ABSTRACT
Development of high-performance photoinitiator is the key to enhance the printing speed, structure resolution and product quality in 3D laser printing. Here, to improve the printing efficiency of 3D laser nanoprinting, we investigate the underlying photochemistry of gold and silver nanocluster initiators under multiphoton laser excitation. Experimental results and DFT calculations reveal the high cleavage probability of the surface S-C bonds in gold and silver nanoclusters which generate multiple radicals. Based on this understanding, we design several alkyl-thiolated gold nanoclusters and achieve a more than two-orders-of-magnitude enhancement of photoinitiation activity, as well as a significant improvement in printing resolution and fabrication window. Overall, this work for the first time unveils the detailed radical formation pathways of gold and silver nanoclusters under multiphoton activation and substantially improves their photoinitiation sensitivity via surface engineering, which pushes the limit of the printing efficiency of 3D laser lithography.
ABSTRACT
Metamolecule clusters support various unique types of artificial electromagnetism at optical frequencies. However, the technological challenges regarding the freeform fabrication of freestanding metamolecule clusters with programmed geometries and multiple compositions remain unresolved. Here, the freeform, freestanding raspberry-like metamolecule (RMM) fibers based on the directional guidance of a femtoliter meniscus are presented, resulting in the evaporative co-assembly of silica nanoparticles and gold nanoparticles with the aid of 3D nanoprinting. This method offers a facile and universal pathway to shape RMM fibers in 3D, enabling versatile manipulation of near- and far-field characteristics. In particular, the authors demonstrate the ability to decrease the scattering of the millimeter-scale RMM fiber in visible spectrum. In addition, the influence of electric and magnetic dipole modes on the directional scattering of RMM fibers is investigated. These experiments show that the magnetic response of an individual RMM can be controlled by adjusting the filling factor of gold nanoparticles. The authors anticipate that this method will allow for unrestricted design and realization of nanophotonic structures, surpassing the limitations of conventional fabrication processes.
ABSTRACT
The fabrication of three-dimensional (3D) nanostructures is of great interest to many areas of nanotechnology currently challenged by fundamental limitations of conventional lithography. One of the most promising direct-write methods for 3D nanofabrication is focused electron beam-induced deposition (FEBID), owing to its high spatial resolution and versatility. Here we extend FEBID to the growth of complex-shaped 3D nanostructures by combining the layer-by-layer approach of conventional macroscopic 3D printers and the proximity effect correction of electron beam lithography. This framework is based on the continuum FEBID model and is capable of adjusting for a wide range of effects present during deposition, including beam-induced heating, defocusing, and gas flux anisotropies. We demonstrate the capabilities of our platform by fabricating free-standing nanowires, surfaces with varying curvatures and topologies, and general 3D objects, directly from standard stereolithography (STL) files and using different precursors. Real 3D nanoprinting as demonstrated here opens up exciting avenues for the study and exploitation of 3D nanoscale phenomena.
ABSTRACT
Novel physical properties appear when the size of a superconductor is reduced to the nanoscale, in the range of its superconducting coherence length (ξ0). Such nanosuperconductors are being investigated for potential applications in nanoelectronics and quantum computing. The design of three-dimensional nanosuperconductors allows one to conceive novel schemes for such applications. Here, we report for the first time the use of a He+ focused-ion-beam-microscope in combination with the W(CO)6 precursor to grow three-dimensional superconducting hollow nanowires as small as 32 nm in diameter and with an aspect ratio (length/diameter) of as much as 200. Such extreme resolution is achieved by using a small He+ beam spot of 1 nm for the growth of the nanowires. As shown by transmission electron microscopy, they display grains of large size fitting with face-centered cubic WC1-x phase. The nanowires, which are grown vertically to the substrate, are felled on the substrate by means of a nanomanipulator for their electrical characterization. They become superconducting at 6.4 K and show large critical magnetic field and critical current density resulting from their quasi-one-dimensional superconducting character. These results pave the way for future nanoelectronic devices based on three-dimensional nanosuperconductors.
ABSTRACT
3D nanoprinting can significantly enhance the performance of sensors, batteries, optoelectronic/microelectronic devices, etc. However, current 3D nanoprinting methods for metal oxides are suffering from three key issues including limited material applicability, serious shape distortion, and the difficulty of heterogeneous integration. This paper discovers a mechanism in which imidazole and acrylic acid synergistically coordinate with metal ions in water. Using the mechanism, this work develops a series of metal ion synergistic coordination water-soluble (MISCWS) resins for 3D nanoprinting of various metal oxides, including MnO2, Cr2O3, Co3O4, and ZnO, as well as heterogeneous structures of MnO2/NiO, Cr2O3/Al2O3, and ZnO/MgO. Besides, the synergistic coordination effect results in a 2.54-fold increase in inorganic mass fraction within the polymer, compared with previous works, which effectively mitigates the shape distortion of metal oxide microstructures. Based on this method, this work also demonstrates a 3D ZnO microsensor with a high sensitivity (1.113 million at 200 ppm NO2), surpassing the conventional 2D ZnO sensors by tenfold. The method yields high-fidelity 3D structures of heterogeneous metal oxides with nanoscale resolution, paving the way for applications such as sensing, micro-optics, energy storage, and microsystems.
ABSTRACT
Atomic force microscopy (AFM) in conjunction with microfluidic delivery was utilized to produce three-dimensional (3D) lipid structures following a custom design. While AFM is well-known for its spatial precision in imaging and 2D nanolithography, the development of AFM-based nanotechnology into 3D nanoprinting requires overcoming the technical challenges of controlling material delivery and interlayer registry. This work demonstrates the concept of 3D nanoprinting of amphiphilic molecules such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Various formulations of POPC solutions were tested to achieve point, line, and layer-by-layer material delivery. The produced structures include nanometer-thick disks, long linear spherical caps, stacking grids, and organizational chiral architectures. The POPC molecules formed stacking bilayers in these constructions, as revealed by high-resolution structural characterizations. The 3D printing reached nanometer spatial precision over a range of 0.5 mm. The outcomes reveal the promising potential of our designed technology and methodology in the production of 3D structures from nanometer to continuum, opening opportunities in biomaterial sciences and engineering, such as in the production of 3D nanodevices, chiral nanosensors, and scaffolds for tissue engineering and regeneration.
ABSTRACT
Recent advancements in additive manufacturing have enabled the preparation of free-shaped 3D objects with feature sizes down to and below the micrometer scale. Among the fabrication methods, focused electron beam- and focused ion beam-induced deposition (FEBID and FIBID, respectively) associate a high flexibility and unmatched accuracy in 3D writing with a wide material portfolio, thereby allowing for the growth of metallic to insulating materials. The combination of the free-shaped 3D nanowriting with established chemical vapor deposition (CVD) techniques provides attractive opportunities to synthesize complex 3D core-shell heterostructures. Hence, this hybrid approach enables the fabrication of morphologically tunable layer-based nanostructures with the great potential of unlocking further functionalities. Here, the fundamentals of such a hybrid approach are demonstrated by preparing core-shell heterostructures using 3D FEBID scaffolds for site-selective CVD. In particular, 3D microbridges are printed by FEBID with the (CH3)3CH3C5H4Pt precursor and coated by thermal CVD using the Nb(NMe2)3(N-t-Bu) and HFeCo3(CO)12 precursors. Two model systems on the basis of CVD layers consisting of a superconducting NbC-based layer and a ferromagnetic Co3Fe layer are prepared and characterized with regard to their composition, microstructure, and magneto-transport properties.
ABSTRACT
3D nanoprinting via focused electron beam induced deposition (FEBID) is applied for fabrication of all-metal nanoprobes for atomic force microscopy (AFM)-based electrical operation modes. The 3D tip concept is based on a hollow-cone (HC) design, with all-metal material properties and apex radii in the sub-10 nm regime to allow for high-resolution imaging during morphological imaging, conductive AFM (CAFM) and electrostatic force microscopy (EFM). The study starts with design aspects to motivate the proposed HC architecture, followed by detailed fabrication characterization to identify and optimize FEBID process parameters. To arrive at desired material properties, e-beam assisted purification in low-pressure water atmospheres was applied at room temperature, which enabled the removal of carbon impurities from as-deposited structures. The microstructure of final HCs was analyzed via scanning transmission electron microscopy-high-angle annular dark field (STEM-HAADF), whereas electrical and mechanical properties were investigated in situ using micromanipulators. Finally, AFM/EFM/CAFM measurements were performed in comparison to non-functional, high-resolution tips and commercially available electric probes. In essence, we demonstrate that the proposed all-metal HCs provide the resolution capabilities of the former, with the electric conductivity of the latter onboard, combining both assets in one design.
ABSTRACT
Focused electron beam induced deposition (FEBID) is one of the few additive, direct-write manufacturing techniques capable of depositing complex 3D nanostructures. In this work, we explore post-growth electron beam curing (EBC) of such platinum-based FEBID deposits, where free-standing, sheet-like elements were deformed in a targeted manner by local irradiation without precursor gas present. This process diminishes the volumes of exposed regions and alters nano-grain sizes, which was comprehensively characterized by SEM, TEM and AFM and complemented by Monte Carlo simulations. For obtaining controlled and reproducible conditions for smooth, stable morphological bending, a wide range of parameters were varied, which will here be presented as a first step towards using local EBC as a tool to realize even more complex nano-architectures, beyond current 3D-FEBID capabilities, such as overhanging structures. We thereby open up a new prospect for future applications in research and development that could even be further developed towards functional imprinting.
ABSTRACT
Expanding nanomagnetism and spintronics into three dimensions (3D) offers great opportunities for both fundamental and technological studies. However, probing the influence of complex 3D geometries on magnetoelectrical phenomena poses important experimental and theoretical challenges. In this work, we investigate the magnetoelectrical signals of a ferromagnetic 3D nanodevice integrated into a microelectronic circuit using direct-write nanofabrication. Due to the 3D vectorial nature of both electrical current and magnetization, a complex superposition of several magnetoelectrical effects takes place. By performing electrical measurements under the application of 3D magnetic fields, in combination with macrospin simulations and finite element modeling, we disentangle the superimposed effects, finding how a 3D geometry leads to unusual angular dependences of well-known magnetotransport effects such as the anomalous Hall effect. Crucially, our analysis also reveals a strong role of the noncollinear demagnetizing fields intrinsic to 3D nanostructures, which results in an angular dependent magnon magnetoresistance contributing strongly to the total magnetoelectrical signal. These findings are key to the understanding of 3D spintronic systems and underpin further fundamental and device-based studies.
ABSTRACT
Three-dimensional (3D) spintronic devices are attracting significant research interest due to their potential for both fundamental studies and computing applications. However, their implementations face great challenges regarding not only the fabrication of 3D nanomagnets with high quality materials, but also their integration into 2D microelectronic circuits. In this study, we developed a new fabrication process to facilitate the efficient integration of both non-planar 3D geometries and high-quality multi-layered magnetic materials to prototype 3D spintronic devices, as a first step to investigate new physical effects in such systems. Specifically, we exploited 3D nanoprinting, physical vapour deposition and lithographic techniques to realise a 3D nanomagnetic circuit based on a nanobridge geometry, coated with high quality Ta/CoFeB/Ta layers. The successful establishment of this 3D circuit was verified through magnetotransport measurements in combination with micromagnetic simulations and finite element modelling. This fabrication process provides new capabilities for the realisation of a greater variety of 3D nanomagnetic circuits, which will facilitate the understanding and exploitation of 3D spintronic systems.
ABSTRACT
High-fidelity 3D printing of nanoscale objects is an increasing relevant but challenging task. Among the few fabrication techniques, focused electron beam induced deposition (FEBID) has demonstrated its high potential due to its direct-write character, nanoscale capabilities in 3D space and a very high design flexibility. A limitation, however, is the low fabrication speed, which often restricts 3D-FEBID for the fabrication of single objects. In this study, we approach that challenge by reducing the substrate temperatures with a homemade Peltier stage and investigate the effects on Pt based 3D deposits in a temperature range of 5-30 °C. The findings reveal a volume growth rate boost up to a factor of 5.6, while the shape fidelity in 3D space is maintained. From a materials point of view, the internal nanogranular composition is practically unaffected down to 10 °C, followed by a slight grain size increase for even lower temperatures. The study is complemented by a comprehensive discussion about the growth mechanism for a more general picture. The combined findings demonstrate that FEBID on low substrate temperatures is not only much faster, but practically free of drawbacks during high fidelity 3D nanofabrication.
ABSTRACT
Additive, direct-write manufacturing via a focused electron beam has evolved into a reliable 3D nanoprinting technology in recent years. Aside from low demands on substrate materials and surface morphologies, this technology allows the fabrication of freestanding, 3D architectures with feature sizes down to the sub-20 nm range. While indispensably needed for some concepts (e.g., 3D nano-plasmonics), the final applications can also be limited due to low mechanical rigidity, and thermal- or electric conductivities. To optimize these properties, without changing the overall 3D architecture, a controlled method for tuning individual branch diameters is desirable. Following this motivation, here, we introduce on-purpose beam blurring for controlled upward scaling and study the behavior at different inclination angles. The study reveals a massive boost in growth efficiencies up to a factor of five and the strong delay of unwanted proximal growth. In doing so, this work expands the design flexibility of this technology.
ABSTRACT
The next generation optical, electronic, biological, and sensing devices as well as platforms will inevitably extend their architecture into the 3rd dimension to enhance functionality. In focused ion beam induced deposition (FIBID), a helium gas field ion source can be used with an organometallic precursor gas to fabricate nanoscale structures in 3D with high-precision and smaller critical dimensions than focused electron beam induced deposition (FEBID), traditional liquid metal source FIBID, or other additive manufacturing technology. In this work, we report the effect of beam current, dwell time, and pixel pitch on the resultant segment and angle growth for nanoscale 3D mesh objects. We note subtle beam heating effects, which impact the segment angle and the feature size. Additionally, we investigate the competition of material deposition and sputtering during the 3D FIBID process, with helium ion microscopy experiments and Monte Carlo simulations. Our results show complex 3D mesh structures measuring ~300 nm in the largest dimension, with individual features as small as 16 nm at full width half maximum (FWHM). These assemblies can be completed in minutes, with the underlying fabrication technology compatible with existing lithographic techniques, suggesting a higher-throughput pathway to integrating FIBID with established nanofabrication techniques.
ABSTRACT
Brain-on-a-chip (BoC) concepts should consider three-dimensional (3D) scaffolds to mimic the 3D nature of the human brain not accessible by conventional planar cell culturing. Furthermore, the essential key to adequately address drug development for human pathophysiological diseases of the nervous system, such as Parkinson's or Alzheimer's, is to employ human induced pluripotent stem cell (iPSC)-derived neurons instead of neurons from animal models. To address both issues, we present electrophysiologically mature human iPSC-derived neurons cultured in BoC applicable microscaffolds prepared by direct laser writing. 3D nanoprinted tailor-made elevated cavities interconnected by freestanding microchannels were used to create defined neuronal networks-as a proof of concept-with two-dimensional topology. The neuronal outgrowth in these nonplanar structures was investigated, among others, in terms of neurite length, size of continuous networks, and branching behavior using z-stacks prepared by confocal microscopy and cross-sectional scanning electron microscopy images prepared by focused ion beam milling. Functionality of the human iPSC-derived neurons was demonstrated with patch clamp measurements in both current- and voltage-clamp mode. Action potentials and spontaneous excitatory postsynaptic currents-fundamental prerequisites for proper network signaling-prove full integrity of these artificial neuronal networks. Considering the network formation occurring within only a few days and the versatile nature of direct laser writing to create even more complex scaffolds for 3D network topologies, we believe that our study offers additional approaches in human disease research to mimic the complex interconnectivity of the human brain in BoC studies.
Subject(s)
Induced Pluripotent Stem Cells , Animals , Brain , Cross-Sectional Studies , Humans , Lab-On-A-Chip Devices , NeuronsABSTRACT
A promising 3D nanoprinting method, used to deposit nanoscale mesh style objects, is prone to non-linear distortions which limits the complexity and variety of deposit geometries. The method, focused electron beam-induced deposition (FEBID), uses a nanoscale electron probe for continuous dissociation of surface adsorbed precursor molecules which drives highly localized deposition. Three dimensional objects are deposited using a 2D digital scanning pattern-the digital beam speed controls deposition into the third, or out-of-plane dimension. Multiple computer-aided design (CAD) programs exist for FEBID mesh object definition but rely on the definition of nodes and interconnecting linear nanowires. Thus, a method is needed to prevent non-linear/bending nanowires for accurate geometric synthesis. An analytical model is derived based on simulation results, calibrated using real experiments, to ensure linear nanowire deposition to compensate for implicit beam heating that takes place during FEBID. The model subsequently compensates and informs the exposure file containing the pixel-by-pixel scanning instructions, ensuring nanowire linearity by appropriately adjusting the patterning beam speeds. The derivation of the model is presented, based on a critical mass balance revealed by simulations and the strategy used to integrate the physics-based analytical model into an existing 3D nanoprinting CAD program is overviewed.
ABSTRACT
An artifact limiting the reproduction of three-dimensional (3D) designs using nanoprinting has been quantified. Beam-induced heating was determined through complementary experiments, models, and simulations to affect the deposition rate during the 3D nanoprinting of mesh objects using focused electron beam induced deposition (FEBID). The mesh objects are constructed using interconnected nanowires. During nanowire growth, the beam interaction driving deposition also causes local heating. The temperature at the beam impact region progressively rises as thermal resistance increases with nanowire growth. Heat dissipation resembles the classical mode of heat transfer from extended surfaces; heat must flow through the mesh object to reach the substrate sink. Simulations reveal that beam heating causes an increase in the rate of precursor desorption at the BIR, causing a concomitant decrease in the deposition rate, overwhelming an increase in the deposition rate driven by thermally enhanced precursor surface diffusion. Temperature changes as small as 10 K produce noticeable changes in deposit geometry; nanowires appear to deflect and curve toward the substrate because the vertical growth rate decreases. The 3D FEBID naturally ensues from the substrate surface upward, inducing a vertical temperature gradient along the deposit. Simulations, experiments, temperature-controlled studies, and process current monitoring all confirm the cause of nanowire distortion as beam-induced heating while also revealing the rate-determining physics governing the final deposit shape.
ABSTRACT
Accessing the thermal properties of materials or even full devices is a highly relevant topic in research and development. Along with the ongoing trend toward smaller feature sizes, the demands on appropriate instrumentation to access surface temperatures with high thermal and lateral resolution also increase. Scanning thermal microscopy is one of the most powerful technologies to fulfill this task down to the sub-100 nm regime, which, however, strongly depends on the nanoprobe design. In this study, we introduce a three-dimensional (3D) nanoprobe concept, which acts as a nanothermistor to access surface temperatures. Fabrication of nanobridges is done via 3D nanoprinting using focused electron beams, which allows direct-write fabrication on prestructured, self-sensing cantilever. As individual branch dimensions are in the sub-100 nm regime, mechanical stability is first studied by a combined approach of finite-element simulation and scanning electron microscopy-assisted in situ atomic force microscopy (AFM) measurements. After deriving the design rules for mechanically stable 3D nanobridges with vertical stiffness up to 50 N m-1, a material tuning approach is introduced to increase mechanical wear resistance at the tip apex for high-quality AFM imaging at high scan speeds. Finally, we demonstrate the electrical response in dependence of temperature and find a negative temperature coefficient of -(0.75 ± 0.2) 10-3 K-1 and sensing rates of 30 ± 1 ms K-1 at noise levels of ±0.5 K, which underlines the potential of our concept.
ABSTRACT
Superconducting planar nanostructures are widely used in applications, e.g., for highly sensitive magnetometers and in basic research, e.g., to study finite size effects or vortex dynamics. In contrast, 3D superconducting nanostructures, despite their potential in quantum information processing and nanoelectronics, have been addressed only in a few pioneering experiments. This is due to the complexity of fabricating 3D nanostructures by conventional techniques such as electron-beam lithography and to the scarce number of superconducting materials available for direct-writing techniques, which enable the growth of 3D free-standing nanostructures. Here, we present a comparative study of planar nanowires and free-standing 3D nanowires fabricated by focused electron- and ion (Ga+)-beam induced deposition (FEBID and FIBID) using the precursor Nb(NMe2)3(N- t-Bu). FEBID nanowires contain about 67 atomic percent C, 22 atomic percent N, and 11 atomic percent Nb, while FIBID samples are composed of 43 atomic percent C, 13 atomic percent N, 15.5 atomic percent Ga, and 28.5 atomic percent Nb. Transmission electron microscopy shows that FEBID samples are amorphous, while FIBID samples exhibit a fcc NbC polycrystalline structure, with grains about 15-20 nm in diameter. Electrical transport measurements show that FEBID nanowires are highly resistive following a variable-range-hopping behavior. In contradistinction, FIBID planar nanowires become superconducting at Tc ≈ 5 K. In addition, the critical temperature of free-standing 3D nanowires is as high as Tc ≈ 11 K, which is close to the value of bulk NbC. In conclusion, FIBID-NbC is a promising material for the fabrication of superconducting nanowire single-photon detectors (SNSPD) and for the development of 3D superconductivity with applications in quantum information processing and nanoelectronics.
ABSTRACT
High-performance focusing of X-rays requires the realization of very challenging 3D geometries with nanoscale features, sub-millimeter-scale apertures, and high aspect ratios. A particularly difficult structure is the profile of an ideal zone plate called a kinoform, which is manufactured in nonideal approximated patterns, nonetheless requires complicated multistep fabrication processes. Here, 3D fabrication of high-performance kinoforms with unprecedented aspect ratios out of low-loss plastics using femtosecond two-photon 3D nanoprinting is presented. A thorough characterization of the 3D-printed kinoforms using direct soft X-ray imaging and ptychography demonstrates superior performance with an efficiency reaching up to 20%. An extended concept is proposed for on-chip integration of various X-ray optics toward high-fidelity control of X-ray wavefronts and ultimate efficiencies even for harder X-rays. Initial results establish new, advanced focusing optics for both synchrotron and laboratory sources for a large variety of X-ray techniques and applications ranging from materials science to medicine.