ABSTRACT
In the current paper, a new strategy for risk assessment of nanomaterials is described, which builds upon previous project outcomes and is developed within the FP7 NANoREG project. NANoREG has the aim to develop, for the long term, new testing strategies adapted to a high number of nanomaterials where many factors can affect their environmental and health impact. In the proposed risk assessment strategy, approaches for (Quantitative) Structure Activity Relationships ((Q)SARs), grouping and read-across are integrated and expanded to guide the user how to prioritise those nanomaterial applications that may lead to high risks for human health. Furthermore, those aspects of exposure, kinetics and hazard assessment that are most likely to be influenced by the nanospecific properties of the material under assessment are identified. These aspects are summarised in six elements, which play a key role in the strategy: exposure potential, dissolution, nanomaterial transformation, accumulation, genotoxicity and immunotoxicity. With the current approach it is possible to identify those situations where the use of nanospecific grouping, read-across and (Q)SAR tools is likely to become feasible in the future, and to point towards the generation of the type of data that is needed for scientific justification, which may lead to regulatory acceptance of nanospecific applications of these tools.
Subject(s)
Nanoparticles/toxicity , Nanotechnology/methods , Toxicity Tests/methods , Animals , Biotransformation , Body Burden , Consumer Product Safety , Humans , Immune System/drug effects , Molecular Structure , Mutagenicity Tests , Nanoparticles/chemistry , Nanoparticles/metabolism , Patient Safety , Quantitative Structure-Activity Relationship , Risk Assessment , SolubilityABSTRACT
A wide range of Pharmaceuticals and Personal Care Products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The emergence of new compounds or changes in regulations have led to dynamical studies of occurrence, impact and treatment, which consider geographical areas and trends in consumption and innovation in the pharmaceutical industry. A Quantitative study of Structure-Activity Relationship ((Q)SAR) was performed to assess the possible adverse effects of ninety six PPCPs and metabolites with negligible experimental data and establish a ranking of concern, which was supported by the EPA EPI Suite™ interface. The environmental and toxicological indexes, the persistence (P), the bioaccumulation (B), the toxicity (T) (extensive) and the occurrence in Spanish aquatic environments (O) (intensive) were evaluated. The most hazardous characteristics in the largest number of compounds were generated by the P index, followed by the T and B indexes. A high number of metabolites has a concern score equal to or greater than their parent compounds. Three PBT and OPBT rankings of concern were proposed using the total and partial ranking method (supported by a Hasse diagram) by the Decision Analysis by Ranking Techniques (DART) tool, which was recently recommended by the European Commission. An analysis of the sensibility of the relative weights of these indexes has been conducted. Hormones, antidepressants (and their metabolites), blood lipid regulators and all of the personal care products considered in this study were at the highest levels of risk according to the PBT and OPBT total rankings. Furthermore, when the OPBT partial ranking was performed, X-ray contrast media, H2 blockers and some antibiotics were included at the highest level of concern. It is important to improve and incorporate useful indexes for the predicted environmental impact of PPCPs and metabolites and thus focus experimental analysis on the compounds that require urgent attention.
Subject(s)
Drug-Related Side Effects and Adverse Reactions , Environmental Monitoring/methods , Household Products/toxicity , Quantitative Structure-Activity Relationship , Water Pollutants, Chemical/toxicity , Household Products/analysis , Models, Theoretical , Pharmaceutical Preparations/analysis , Pharmaceutical Preparations/metabolism , Spain , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolismABSTRACT
Gathering required information in a fast and inexpensive way is essential for assessing the risks of engineered nanomaterials (ENMs). The extension of conventional (quantitative) structure-activity relationships ((Q)SARs) approach to nanotoxicology, i.e., nano-(Q)SARs, is a possible solution. The preliminary attempts of correlating ENMs' characteristics to the biological effects elicited by ENMs highlighted the potential applicability of (Q)SARs in the nanotoxicity field. This review discusses the current knowledge on the development of nano-(Q)SARs for metallic ENMs, on the aspects of data sources, reported nano-(Q)SARs, and mechanistic interpretation. An outlook is given on the further development of this frontier. As concluded, the used experimental data mainly concern the uptake of ENMs by different cell lines and the toxicity of ENMs to cells lines and Escherichia coli. The widely applied techniques of deriving models are linear and non-linear regressions, support vector machine, artificial neural network, k-nearest neighbors, etc. Concluded from the descriptors, surface properties of ENMs are seen as vital for the cellular uptake of ENMs; the capability of releasing ions and surface redox properties of ENMs are of importance for evaluating nanotoxicity. This review aims to present key advances in relevant nano-modeling studies and stimulate future research efforts in this quickly developing field of research.