ABSTRACT
The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.
Subject(s)
Ataxia/genetics , Epilepsy/genetics , Hearing Loss/genetics , Ketoglutarate Dehydrogenase Complex/genetics , Mutation , Neurodevelopmental Disorders/genetics , Vision Disorders/genetics , Alleles , Animals , Cells, Cultured , Child , Cohort Studies , DNA Mutational Analysis , Drosophila melanogaster/genetics , Family Health , Female , Fibroblasts , Humans , Male , RNA SplicingABSTRACT
OBJECTIVE: The aim was to investigate the monitoring, interventions, and occurrence of critical, potentially life-threatening incidents in patients with Dravet syndrome (DS) and caregivers' knowledge about sudden unexpected death in epilepsy (SUDEP). METHODS: This multicenter, cross-sectional study of patients with DS and their caregivers in Germany consisted of a questionnaire and prospective diary querying the disease characteristics and demographic data of patients and caregivers. RESULTS: Our analysis included 108 questionnaires and 82 diaries. Patients with DS were 49.1% male (n = 53), with a mean age of 13.5 (SD ± 10.0 years) and primary caregivers were 92.6% (n = 100) female, with a mean age of 44.7 (SD ± 10.6 years). Monitoring devices were used regularly by 75.9% (n = 82) of caregivers, and most monitored daily/nightly. Frequently used devices were pulse oximeters (64.6%), baby monitors (64.6%), thermometers (24.1%), and Epi-Care (26.8%). Younger caregiver and patient age and history of status epilepticus were associated with increased use of monitoring, and 81% of monitor users reported having avoided a critical incident with nocturnal monitoring. The need for resuscitation due to cardiac or respiratory arrest was reported by 22 caregivers (20.4%), and most cases (72.7%) were associated with a seizure. Caregivers reported frequently performing interventions at night, including oropharyngeal suction, oxygenation, personal hygiene, and change of body position. Most caregivers were well informed about SUDEP (n = 102; 94%) and monitored for a lateral or supine body position; however, only 39.8% reported receiving resuscitation training, whereas 52.8% (n = 57) knew what to do in case the child's breathing or heart activity failed. SIGNIFICANCE: Critical incidents and the need for resuscitation are reported frequently by caregivers and may be related to high mortality and SUDEP rates in DS. Resuscitation training is welcomed by caregivers and should be continuously provided. Oxygen monitoring devices are frequently used and considered useful by caregivers.
Subject(s)
Epilepsies, Myoclonic , Sudden Unexpected Death in Epilepsy , Child , Humans , Male , Female , Adolescent , Adult , Caregivers , Prospective Studies , Cross-Sectional Studies , Death, Sudden/epidemiology , Death, Sudden/etiology , Epilepsies, Myoclonic/therapy , Germany/epidemiologyABSTRACT
More than 100 genetic etiologies have been identified in developmental and epileptic encephalopathies (DEEs), but correlating genetic findings with clinical features at scale has remained a hurdle because of a lack of frameworks for analyzing heterogenous clinical data. Here, we analyzed 31,742 Human Phenotype Ontology (HPO) terms in 846 individuals with existing whole-exome trio data and assessed associated clinical features and phenotypic relatedness by using HPO-based semantic similarity analysis for individuals with de novo variants in the same gene. Gene-specific phenotypic signatures included associations of SCN1A with "complex febrile seizures" (HP: 0011172; p = 2.1 × 10-5) and "focal clonic seizures" (HP: 0002266; p = 8.9 × 10-6), STXBP1 with "absent speech" (HP: 0001344; p = 1.3 × 10-11), and SLC6A1 with "EEG with generalized slow activity" (HP: 0010845; p = 0.018). Of 41 genes with de novo variants in two or more individuals, 11 genes showed significant phenotypic similarity, including SCN1A (n = 16, p < 0.0001), STXBP1 (n = 14, p = 0.0021), and KCNB1 (n = 6, p = 0.011). Including genetic and phenotypic data of control subjects increased phenotypic similarity for all genetic etiologies, whereas the probability of observing de novo variants decreased, emphasizing the conceptual differences between semantic similarity analysis and approaches based on the expected number of de novo events. We demonstrate that HPO-based phenotype analysis captures unique profiles for distinct genetic etiologies, reflecting the breadth of the phenotypic spectrum in genetic epilepsies. Semantic similarity can be used to generate statistical evidence for disease causation analogous to the traditional approach of primarily defining disease entities through similar clinical features.
Subject(s)
GABA Plasma Membrane Transport Proteins/genetics , Munc18 Proteins/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Seizures/genetics , Spasms, Infantile/genetics , Speech Disorders/genetics , Child, Preschool , Cohort Studies , Female , Gene Expression , Gene Ontology , Humans , Male , Mutation , Phenotype , Seizures/classification , Seizures/diagnosis , Seizures/physiopathology , Semantics , Shab Potassium Channels/genetics , Spasms, Infantile/classification , Spasms, Infantile/diagnosis , Spasms, Infantile/physiopathology , Speech Disorders/classification , Speech Disorders/diagnosis , Speech Disorders/physiopathology , Terminology as Topic , Exome SequencingABSTRACT
Electroencephalography (EEG) is a core element in the diagnosis of epilepsy syndromes and can help to monitor antiseizure treatment. Mobile EEG (mEEG) devices are increasingly available on the consumer market and may offer easier access to EEG recordings especially in rural or resource-poor areas. The usefulness of consumer-grade devices for clinical purposes is still underinvestigated. Here, we compared EEG traces of a commercially available mEEG device (Emotiv EPOC) to a simultaneously recorded clinical video EEG (vEEG). Twenty-two adult patients (11 female, mean age 40.2â¯years) undergoing noninvasive vEEG monitoring for clinical purposes were prospectively enrolled. The EEG recordings were evaluated by 10 independent raters with unmodifiable view settings. The individual evaluations were compared with respect to the presence of abnormal EEG findings (regional slowing, epileptiform potentials, seizure pattern). Video EEG yielded a sensitivity of 56% and specificity of 88% for abnormal EEG findings, whereas mEEG reached 39% and 85%, respectively. Interrater reliability coefficients were better in vEEG as compared to mEEG (Ï°â¯=â¯0.50 vs. 0.30), corresponding to a moderate and fair agreement. Intrarater reliability between mEEG and vEEG evaluations of simultaneous recordings of a given participant was moderate (Ï°â¯=â¯0.48). Given the limitations of our exploratory pilot study, our results suggest that vEEG is superior to mEEG, but that mEEG can be helpful for diagnostic purposes. We present the first quantitative comparison of simultaneously acquired clinical and mobile consumer-grade EEG for a clinical use-case.
Subject(s)
Electroencephalography , Epileptic Syndromes/diagnosis , Monitoring, Ambulatory , Seizures/diagnosis , Wearable Electronic Devices , Adult , Electroencephalography/instrumentation , Electroencephalography/standards , Female , Humans , Male , Middle Aged , Monitoring, Ambulatory/instrumentation , Monitoring, Ambulatory/standards , Pilot Projects , Reproducibility of Results , Sensitivity and Specificity , Wearable Electronic Devices/standardsABSTRACT
OBJECTIVE: To compare direct and indirect costs and quality of life (QoL) of pediatric and adult patients with Dravet syndrome (DS), with drug-resistant epilepsy (DRE) and in seizure remission (SR), and their caregivers, in Germany. METHODS: Questionnaire responses from 93 DS patients and their caregivers were matched by age and gender with responses from 93 DRE and 93 SR patients collected in independent studies, and were compared across main components of QoL, direct costs (patient visits, medication use, care level, medical equipment, and ancillary treatments), and indirect costs (quitting job, reduced working hours, missed days). RESULTS: Mean total direct costs were highest for DS patients (4864 [median 3564] vs 3049 [median 1506] for DRE [excluding outliers], P = 0.01; and 1007 [median 311], P < 0.001 for SR). Total lost productivity over 3 months was highest among caregivers of pediatric DS (4757, median 2841), compared with those of DRE (1541, P < 0.001; median 0) and SR patients (891, P < 0.001; median 0). The proportions of caregivers in employment were similar across groups (62% DS, 63% DRE, and 63% SR) but DS caregivers were more likely to experience changes to their working situation, such as quitting their job (40% DS vs 16% DRE and 9% SR, P < 0.001 in both comparisons). KINDL scores were significantly lower for DS patients (62 vs 74 and 72, P < 0.001 in both comparisons), and lower than for the average German population (77). Pediatric caregiver EQ-5D scores across all cohorts were comparable with population norms, but more DS caregivers experienced moderate to severe depressive symptoms (24% vs 11% and 5%). Mean Beck Depression Inventory (BDI-II) score was significantly higher in DS caregivers than either of the other groups (P < 0.001). SIGNIFICANCE: This first comparative study of Dravet syndrome to difficult-to-treat epilepsy and to epilepsy patients in seizure remission emphasizes the excess burden of DS in components of QoL and direct costs. The caregivers of DS patients have a greater impairment of their working lives (indirect costs) and increased depression symptoms.
Subject(s)
Drug Resistant Epilepsy/epidemiology , Epilepsies, Myoclonic/epidemiology , Health Care Costs/statistics & numerical data , Adolescent , Age Factors , Case-Control Studies , Child , Child, Preschool , Cost of Illness , Drug Resistant Epilepsy/economics , Epilepsies, Myoclonic/economics , Female , Germany/epidemiology , Humans , Male , Parents/psychology , Quality of Life , Remission Induction , Seizures/economics , Seizures/epidemiology , Sex Factors , Surveys and Questionnaires , Young AdultABSTRACT
OBJECTIVE: Pathogenic variants in SCN8A have been associated with a wide spectrum of epilepsy phenotypes, ranging from benign familial infantile seizures (BFIS) to epileptic encephalopathies with variable severity. Furthermore, a few patients with intellectual disability (ID) or movement disorders without epilepsy have been reported. The vast majority of the published SCN8A patients suffer from severe developmental and epileptic encephalopathy (DEE). In this study, we aimed to provide further insight on the spectrum of milder SCN8A-related epilepsies. METHODS: A cohort of 1095 patients were screened using a next generation sequencing panel. Further patients were ascertained from a network of epilepsy genetics clinics. Patients with severe DEE and BFIS were excluded from the study. RESULTS: We found 36 probands who presented with an SCN8A-related epilepsy and normal intellect (33%) or mild (61%) to moderate ID (6%). All patients presented with epilepsy between age 1.5 months and 7 years (mean = 13.6 months), and 58% of these became seizure-free, two-thirds on monotherapy. Neurological disturbances included ataxia (28%) and hypotonia (19%) as the most prominent features. Interictal electroencephalogram was normal in 41%. Several recurrent variants were observed, including Ile763Val, Val891Met, Gly1475Arg, Gly1483Lys, Phe1588Leu, Arg1617Gln, Ala1650Val/Thr, Arg1872Gln, and Asn1877Ser. SIGNIFICANCE: With this study, we explore the electroclinical features of an intermediate SCN8A-related epilepsy with mild cognitive impairment, which is for the majority a treatable epilepsy.
Subject(s)
Epilepsy/genetics , Mutation, Missense , NAV1.6 Voltage-Gated Sodium Channel/genetics , Anticonvulsants/therapeutic use , Ataxia/genetics , Child , Child, Preschool , Cognitive Dysfunction/genetics , Electroencephalography , Epilepsy/drug therapy , Epilepsy/physiopathology , Genetic Testing , High-Throughput Nucleotide Sequencing , Humans , Infant , Intellectual Disability/genetics , Language Development Disorders/genetics , Movement Disorders/genetics , Muscle Hypotonia/genetics , Pedigree , Severity of Illness IndexABSTRACT
OBJECTIVE: The aim of this study was to describe the treatment pattern of patients with Dravet syndrome (DS) in Germany with routine antiepileptic drugs (AEDs) and emergency medication, and to review the literature of real-world evidence on medicine utilization of patients with DS in Europe. METHODS: Patient use of routine AEDs and emergency medications over 3-6â¯months was analyzed from a 2018 multicenter survey of 93 caregivers of patients with DS throughout Germany. Results were contextualized in a review of real-world evidence on medicine utilization of patients with DS in Europe. RESULTS: The variety of medications and the most frequent combinations routinely used by patients with DS (AEDs and others) are described. Patients use a large number of pharmaceutical treatments to manage seizures. The five most commonly used AEDs were sodium valproate (66% of the patients; mean daily dose: 660â¯mg; 24.5â¯mg per kg bodyweight), bromide (44%; 1462â¯mg; 51.2â¯mg per kg), clobazam (41%; 10.4â¯mg; 0.32â¯mg per kg), stiripentol (35%; 797â¯mg; 27.6â¯mg per kg), and topiramate (24%; 107â¯mg; 3.5â¯mg per kg). Ninety percent had reported using emergency medications in the last 3â¯months;, with the most common medications being Buccolam (40%, an oromucosal form of midazolam) and diazepam (20%, mostly rectal application). No discernable relationships between current medication and age or seizure frequency were observed. SIGNIFICANCE: This is the first comprehensive report of routine AEDs and emergency medication use in a large sample of patients with DS in Germany over a period of 3-6â¯months and shows that despite the most common AED combinations being in line with clinical guidelines/best practice, there is no discernable impact of best treatment on seizure frequency. We find a higher use of bromide in Germany compared with other real-world evidence in Europe.
Subject(s)
Anticonvulsants/administration & dosage , Drug Prescriptions , Epilepsies, Myoclonic/drug therapy , Epilepsies, Myoclonic/epidemiology , Seizures/drug therapy , Seizures/epidemiology , Clobazam/administration & dosage , Cohort Studies , Drug Therapy, Combination , Female , Germany/epidemiology , Humans , Male , Topiramate/administration & dosage , Valproic Acid/administration & dosageABSTRACT
Dravet syndrome is a severe epilepsy syndrome characterized by infantile onset of therapy-resistant, fever-sensitive seizures followed by cognitive decline. Mutations in SCN1A explain about 75% of cases with Dravet syndrome; 90% of these mutations arise de novo. We studied a cohort of nine Dravet-syndrome-affected individuals without an SCN1A mutation (these included some atypical cases with onset at up to 2 years of age) by using whole-exome sequencing in proband-parent trios. In two individuals, we identified a de novo loss-of-function mutation in CHD2 (encoding chromodomain helicase DNA binding protein 2). A third CHD2 mutation was identified in an epileptic proband of a second (stage 2) cohort. All three individuals with a CHD2 mutation had intellectual disability and fever-sensitive generalized seizures, as well as prominent myoclonic seizures starting in the second year of life or later. To explore the functional relevance of CHD2 haploinsufficiency in an in vivo model system, we knocked down chd2 in zebrafish by using targeted morpholino antisense oligomers. chd2-knockdown larvae exhibited altered locomotor activity, and the epileptic nature of this seizure-like behavior was confirmed by field-potential recordings that revealed epileptiform discharges similar to seizures in affected persons. Both altered locomotor activity and epileptiform discharges were absent in appropriate control larvae. Our study provides evidence that de novo loss-of-function mutations in CHD2 are a cause of epileptic encephalopathy with generalized seizures.
Subject(s)
DNA-Binding Proteins/genetics , Epilepsies, Myoclonic/genetics , Animals , Child , Cognition Disorders/genetics , Cognition Disorders/pathology , Cohort Studies , Epilepsies, Myoclonic/pathology , Exome , Female , Gene Knockdown Techniques , Haploinsufficiency , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Larva/genetics , Male , NAV1.1 Voltage-Gated Sodium Channel/genetics , Phenotype , Seizures, Febrile/genetics , Seizures, Febrile/pathology , Young Adult , ZebrafishABSTRACT
OBJECTIVE: The aim of our study was to investigate the neuronal networks underlying background oscillations of epileptic encephalopathy with continuous spikes and waves during slow sleep (CSWS). METHODS: Sleep electroencephalography (EEG) studies before and after the treatment were investigated in 15 patients with CSWS. To investigate functional and effective connectivity within the network generating the delta activity in the background sleep EEG, the methods of dynamic imaging of coherent sources (DICS) and renormalized partial directed coherence (RPDC) were applied. RESULTS: Independent of etiology and severity of epilepsy, background EEG pattern in patients with CSWS before treatment is associated with the complex network of coherent sources in medial prefrontal cortex, somatosensory association cortex/posterior cingulate cortex, medial prefrontal cortex, middle temporal gyrus/parahippocampal gyrus/insular cortex, thalamus, and cerebellum. The analysis of information flow within this network revealed that the medial parietal cortex, the precuneus, and the thalamus act as central hubs, driving the information flow to other areas, especially to the temporal and frontal cortex. The described CSWS-specific pattern was no longer observed in patients with normalized sleep EEG. In addition, frequency of spiking showed a strong linear correlations with absolute source power, source coherence strength, and source RPDC strength at both time points: (1) Spike and wave index (SWI) versus absolute source power at EEG1 (r = 0.56; p = 0.008) and at EEG2 (r = 0.45; p = 0.009); (2) SWI versus source coherence strength at EEG1 (r = 0.71; p = 0.005) and at EEG2 (r = 0.52; p = 0.006); and (3) SWI versus source RPDC strength at EEG1 (r = 0.65; p = 0.003) and at EEG2 (r = 0.47; p = 0.009). SIGNIFICANCE: The leading role of the precuneus and thalamus in the hierarchical organization of the network underlying the background EEG points toward the significance of fluctuations of vigilance in the generation of CSWS. This hierarchical network organization appears to be specific for CSWS as it is resolved after successful treatment.
Subject(s)
Brain Mapping , Brain Waves/physiology , Epilepsy, Rolandic/pathology , Epilepsy, Rolandic/physiopathology , Sleep Stages/physiology , Child , Child, Preschool , Electroencephalography , Female , Humans , Male , Nerve Net/physiopathology , Spectrum Analysis , Statistics as Topic , Statistics, NonparametricABSTRACT
Fever-associated syndromic epilepsies ranging from febrile seizures plus (FS+) to Dravet syndrome have a significant genetic component. However, apart from SCN1A mutations in >80% of patients with Dravet syndrome, the genetic underpinnings of these epilepsies remain largely unknown. Therefore, we performed a genome-wide screening for copy number variations (CNVs) in 36 patients with SCN1A-negative fever-associated syndromic epilepsies. Phenotypes included Dravet syndrome (n = 23; 64%), genetic epilepsy with febrile seizures plus (GEFS+) and febrile seizures plus (FS+) (n = 11; 31%) and unclassified fever-associated epilepsies (n = 2; 6%). Array comparative genomic hybridization (CGH) was performed using Agilent 4 × 180K arrays. We identified 13 rare CNVs in 8 (22%) of 36 individuals. These included known pathogenic CNVs in 4 (11%) of 36 patients: a 1q21.1 duplication in a proband with Dravet syndrome, a 14q23.3 deletion in a proband with FS+, and two deletions at 16p11.2 and 1q44 in two individuals with fever-associated epilepsy with concomitant autism and/or intellectual disability. In addition, a 3q13.11 duplication in a patient with FS+ and two de novo duplications at 7p14.2 and 18q12.2 in a patient with atypical Dravet syndrome were classified as likely pathogenic. Six CNVs were of unknown significance. The identified genomic aberrations overlap with known neurodevelopmental disorders, suggesting that fever-associated epilepsy syndromes may be a recurrent clinical presentation of known microdeletion syndromes.
Subject(s)
DNA Copy Number Variations/genetics , Epilepsy/etiology , Epilepsy/genetics , Fever/complications , NAV1.1 Voltage-Gated Sodium Channel/genetics , Adolescent , Adult , Child , Child, Preschool , Chromosome Aberrations , Chromosome Deletion , Comparative Genomic Hybridization , Female , Genetic Association Studies , Humans , Male , Middle Aged , Phenotype , Young AdultABSTRACT
The first mutations identified in SLC2A1, encoding the glucose transporter type 1 (GLUT1) protein of the blood-brain barrier, were associated with severe epileptic encephalopathy. Recently, dominant SLC2A1 mutations were found in rare autosomal dominant families with various forms of epilepsy including early onset absence epilepsy (EOAE), myoclonic astatic epilepsy (MAE), and genetic generalized epilepsy (GGE). Our study aimed to investigate the possible role of SLC2A1 in various forms of epilepsy including MAE and absence epilepsy with early onset. We also aimed to estimate the frequency of GLUT1 deficiency syndrome in the Danish population. One hundred twenty patients with MAE, 50 patients with absence epilepsy, and 37 patients with unselected epilepsies, intellectual disability (ID), and/or various movement disorders were screened for mutations in SLC2A1. Mutations in SLC2A1 were detected in 5 (10%) of 50 patients with absence epilepsy, and in one (2.7%) of 37 patient with unselected epilepsies, ID, and/or various movement disorders. None of the 120 MAE patients harbored SLC2A1 mutations. We estimated the frequency of SLC2A1 mutations in the Danish population to be approximately 1:83,000. Our study confirmed the role of SLC2A1 mutations in absence epilepsy with early onset. However, our study failed to support the notion that SLC2A1 aberrations are a cause of MAE without associated features such as movement disorders.
Subject(s)
Carbohydrate Metabolism, Inborn Errors/epidemiology , Epilepsies, Myoclonic/genetics , Epilepsy, Absence/genetics , Glucose Transporter Type 1/genetics , Monosaccharide Transport Proteins/deficiency , Carbohydrate Metabolism, Inborn Errors/genetics , Child, Preschool , Denmark/epidemiology , Epilepsy, Generalized/genetics , Glucose Transporter Type 1/deficiency , Glucose Transporter Type 1/physiology , Humans , Infant , Monosaccharide Transport Proteins/genetics , Mutation , SyndromeABSTRACT
Genetic generalized epilepsies (GGEs) have a lifetime prevalence of 0.3% and account for 20-30% of all epilepsies. Despite their high heritability of 80%, the genetic factors predisposing to GGEs remain elusive. To identify susceptibility variants shared across common GGE syndromes, we carried out a two-stage genome-wide association study (GWAS) including 3020 patients with GGEs and 3954 controls of European ancestry. To dissect out syndrome-related variants, we also explored two distinct GGE subgroups comprising 1434 patients with genetic absence epilepsies (GAEs) and 1134 patients with juvenile myoclonic epilepsy (JME). Joint Stage-1 and 2 analyses revealed genome-wide significant associations for GGEs at 2p16.1 (rs13026414, P(meta) = 2.5 × 10(-9), OR[T] = 0.81) and 17q21.32 (rs72823592, P(meta) = 9.3 × 10(-9), OR[A] = 0.77). The search for syndrome-related susceptibility alleles identified significant associations for GAEs at 2q22.3 (rs10496964, P(meta) = 9.1 × 10(-9), OR[T] = 0.68) and at 1q43 for JME (rs12059546, P(meta) = 4.1 × 10(-8), OR[G] = 1.42). Suggestive evidence for an association with GGEs was found in the region 2q24.3 (rs11890028, P(meta) = 4.0 × 10(-6)) nearby the SCN1A gene, which is currently the gene with the largest number of known epilepsy-related mutations. The associated regions harbor high-ranking candidate genes: CHRM3 at 1q43, VRK2 at 2p16.1, ZEB2 at 2q22.3, SCN1A at 2q24.3 and PNPO at 17q21.32. Further replication efforts are necessary to elucidate whether these positional candidate genes contribute to the heritability of the common GGE syndromes.
Subject(s)
Epilepsy, Generalized/genetics , Genome-Wide Association Study , Alleles , Epilepsy, Absence/genetics , Genetic Predisposition to Disease/genetics , Homeodomain Proteins/genetics , Humans , Myoclonic Epilepsy, Juvenile/genetics , NAV1.1 Voltage-Gated Sodium Channel/genetics , Protein Serine-Threonine Kinases/genetics , Receptor, Muscarinic M3/genetics , Repressor Proteins/genetics , Zinc Finger E-box Binding Homeobox 2ABSTRACT
PURPOSE: Dravet syndrome (DS) or severe myoclonic epilepsy of infancy is an intractable epileptic encephalopathy of early childhood that is caused by a mutation in the SCN1A gene in most patients. The aim of this study was to identify a syndrome-specific epileptic network underlying interictal epileptiform discharges (IEDs) in patients with DS. METHODS: Ten patients with the diagnosis of DS associated with mutations in the SCN1A gene were investigated using simultaneous recording of electroencephalography and functional magnetic resonance imaging ((EEG-fMRI). Time series of IEDs were used as regressors for the statistical fMRI analysis. KEY FINDINGS: In nine patients with DS, individual blood oxygenation level-dependent (BOLD) signal changes were seen. In three patients the thalamus was involved. Furthermore, regions of the default mode network were activated in seven patients. However, a common activation pattern associated with IEDs could not be detected. SIGNIFICANCE: The study demonstrates that, despite a common genetic etiology in DS, different neuronal networks underlie the individual IEDs.
Subject(s)
Brain/blood supply , Brain/physiopathology , Electroencephalography , Epilepsies, Myoclonic/genetics , Epilepsies, Myoclonic/pathology , Magnetic Resonance Imaging , NAV1.1 Voltage-Gated Sodium Channel/genetics , Adolescent , Adult , Brain Mapping , Child , Child, Preschool , Epilepsies, Myoclonic/physiopathology , Female , Humans , Image Processing, Computer-Assisted , Male , Oxygen/blood , Young AdultABSTRACT
Mutations in STXBP1 have been identified in a subset of patients with early onset epileptic encephalopathy (EE), but the full phenotypic spectrum remains to be delineated. Therefore, we screened a cohort of 160 patients with an unexplained EE, including patients with early myoclonic encephalopathy (EME), Ohtahara syndrome, West syndrome, nonsyndromic EE with onset in the first year, and Lennox-Gastaut syndrome (LGS). We found six de novo mutations in six patients presenting as Ohtahara syndrome (2/6, 33%), West syndrome (1/65, 2%), and nonsyndromic early onset EE (3/64, 5%). No mutations were found in LGS or EME. Only two of four mutation carriers with neonatal seizures had Ohtahara syndrome. Epileptic spasms were present in five of six patients. One patient with normal magnetic resonance imaging (MRI) but focal seizures underwent epilepsy surgery and seizure frequency dropped drastically. Neuropathology showed a focal cortical dysplasia type 1a. There is a need for additional neuropathologic studies to explore whether STXBP1 mutations can lead to structural brain abnormalities.
Subject(s)
Genetic Predisposition to Disease/genetics , Munc18 Proteins/genetics , Mutation/genetics , Seizures/genetics , Seizures/surgery , Spasms, Infantile/genetics , Brain/metabolism , Brain/pathology , Child , Child, Preschool , Electroencephalography , Female , Humans , Infant , Male , Phosphopyruvate Hydratase/metabolism , Seizures/etiology , Seizures/pathology , Spasms, Infantile/complications , Young AdultABSTRACT
Epilepsy is one of the most common neurological disorders in humans with a prevalence of 1% and a lifetime incidence of 3%. Several genes have been identified in rare autosomal dominant and severe sporadic forms of epilepsy, but the genetic cause is unknown in the vast majority of cases. Copy number variants (CNVs) are known to play an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID), autism, and schizophrenia. Genome-wide studies of copy number variation in epilepsy have not been performed. We have applied whole-genome oligonucleotide array comparative genomic hybridization to a cohort of 517 individuals with various idiopathic, non-lesional epilepsies. We detected one or more rare genic CNVs in 8.9% of affected individuals that are not present in 2,493 controls; five individuals had two rare CNVs. We identified CNVs in genes previously implicated in other neurodevelopmental disorders, including two deletions in AUTS2 and one deletion in CNTNAP2. Therefore, our findings indicate that rare CNVs are likely to contribute to a broad range of generalized and focal epilepsies. In addition, we find that 2.9% of patients carry deletions at 15q11.2, 15q13.3, or 16p13.11, genomic hotspots previously associated with ID, autism, or schizophrenia. In summary, our findings suggest common etiological factors for seemingly diverse diseases such as ID, autism, schizophrenia, and epilepsy.
Subject(s)
Epilepsy/genetics , Gene Dosage , Genetic Variation , Genome , Genetic Predisposition to Disease , HumansABSTRACT
BACKGROUND: This study measured sleep quality among caregivers of patients with Dravet syndrome (DS) and assessed the impacts of mental health problems and caregiver burden on sleep quality. METHODS: This multicenter, cross-sectional study of patients with DS and their caregivers throughout Germany consisted of a questionnaire and a prospective 4-week diary querying disease characteristics, demographic data, living conditions, nocturnal supervision, and caregivers' work situations. Sleep quality was assessed using the Pittsburgh Sleeping Quality Index (PSQI). The Hospital Anxiety and Depression Scale (HADS) and the Burden Scale for Family Caregivers (BSFC) were used to measure anxiety, symptoms of depression, and caregiver burden. RESULTS: Our analysis included 108 questionnaires and 82 four-week diaries. Patients with DS were 49.1% male (n = 53), with a mean age of 13.5 ± 10.0 years. Caregivers were 92.6% (n = 100) female, with a mean age of 44.7 ± 10.6 years. The overall mean PSQI score was 8.7 ± 3.5, with 76.9% of participants (n = 83) scoring 6 or higher, indicating abnormal sleep quality. The HADS for anxiety and depression had overall mean scores of 9.3 ± 4.3 and 7.9 ± 3.7, respectively; 61.8% and 50.9% of participants scored above the cutoff value of 8 for anxiety and depression, respectively. Statistical analyses revealed caregiver anxiety levels and patients' sleep disturbances as major factors influencing PSQI scores. The overall mean BSFC score of 41.7 ± 11.7 indicates a moderate burden, with 45.3% of caregivers scoring 42 or higher. CONCLUSIONS: Sleep quality is severely affected among caregivers of patients with DS, correlating with anxiety, comorbidities, and patients' sleep disturbances. A holistic therapeutic approach should be implemented for patients with DS and their caregivers, focusing on the sleep quality and mental health of caregivers. TRIAL REGISTRATION: German Clinical Trials Register (DRKS), DRKS00016967. Registered 27 May 2019, http://www.drks.de/DRKS00016967.
Subject(s)
Epilepsies, Myoclonic , Sleep Wake Disorders , Humans , Male , Female , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Quality of Life/psychology , Caregiver Burden , Sleep Quality , Depression/psychology , Cross-Sectional Studies , Prospective Studies , Anxiety , Caregivers/psychology , Surveys and Questionnaires , Germany , Patient CareABSTRACT
Pathogenic missense variants in GRIN2A and GRIN2B may result in gain or loss of function (GoF/LoF) of the N-methyl-D-aspartate receptor (NMDAR). This observation gave rise to the hypothesis of successfully treating GRIN-related disorders due to LoF variants with co-agonists of the NMDAR. In this respect, we describe a retrospectively collected series of ten individuals with GRIN2A- or GRIN2B-related disorders who were treated with L-serine, each within an independent n-of-1 trial. Our cohort comprises one individual with a LoF missense variant with clinical improvements confirming the above hypothesis and replicating a previous n-of-1 trial. A second individual with a GoF missense variant was erroneously treated with L-serine and experienced immediate temporary behavioral deterioration further supporting the supposed functional pathomechanism. Eight additional individuals with null variants (that had been interpreted as loss-of-function variants despite not being missense) again showed clinical improvements. Among all nine individuals with LoF missense or null variants, L-serine treatment was associated with improvements in behavior in eight (89%), in development in four (44%), and/or in EEG or seizure frequency in four (44%). None of these nine individuals experienced side effects or adverse findings in the context of L-serine treatment. In summary, we describe the first evidence that L-serine treatment may not only be associated with clinical improvements in GRIN-related disorders due to LoF missense but particularly also null variants.
Subject(s)
Seizures , Serine , Electroencephalography , Humans , Receptors, N-Methyl-D-Aspartate/genetics , Retrospective Studies , Seizures/drug therapy , Seizures/genetics , Serine/geneticsABSTRACT
BACKGROUND: In Dravet syndrome (DS), a rare epileptic and developmental encephalopathy, the effectiveness of a new treatment is predominantly measured in terms of seizure frequency. However, this may not fully capture the impact of a treatment on the broader aspects of the syndrome and patients' health-related quality of life (HRQoL). Using a previously published survey which collected data from DS patients and their carers on the broader manifestations of their syndrome, their HRQoL, and their experience of seizures, this study created composite measures of symptom severity to offer new perspectives on the multifaceted aspects of this rare condition. METHODS: Survey responses on the severity of physical and psychosocial symptoms were combined with independent assessments of disability and care need, to generate three composite symptom scores assessing the manifestations of DS (physical, psychosocial and care requirements). Variation in HRQoL was investigated in multiple regression analyses to assess the strength of association between each of these composite measures and three forms of seizure measures (seizure frequency, days with no seizures and longest interval without seizures), as experienced over a 4- and 12-week period. RESULTS: Composite scores were calculated for a cohort of 75 primarily paediatric patients who were enrolled in the study. Strong associations were found between each of the three composite symptom scores and each of the three seizure measures, with the regression coefficient on symptom score highly significant (p ≤ 0.001) in all nine comparisons. Separate regressions using predictors of HRQoL (Kiddy KINDL and Kid KINDL) as the dependent variable were inconclusive, identifying only behavioural/attention problems and status epilepticus as significant predictors of HRQoL. CONCLUSIONS: These results allow the development of a composite score that may be useful in developing a clinical understanding of the severity of DS for an individual patient and establishing their treatment goals. Where measurement of long-term sequalae of disease is not feasible, such as clinical trials, correlation of the composite score with experience of seizures and seizure-free periods may allow a better contextualisation of the results of short-term assessments. TRIAL REGISTRATION: German Clinical Trials Register (DRKS), DRKS00011894. Registered 16 March 2017, http://www.drks.de/ DRKS00011894.
ABSTRACT
Photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an increased sensitivity to photic stimulation. It may serve as an endophenotype for idiopathic generalized epilepsy. Family linkage studies identified susceptibility loci for PPR on chromosomes 5q35.3, 8q21.13, and 16p13.3. This study aimed to identify key candidate genes within these loci. We used bioinformatics tools for gene prioritization integrating information on biologic function, sequence data, gene expression, and others. The prime candidate gene from this analysis was sequenced in 48 photopositive probands. Presumed functional implications of identified polymorphisms were investigated using bioinformatics methods. The glutamate receptor subunit gene GRIN2A was identified as a prime candidate gene. Sequence analysis revealed various new polymorphisms. None of the identified variants was predicted to be functionally relevant. We objectified the selection of candidate genes for PPR without an a priori hypothesis. Particularly among the various ion channel genes in the linkage regions, GRIN2A was identified as the prime candidate gene. GRIN2A mutations have recently been identified in various epilepsies. Even though our mutation analysis failed to demonstrate direct involvement of GRIN2A in photosensitivity, in silico gene prioritization may provide a useful tool for the identification of candidate genes within large genomic regions.