Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Immunol ; 189(3): 1467-79, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22745376

ABSTRACT

The expression of endogenous retrotransposable elements, including long interspersed nuclear element 1 (LINE-1 or L1) and human endogenous retrovirus, accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. In this article, we address the safety and immunogenicity of vaccination with these elements. We used immunohistochemical analysis and literature precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 open reading frame 2 induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human LINE-1 open reading frame 2 (96% identity with macaque), as well as simian endogenous retrovirus-K Gag and Env, induced polyfunctional T cell responses to all Ags, and Ab responses to simian endogenous retrovirus-K Env. There were no adverse safety or pathological findings related to vaccination. These studies provide the first evidence, to our knowledge, that immune responses can be induced safely against this class of self-antigens and pave the way for investigation of them as HIV- or tumor-associated targets.


Subject(s)
AIDS Vaccines/administration & dosage , AIDS Vaccines/immunology , Cancer Vaccines/administration & dosage , Cancer Vaccines/immunology , DNA Transposable Elements/immunology , Endogenous Retroviruses/immunology , AIDS Vaccines/genetics , Adult , Amino Acid Sequence , Animals , Cancer Vaccines/genetics , DNA Transposable Elements/genetics , Disease Models, Animal , Endogenous Retroviruses/genetics , Endogenous Retroviruses/metabolism , Female , Humans , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , env Gene Products, Human Immunodeficiency Virus/genetics , env Gene Products, Human Immunodeficiency Virus/immunology , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
2.
Transcription ; 11(5): 217-229, 2020 10.
Article in English | MEDLINE | ID: mdl-32663063

ABSTRACT

Transcription elongation is a highly regulated process affected by many proteins, RNAs and the underlying DNA. Here we show that the nascent RNA can interfere with transcription in human cells, extending our previous findings from bacteria and yeast. We identified a variety of Pol II-binding aptamers (RAPs), prominent in repeat elements such as ACRO1 satellites, LINE1 retrotransposons and CA simple repeats, and also in several protein-coding genes. ACRO1 repeat, when translated in silico, exhibits ~50% identity with the Pol II CTD sequence. Taken together with a recent proposal that proteins in general tend to interact with RNAs similar to their cognate mRNAs, this suggests a mechanism for RAP binding. Using a reporter construct, we show that ACRO1 potently inhibits Pol II elongation in cis. We propose a novel mode of transcriptional regulation in humans, in which the nascent RNA binds Pol II to silence its own expression.


Subject(s)
Aptamers, Nucleotide/genetics , RNA Polymerase II/genetics , Transcription, Genetic/genetics , Aptamers, Nucleotide/metabolism , Binding Sites/genetics , Humans , RNA Polymerase II/metabolism
3.
Biochemistry ; 48(26): 6278-84, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19496624

ABSTRACT

The transactivating responsive (TAR) element is a RNA hairpin located in the 5' untranslated region of HIV-1 mRNA. It is essential for full-length transcription of the retroviral genome and therefore for HIV-1 replication. Hairpin aptamers that generate highly stable and specific complexes with TAR were previously identified, thus decreasing the level of TAR-dependent expression in cultured cells [Kolb, G., et al. (2006) RNA Biol. 3, 150-156]. We performed genomic SELEX against TAR using a human RNA library to identify human transcripts that might interact with the retroviral genome through loop-loop interactions and potentially contribute to the regulation of TAR-mediated processes. We identified a genomic aptamer termed a1 that folds as a hairpin with an apical loop complementary to five nucleotides of the TAR hexanucleotide loop. Surface plasmon resonance experiments performed on a truncated or mutated version of the a1 aptamer, in the presence of the Rop protein of Escherichia coli, indicate the formation of a highly stable a1-TAR kissing complex. The 5' ACCCAG loop of a1 constitutes a new motif of interaction with the TAR loop.


Subject(s)
Aptamers, Nucleotide/isolation & purification , Aptamers, Nucleotide/pharmacology , Genomic Library , HIV Long Terminal Repeat/genetics , HIV-1/genetics , Aptamers, Nucleotide/genetics , Base Sequence , Escherichia coli Proteins/chemistry , HIV Long Terminal Repeat/drug effects , Humans , Kinetics , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Messenger/chemistry , RNA, Messenger/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , RNA-Binding Proteins/chemistry , SELEX Aptamer Technique , Surface Plasmon Resonance
4.
RNA Biol ; 5(1): 30-40, 2008.
Article in English | MEDLINE | ID: mdl-18388495

ABSTRACT

Bacterial small RNAs (sRNAs) are non-coding RNAs that regulate gene expression enabling cells to adapt to various growth conditions. Assuming that most RNAs require proteins to exert their activities, we purified and identified sRNA-binding factors via affinity chromatography and mass spectrometry. We consistently obtained RNA polymerase betasubunit, host factor Hfq and ribosomal protein S1 as sRNA-binding proteins in addition to several other factors. Most importantly, we observed that RNA polymerase not only binds several sRNAs but also reacts with them, both cleaving and extending the RNAs at their 3' ends. The fact that the RNA polymerase reacts with sRNAs maps their interaction site to the active centre cleft of the enzyme and shows that it takes RNAs as template to perform RNA-dependent RNA polymerase activity. We further performed genomic SELEX to isolate RNA polymerase-binding RNAs and obtained a large number of E. coli sequences binding with high affinity to this enzyme. In vivo binding of some of the RNAs to the RNA polymerase was confirmed via co-immunoprecipitation in cell extracts prepared from different growth conditions. Our observations show that RNA polymerase is able to bind and react with many different RNAs and we suggest that RNAs are involved in transcriptional regulation more frequently than anticipated.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/metabolism , RNA, Bacterial/metabolism , RNA-Binding Proteins/metabolism , 3' Untranslated Regions , Escherichia coli Proteins/isolation & purification , Gene Expression Regulation, Bacterial , Protein Binding , RNA-Binding Proteins/isolation & purification
5.
PLoS One ; 13(3): e0194438, 2018.
Article in English | MEDLINE | ID: mdl-29570714

ABSTRACT

Transcription as the key step in gene expression is a highly regulated process. The speed of transcription elongation depends on the underlying gene sequence and varies on a gene by gene basis. The reason for this sequence dependence is not known in detail. Recently, our group studied the cross talk between the nascent RNA and the transcribing RNA polymerase by screening the Escherichia coli genome for RNA sequences with high affinity to RNA Pol by performing genomic SELEX. This approach led to the identification of RNA polymerase-binding APtamers termed "RAPs". RAPs can have positive and negative effects on gene expression. A subgroup is able to downregulate transcription via the activity of the termination factor Rho. In this study, we used a similar SELEX setup using yeast genomic DNA as source of RNA sequences and highly purified yeast RNA Pol II as bait and obtained almost 1300 yeast-derived RAPs. Yeast RAPs are found throughout the genome within genes and antisense to genes, they are overrepresented in the non-transcribed strand of yeast telomeres and underrepresented in intergenic regions. Genes harbouring a RAP are more likely to show lower mRNA levels. By determining the endogenous expression levels as well as using a reporter system, we show that RAPs located within coding regions can reduce the transcript level downstream of the RAP. Here we demonstrate that RAPs represent a novel type of regulatory RNA signal in Saccharomyces cerevisiae that act in cis and interfere with the elongating transcription machinery to reduce the transcriptional output.


Subject(s)
Fungal Proteins/metabolism , RNA Polymerase II/metabolism , RNA, Fungal/biosynthesis , Saccharomyces cerevisiae/metabolism , Signal Transduction/physiology , Transcription Elongation, Genetic/physiology , Fungal Proteins/genetics , RNA Polymerase II/genetics , RNA, Fungal/genetics , Saccharomyces cerevisiae/genetics
6.
Nat Protoc ; 1(5): 2204-12, 2006.
Article in English | MEDLINE | ID: mdl-17406458

ABSTRACT

Genomic systematic evolution of ligands by exponential enrichment (Genomic SELEX) is an experimental procedure for the expression condition-independent identification of protein-binding RNAs. RNA libraries derived from genomic DNA are generated via random priming, PCR amplification and in vitro transcription. Libraries consist of genomic sequences of selected size, and fragments are flanked by constant sequences required for amplification and transcription. This RNA pool is then subjected to several rounds of selection and amplification to enrich for RNAs meeting the selection criteria. Various selection criteria are possible. Here we describe selection by affinity to a protein of interest. High-affinity ligands can then be cloned and sequenced to allow their identification. With this method, protein-binding RNAs can be discovered, nucleic acid-protein interactions can be identified, and whole protein-nucleic acid networks can be defined. This method is also suitable for discovering novel genes, including non-protein-coding RNAs, and it complements in silico approaches. It is better suited to detect protein-binding RNAs that are differentially expressed (and therefore absent from many tissues) and low-abundance RNAs than experimental procedures that start from the isolation of expressed RNAs. The protocol takes approximately 3 months to complete.


Subject(s)
Bacterial Proteins/metabolism , Directed Molecular Evolution/methods , Escherichia coli/genetics , Genome, Bacterial , RNA, Bacterial/metabolism , Ligands , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL