functionality to mine orthology and functional data with ease, including the possibility of generating phylogenetic profiles for multiple OGs across species or identifying single-copy OGs at custom taxonomic levels. eggNOG 6.0 is available at http://eggnog6.embl.de.


Subject(s)
Databases, Genetic , Genomics , Phylogeny , Computational Biology , Eukaryota/genetics
5.
Nucleic Acids Res ; 51(D1): D638-D646, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36370105

ABSTRACT

Much of the complexity within cells arises from functional and regulatory interactions among proteins. The core of these interactions is increasingly known, but novel interactions continue to be discovered, and the information remains scattered across different database resources, experimental modalities and levels of mechanistic detail. The STRING database (https://string-db.org/) systematically collects and integrates protein-protein interactions-both physical interactions as well as functional associations. The data originate from a number of sources: automated text mining of the scientific literature, computational interaction predictions from co-expression, conserved genomic context, databases of interaction experiments and known complexes/pathways from curated sources. All of these interactions are critically assessed, scored, and subsequently automatically transferred to less well-studied organisms using hierarchical orthology information. The data can be accessed via the website, but also programmatically and via bulk downloads. The most recent developments in STRING (version 12.0) are: (i) it is now possible to create, browse and analyze a full interaction network for any novel genome of interest, by submitting its complement of encoded proteins, (ii) the co-expression channel now uses variational auto-encoders to predict interactions, and it covers two new sources, single-cell RNA-seq and experimental proteomics data and (iii) the confidence in each experimentally derived interaction is now estimated based on the detection method used, and communicated to the user in the web-interface. Furthermore, STRING continues to enhance its facilities for functional enrichment analysis, which are now fully available also for user-submitted genomes.


Subject(s)
Protein Interaction Mapping , Proteins , Protein Interaction Mapping/methods , Databases, Protein , Proteins/genetics , Proteins/metabolism , Genomics , Proteomics , User-Computer Interface
6.
Nucleic Acids Res ; 51(D1): D760-D766, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36408900

ABSTRACT

The interpretation of genomic, transcriptomic and other microbial 'omics data is highly dependent on the availability of well-annotated genomes. As the number of publicly available microbial genomes continues to increase exponentially, the need for quality control and consistent annotation is becoming critical. We present proGenomes3, a database of 907 388 high-quality genomes containing 4 billion genes that passed stringent criteria and have been consistently annotated using multiple functional and taxonomic databases including mobile genetic elements and biosynthetic gene clusters. proGenomes3 encompasses 41 171 species-level clusters, defined based on universal single copy marker genes, for which pan-genomes and contextual habitat annotations are provided. The database is available at http://progenomes.embl.de/.


Subject(s)
Genome , Prokaryotic Cells , Databases, Genetic , Genomics , Molecular Sequence Annotation , Bacteria/classification , Bacteria/genetics
7.
Brief Bioinform ; 23(5)2022 09 20.
Article in English | MEDLINE | ID: mdl-36088548

ABSTRACT

A knowledge-based grouping of genes into pathways or functional units is essential for describing and understanding cellular complexity. However, it is not always clear a priori how and at what level of specificity functionally interconnected genes should be partitioned into pathways, for a given application. Here, we assess and compare nine existing and two conceptually novel functional classification systems, with respect to their discovery power and generality in gene set enrichment testing. We base our assessment on a collection of nearly 2000 functional genomics datasets provided by users of the STRING database. With these real-life and diverse queries, we assess which systems typically provide the most specific and complete enrichment results. We find many structural and performance differences between classification systems. Overall, the well-established, hierarchically organized pathway annotation systems yield the best enrichment performance, despite covering substantial parts of the human genome in general terms only. On the other hand, the more recent unsupervised annotation systems perform strongest in understudied areas and organisms, and in detecting more specific pathways, albeit with less informative labels.


Subject(s)
Genomics , Software , Databases, Factual , Databases, Genetic , Genomics/methods , Humans
8.
Chimia (Aarau) ; 78(4): 200-204, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38676609

ABSTRACT

RNA, widely recognized as an information-carrier molecule, is capable of catalyzing essential biological processes through ribozymes. Despite their ubiquity, specific functions in a biological context and phenotypes based on the ribozymes' activity are often unknown. Here, we present the discovery of a subgroup of minimal HDV-like ribozymes, which reside 3' to viral tRNAs and appear to cleave the 3'-trailers of viral premature tRNA transcripts. This proposed tRNA-processing function is unprecedented for any ribozymes, thus, we designate this subgroup as theta ribozymes. Most theta ribozymes were identified in Caudoviricetes bacteriophages, the main constituent (>90%) of the mammalian gut virome. Intriguingly, our findings further suggest the involvement of theta ribozymes in the transition of certain bacteriophages between distinct genetic codes, thus possibly contributing to the phage lysis trigger. Our discovery expands the limited repertoire of biological functions attributed to HDV-like ribozymes and provides insights into the fascinating world of RNA catalysis.


Subject(s)
RNA, Catalytic , RNA, Catalytic/metabolism , RNA, Catalytic/chemistry , RNA, Viral/metabolism , RNA, Viral/genetics , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , Bacteriophages/genetics , Hepatitis Delta Virus/genetics , Hepatitis Delta Virus/enzymology
9.
J Proteome Res ; 22(2): 637-646, 2023 02 03.
Article in English | MEDLINE | ID: mdl-36512705

ABSTRACT

Biological networks are often used to represent complex biological systems, which can contain several types of entities. Analysis and visualization of such networks is supported by the Cytoscape software tool and its many apps. While earlier versions of stringApp focused on providing intraspecies protein-protein interactions from the STRING database, the new stringApp 2.0 greatly improves the support for heterogeneous networks. Here, we highlight new functionality that makes it possible to create networks that contain proteins and interactions from STRING as well as other biological entities and associations from other sources. We exemplify this by complementing a published SARS-CoV-2 interactome with interactions from STRING. We have also extended stringApp with new data and query functionality for protein-protein interactions between eukaryotic parasites and their hosts. We show how this can be used to retrieve and visualize a cross-species network for a malaria parasite, its host, and its vector. Finally, the latest stringApp version has an improved user interface, allows retrieval of both functional associations and physical interactions, and supports group-wise enrichment analysis of different parts of a network to aid biological interpretation. stringApp is freely available at https://apps.cytoscape.org/apps/stringapp.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Software , Proteins , Eukaryota
10.
Nucleic Acids Res ; 49(D1): D605-D612, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33237311

ABSTRACT

Cellular life depends on a complex web of functional associations between biomolecules. Among these associations, protein-protein interactions are particularly important due to their versatility, specificity and adaptability. The STRING database aims to integrate all known and predicted associations between proteins, including both physical interactions as well as functional associations. To achieve this, STRING collects and scores evidence from a number of sources: (i) automated text mining of the scientific literature, (ii) databases of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from co-expression and from conserved genomic context and (iv) systematic transfers of interaction evidence from one organism to another. STRING aims for wide coverage; the upcoming version 11.5 of the resource will contain more than 14 000 organisms. In this update paper, we describe changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks. In addition, we describe how to query STRING with genome-wide, experimental data, including the automated detection of enriched functionalities and potential biases in the user's query data. The STRING resource is available online, at https://string-db.org/.


Subject(s)
Databases, Protein , Protein Interaction Mapping , Proteins/genetics , User-Computer Interface
11.
Nucleic Acids Res ; 47(D1): D309-D314, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30418610

ABSTRACT

eggNOG is a public database of orthology relationships, gene evolutionary histories and functional annotations. Here, we present version 5.0, featuring a major update of the underlying genome sets, which have been expanded to 4445 representative bacteria and 168 archaea derived from 25 038 genomes, as well as 477 eukaryotic organisms and 2502 viral proteomes that were selected for diversity and filtered by genome quality. In total, 4.4M orthologous groups (OGs) distributed across 379 taxonomic levels were computed together with their associated sequence alignments, phylogenies, HMM models and functional descriptors. Precomputed evolutionary analysis provides fine-grained resolution of duplication/speciation events within each OG. Our benchmarks show that, despite doubling the amount of genomes, the quality of orthology assignments and functional annotations (80% coverage) has persisted without significant changes across this update. Finally, we improved eggNOG online services for fast functional annotation and orthology prediction of custom genomics or metagenomics datasets. All precomputed data are publicly available for downloading or via API queries at http://eggnog.embl.de.


Subject(s)
Conserved Sequence , Databases, Genetic , Evolution, Molecular , Phylogeny , Sequence Homology , Animals , Classification , Eukaryota/genetics , Gene Duplication , Gene Ontology , Genes, Viral , Genome , Humans , Molecular Sequence Annotation , Proteome , Sequence Alignment , Structure-Activity Relationship
12.
Microb Ecol ; 80(2): 459-474, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32328670

ABSTRACT

Wild Japanese macaques (Macaca fuscata Blyth) living in the highland and lowland areas of Yakushima are known to have different diets, with highland individuals consuming more leaves. We aim to clarify whether and how these differences in diet are also reflected by gut microbial composition and fermentation ability. Therefore, we conduct an in vitro fermentation assay using fresh feces from macaques as inoculum and dry leaf powder of Eurya japonica Thunb. as a substrate. Fermentation activity was higher for feces collected in the highland, as evidenced by higher gas and butyric acid production and lower pH. Genetic analysis indicated separation of highland and lowland in terms of both community structure and function of the gut microbiota. Comparison of feces and suspension after fermentation indicated that the community structure changed during fermentation, and the change was larger for lowland samples. Analysis of the 16S rRNA V3-V4 barcoding region of the gut microbiota showed that community structure was clearly clustered between the two areas. Furthermore, metagenomic analysis indicated separation by gene and pathway abundance patterns. Two pathways (glycogen biosynthesis I and D-galacturonate degradation I) were enriched in lowland samples, possibly related to the fruit-eating lifestyle in the lowland. Overall, we demonstrated that the more leaf-eating highland Japanese macaques harbor gut microbiota with higher leaf fermentation ability compared with the more fruit-eating lowland ones. Broad, non-specific taxonomic and functional gut microbiome differences suggest that this pattern may be driven by a complex interplay between many taxa and pathways rather than single functional traits.


Subject(s)
Bacteria/metabolism , Digestion , Feeding Behavior , Gastrointestinal Microbiome/physiology , Macaca fuscata/microbiology , Macaca fuscata/physiology , Animals , Bacteria/genetics , Diet , Fermentation , Metagenome , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis
13.
Nucleic Acids Res ; 46(18): 9309-9320, 2018 10 12.
Article in English | MEDLINE | ID: mdl-30215772

ABSTRACT

Perturbation of gene expression by means of synthetic small interfering RNAs (siRNAs) is a powerful way to uncover gene function. However, siRNA technology suffers from sequence-specific off-target effects and from limitations in knock-down efficiency. In this study, we assess a further problem: unintended effects of siRNA transfections on cellular fitness/proliferation. We show that the nucleotide compositions of siRNAs at specific positions have reproducible growth-restricting effects on mammalian cells in culture. This is likely distinct from hybridization-dependent off-target effects, since each nucleotide residue is seen to be acting independently and additively. The effect is robust and reproducible across different siRNA libraries and also across various cell lines, including human and mouse cells. Analyzing the growth inhibition patterns in correlation to the nucleotide sequence of the siRNAs allowed us to build a predictor that can estimate growth-restricting effects for any arbitrary siRNA sequence. Competition experiments with co-transfected siRNAs further suggest that the growth-restricting effects might be linked to an oversaturation of the cellular miRNA machinery, thus disrupting endogenous miRNA functions at large. We caution that competition between siRNA molecules could complicate the interpretation of double-knockdown or epistasis experiments, and potential interactions with endogenous miRNAs can be a factor when assaying cell growth or viability phenotypes.


Subject(s)
Cell Proliferation/genetics , MicroRNAs/genetics , Nucleic Acid Hybridization , RNA Interference , RNA, Small Interfering/genetics , A549 Cells , Animals , Cell Line , Cell Survival/genetics , Cells, Cultured , Embryo, Mammalian/cytology , Fibroblasts/cytology , Fibroblasts/metabolism , Gene Expression , HeLa Cells , Humans , Mice , Transfection
14.
Nat Methods ; 13(5): 425-30, 2016 05.
Article in English | MEDLINE | ID: mdl-27043882

ABSTRACT

Achieving high accuracy in orthology inference is essential for many comparative, evolutionary and functional genomic analyses, yet the true evolutionary history of genes is generally unknown and orthologs are used for very different applications across phyla, requiring different precision-recall trade-offs. As a result, it is difficult to assess the performance of orthology inference methods. Here, we present a community effort to establish standards and an automated web-based service to facilitate orthology benchmarking. Using this service, we characterize 15 well-established inference methods and resources on a battery of 20 different benchmarks. Standardized benchmarking provides a way for users to identify the most effective methods for the problem at hand, sets a minimum requirement for new tools and resources, and guides the development of more accurate orthology inference methods.


Subject(s)
Computational Biology/standards , Genomics/standards , Phylogeny , Proteomics/standards , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Computational Biology/methods , Databases, Genetic , Eukaryota/classification , Eukaryota/genetics , Gene Ontology , Genomics/methods , Models, Genetic , Proteomics/methods , Sequence Analysis, Protein , Sequence Homology , Species Specificity
15.
Nucleic Acids Res ; 45(D1): D362-D368, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27924014

ABSTRACT

A system-wide understanding of cellular function requires knowledge of all functional interactions between the expressed proteins. The STRING database aims to collect and integrate this information, by consolidating known and predicted protein-protein association data for a large number of organisms. The associations in STRING include direct (physical) interactions, as well as indirect (functional) interactions, as long as both are specific and biologically meaningful. Apart from collecting and reassessing available experimental data on protein-protein interactions, and importing known pathways and protein complexes from curated databases, interaction predictions are derived from the following sources: (i) systematic co-expression analysis, (ii) detection of shared selective signals across genomes, (iii) automated text-mining of the scientific literature and (iv) computational transfer of interaction knowledge between organisms based on gene orthology. In the latest version 10.5 of STRING, the biggest changes are concerned with data dissemination: the web frontend has been completely redesigned to reduce dependency on outdated browser technologies, and the database can now also be queried from inside the popular Cytoscape software framework. Further improvements include automated background analysis of user inputs for functional enrichments, and streamlined download options. The STRING resource is available online, at http://string-db.org/.


Subject(s)
Computational Biology/methods , Databases, Protein , Software , Models, Molecular , Protein Binding , Protein Conformation , Protein Interaction Mapping , Protein Interaction Maps , Proteins/chemistry , Proteins/metabolism , Structure-Activity Relationship , User-Computer Interface , Web Browser
16.
Mol Biol Evol ; 34(8): 2115-2122, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28460117

ABSTRACT

Orthology assignment is ideally suited for functional inference. However, because predicting orthology is computationally intensive at large scale, and most pipelines are relatively inaccessible (e.g., new assignments only available through database updates), less precise homology-based functional transfer is still the default for (meta-)genome annotation. We, therefore, developed eggNOG-mapper, a tool for functional annotation of large sets of sequences based on fast orthology assignments using precomputed clusters and phylogenies from the eggNOG database. To validate our method, we benchmarked Gene Ontology (GO) predictions against two widely used homology-based approaches: BLAST and InterProScan. Orthology filters applied to BLAST results reduced the rate of false positive assignments by 11%, and increased the ratio of experimentally validated terms recovered over all terms assigned per protein by 15%. Compared with InterProScan, eggNOG-mapper achieved similar proteome coverage and precision while predicting, on average, 41 more terms per protein and increasing the rate of experimentally validated terms recovered over total term assignments per protein by 35%. EggNOG-mapper predictions scored within the top-5 methods in the three GO categories using the CAFA2 NK-partial benchmark. Finally, we evaluated eggNOG-mapper for functional annotation of metagenomics data, yielding better performance than interProScan. eggNOG-mapper runs ∼15× faster than BLAST and at least 2.5× faster than InterProScan. The tool is available standalone and as an online service at http://eggnog-mapper.embl.de.


Subject(s)
Sequence Alignment/methods , Sequence Analysis, Protein/methods , Algorithms , Computer Simulation , Databases, Genetic , Databases, Protein , Gene Ontology , Genome/genetics , Phylogeny , Sequence Alignment/statistics & numerical data , Software
17.
Bioinformatics ; 33(23): 3808-3810, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28961926

ABSTRACT

MOTIVATION: Ribosomal RNA profiling has become crucial to studying microbial communities, but meaningful taxonomic analysis and inter-comparison of such data are still hampered by technical limitations, between-study design variability and inconsistencies between taxonomies used. RESULTS: Here we present MAPseq, a framework for reference-based rRNA sequence analysis that is up to 30% more accurate (F½ score) and up to one hundred times faster than existing solutions, providing in a single run multiple taxonomy classifications and hierarchical operational taxonomic unit mappings, for rRNA sequences in both amplicon and shotgun sequencing strategies, and for datasets of virtually any size. AVAILABILITY AND IMPLEMENTATION: Source code and binaries are freely available at https://github.com/jfmrod/mapseq. CONTACT: mering@imls.uzh.ch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Genes, Microbial , RNA, Ribosomal/genetics , Sequence Analysis, DNA/methods , Software , Algorithms , Bacteria/genetics , Eukaryota/genetics
18.
Mol Cell Proteomics ; 15(5): 1670-80, 2016 05.
Article in English | MEDLINE | ID: mdl-26944343

ABSTRACT

Natural genetic variation is the raw material of evolution and influences disease development and progression. An important question is how this genetic variation translates into variation in protein abundance. To analyze the effects of the genetic background on gene and protein expression in the nematode Caenorhabditis elegans, we quantitatively compared the two genetically highly divergent wild-type strains N2 and CB4856. Gene expression was analyzed by microarray assays, and proteins were quantified using stable isotope labeling by amino acids in cell culture. Among all transcribed genes, we found 1,532 genes to be differentially transcribed between the two wild types. Of the total 3,238 quantified proteins, 129 proteins were significantly differentially expressed between N2 and CB4856. The differentially expressed proteins were enriched for genes that function in insulin-signaling and stress-response pathways, underlining strong divergence of these pathways in nematodes. The protein abundance of the two wild-type strains correlates more strongly than protein abundance versus transcript abundance within each wild type. Our findings indicate that in C. elegans only a fraction of the changes in protein abundance can be explained by the changes in mRNA abundance. These findings corroborate with the observations made across species.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/genetics , Gene Expression Profiling/methods , Genetic Variation , Proteomics/methods , Animals , Biological Evolution , Caenorhabditis elegans/classification , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation , Gene Regulatory Networks , Isotope Labeling/methods , Oligonucleotide Array Sequence Analysis/methods
19.
Nucleic Acids Res ; 44(D1): D380-4, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26590256

ABSTRACT

Interactions between proteins and small molecules are an integral part of biological processes in living organisms. Information on these interactions is dispersed over many databases, texts and prediction methods, which makes it difficult to get a comprehensive overview of the available evidence. To address this, we have developed STITCH ('Search Tool for Interacting Chemicals') that integrates these disparate data sources for 430 000 chemicals into a single, easy-to-use resource. In addition to the increased scope of the database, we have implemented a new network view that gives the user the ability to view binding affinities of chemicals in the interaction network. This enables the user to get a quick overview of the potential effects of the chemical on its interaction partners. For each organism, STITCH provides a global network; however, not all proteins have the same pattern of spatial expression. Therefore, only a certain subset of interactions can occur simultaneously. In the new, fifth release of STITCH, we have implemented functionality to filter out the proteins and chemicals not associated with a given tissue. The STITCH database can be downloaded in full, accessed programmatically via an extensive API, or searched via a redesigned web interface at http://stitch.embl.de.


Subject(s)
Databases, Pharmaceutical , Drug Discovery , Proteins/metabolism , Animals , Humans , Organ Specificity , Protein Binding , Proteins/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL