Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Pharmaceuticals (Basel) ; 17(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38275997

ABSTRACT

[64Cu]Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent being investigated in clinical trials for malignant brain tumors. For the quality management of [64Cu]Cu-ATSM, understanding trace metal impurities' effects on the chelate formation of 64Cu and ATSM is important. In this study, we conducted coordination chemistry studies on metal-ATSM complexes. First, the effects of nonradioactive metal ions (Cu2+, Ni2+, Zn2+, and Fe2+) on the formation of [64Cu]Cu-ATSM were evaluated. When the amount of Cu2+ or Ni2+ added was 1.2 mol or 288 mol, equivalent to ATSM, the labeling yield of [64Cu]Cu-ATSM fell below 90%. Little effect was observed even when excess amounts of Zn2+ or Fe2+ were added to the ATSM. Second, these metals were reacted with ATSM, and chelate formation was measured using ultraviolet-visible (UV-Vis) absorption spectra. UV-Vis spectra showed a rapid formation of Cu2+ and the ATSM complex upon mixing. The rate of chelate formation by Ni2+ and ATSM was lower than that by Cu-ATSM. Zn2+ and Fe2+ showed much slower reactions with the ATSM than Ni2+. Trace amounts of Ni2+, Zn2+, and Fe2+ showed little effect on [64Cu]Cu-ATSM' quality, while the concentration of impurity Cu2+ must be controlled. These results can provide process management tools for radiopharmaceuticals.

2.
Nucl Med Biol ; 108-109: 10-15, 2022.
Article in English | MEDLINE | ID: mdl-35168008

ABSTRACT

BACKGROUND: [64Cu]Cu-diacethyl-bis(N4-methylthiosemicarbazone) ([64Cu]Cu-ATSM) is a radioactive hypoxia-targeting therapeutic agent, and the efficacy and safety of [64Cu]Cu-ATSM in the treatment of malignant brain tumors are evaluated in clinical trials. For the clinical application of [64Cu]Cu-ATSM, we determined a drug formulation incorporating a stabilizer against radiolysis and confirmed its radiochemical stability. This study aimed to identify trace chemical impurities derived from the degradation of ATSM contained in the [64Cu]Cu-ATSM investigational drug formulation and assess their potential hazards by quantitative structure-activity relationship (QSAR) assessment. METHODS: We hypothesized that the chemical impurities contained in the [64Cu]Cu-ATSM formulation were derived from the degradation of ATSM. Therefore, we first identified the degradants of ATSM using LC-MS/MS. ATSM was dissolved with the drug formulation of [64Cu]Cu-ATSM, except for 64Cu, and analyzed by LC-MS/MS at 0 and 48 h after sample preparation. Subsequently, the chemical impurities contained in the [64Cu]Cu-ATSM formulation were measured at 0, 5, and 24 h after preparation by HPLC, and the results were compared to the degradants of ATSM. The potential hazards of the chemical impurities contained in the [64Cu]Cu-ATSM formulation were assessed using the QSAR Toolbox (ver. 4.3). RESULTS: Six ATSM degradants were detected and identified by LC-MS/MS analysis, indicating that the functional groups around the nitrogen and sulfur atoms of ATSM were affected. The same peaks were detected as trace chemical impurities in the [64Cu]Cu-ATSM formulation at 24 h, while no apparent peaks were detected at 0 and 5 h. The estimated LD50 values of these chemical impurities showed 4.31 mg/kg or more by QSAR assessment. In contrast, the estimated amount of each chemical impurity exposed to patients was 31.8 ng/kg or less per dose. The smallest margin between the amount of chemical impurities and smallest estimated LD50 value of the corresponding impurity was a ratio of approximately 1:700,000. CONCLUSIONS: We identified trace chemical impurities derived from ATSM in the [64Cu]Cu-ATSM formulation. This suggests that the potential risk of the systemic exposure of patients to these chemical impurities is substantially low.


Subject(s)
Coordination Complexes , Organometallic Compounds , Thiosemicarbazones , Chromatography, Liquid , Copper Radioisotopes , Humans , Quantitative Structure-Activity Relationship , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL