Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373382

ABSTRACT

Malaria is a frequent parasitic infection becomes life threatening due to the disequilibrated immune responses of the host. Avid phagocytosis of malarial pigment hemozoin (HZ) and HZ-containing Plasmodium parasites incapacitates monocyte functions by bioactive lipoperoxidation products 4-hydroxynonenal (4-HNE) and hydroxyeicosatetraenoic acids (HETEs). CYP4F conjugation with 4-HNE is hypothesised to inhibit ω-hydroxylation of 15-HETE, leading to sustained monocyte dysfunction caused by 15-HETE accumulation. A combined immunochemical and mass-spectrometric approach identified 4-HNE-conjugated CYP4F11 in primary human HZ-laden and 4-HNE-treated monocytes. Six distinct 4-HNE-modified amino acid residues were revealed, of which C260 and H261 are localized in the substrate recognition site of CYP4F11. Functional consequences of enzyme modification were investigated on purified human CYP4F11. Palmitic acid, arachidonic acid, 12-HETE, and 15-HETE bound to unconjugated CYP4F11 with apparent dissociation constants of 52, 98, 38, and 73 µM, respectively, while in vitro conjugation with 4-HNE completely blocked substrate binding and enzymatic activity of CYP4F11. Gas chromatographic product profiles confirmed that unmodified CYP4F11 catalysed the ω-hydroxylation while 4-HNE-conjugated CYP4F11 did not. The 15-HETE dose dependently recapitulated the inhibition of the oxidative burst and dendritic cell differentiation by HZ. The inhibition of CYP4F11 by 4-HNE with consequent accumulation of 15-HETE is supposed to be a crucial step in immune suppression in monocytes and immune imbalance in malaria.


Subject(s)
Malaria , Monocytes , Humans , Monocytes/metabolism , Hydroxylation , Gas Chromatography-Mass Spectrometry , Malaria/metabolism , Immunosuppression Therapy , Protein Processing, Post-Translational , Cytochrome P450 Family 4/metabolism
2.
Proteomics ; 20(2): e1900205, 2020 01.
Article in English | MEDLINE | ID: mdl-31846556

ABSTRACT

The free-radical theory of male infertility suggests that reactive oxygen species produced by the spermatozoa themselves are a leading cause of sperm dysfunction, including loss of sperm motility. However, the field is overshadowed on several fronts, primarily because: i) the probes used to measure reactive oxygen species (ROS) are imprecise; and ii) many reports suggesting that oxygen radicals are detrimental to sperm function add an exogenous source of ROS. Herein, a more reliable approach to measure superoxide anion production by human spermatozoa based on MS analysis is used. Furthermore, the formation of the lipid-peroxidation product 4-hydroxynonenal (4-HNE) during in vitro incubation using proteomics is also investigated. The data demonstrate that neither superoxide anion nor other free radicals that cause 4-HNE production are related to the loss of sperm motility during incubation. Interestingly, it appears that many of the 4-HNE adducted proteins, found within spermatozoa, originate from the prostate. A quantitative SWATH analysis demonstrate that these proteins transiently bind to sperm and are then shed during in vitro incubation. These proteomics-based findings propose a revised understanding of oxidative stress within the male reproductive tract.


Subject(s)
Anions/metabolism , Mass Spectrometry/methods , Spermatozoa/metabolism , Superoxides/metabolism , Humans , Lipid Peroxidation/physiology , Male , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism , Sperm Motility/physiology
3.
Pharmacol Res ; 157: 104851, 2020 07.
Article in English | MEDLINE | ID: mdl-32423865

ABSTRACT

Oxidative stress induced post-translational protein modifications are associated with the development of inflammatory hypersensitivities. At least 90% of cellular reactive oxygen species (ROS) are produced in the mitochondria, where the mitochondrial antioxidant, manganese superoxide dismutase (MnSOD), is located. MnSOD's ability to reduce ROS is enhanced by the mitochondrial NAD+-dependent deacetylase sirtuin (SIRT3). SIRT3 can reduce ROS levels by deacetylating MnSOD and enhancing its ability to neutralize ROS or by enhancing the transcription of MnSOD and other oxidative stress-responsive genes. SIRT3 can be post-translationally modified through carbonylation which results in loss of activity. The contribution of post-translational SIRT3 modifications in central sensitization is largely unexplored. Our results reveal that SIRT3 carbonylation contributes to spinal MnSOD inactivation during carrageenan-induced thermal hyperalgesia in rats. Moreover, inhibiting ROS with natural and synthetic antioxidants, prevented SIRT3 carbonylation, restored the enzymatic activity of MnSOD, and blocked the development of thermal hyperalgesia. These results suggest that therapeutic strategies aimed at inhibiting post-translational modifications of SIRT3 may provide beneficial outcomes in pain states where ROS have been documented to play an important role in the development of central sensitization.


Subject(s)
Analgesics/pharmacology , Antioxidants/pharmacology , Hyperalgesia/drug therapy , Oxidative Stress/drug effects , Pain Threshold/drug effects , Reactive Oxygen Species/metabolism , Sirtuins/metabolism , Spinal Cord/drug effects , Spinal Cord/enzymology , Animals , Cell Line, Tumor , Humans , Hyperalgesia/enzymology , Hyperalgesia/genetics , Hyperalgesia/physiopathology , Male , Metalloporphyrins/pharmacology , Protein Carbonylation , Rats, Sprague-Dawley , Resveratrol/pharmacology , Signal Transduction , Sirtuins/genetics , Spinal Cord/physiopathology , Superoxide Dismutase/metabolism
4.
J Toxicol Pathol ; 32(4): 311-317, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31719760

ABSTRACT

Polyhexamethylene guanidine hydrochloride (PHMG-HCl), an antimicrobial additive in humidifier disinfectants, was associated with the pulmonary disease outbreak in South Korea. However, PHMG-mediated oxidative stress has only been studied in vitro. Here, we evaluated PHMG-induced oxidative stress in the lungs of rats exposed to PHMG-HCl. Male F344 rats were exposed to different concentrations of PHMG-HCl for 13-weeks via whole-body inhalation. Histopathological examination of the exposed rats showed the presence of lung lesions, including alveolar/interstitial fibrosis with inflammatory cell infiltration, bronchioalveolar hyperplasia, bronchiolar/alveolar squamous metaplasia, bronchial/bronchiolar epithelial detachment, and alveolar hemorrhage. Immunohistochemical analysis showed that 4-hydroxynonenal (4-HNE) was expressed in the bronchiolar epithelium, mainly in Clara cells and macrophages of the fibrotic tissue. The number of 4-HNE-positive cells increased significantly in a dose-dependent manner. This is the first in vivo study to report PHMG-induced oxidative stress. Our study provides clues to elucidate the mechanisms underlying PHMG-induced damage in patients affected by humidifier disinfectants.

5.
J Neuroinflammation ; 15(1): 202, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29986724

ABSTRACT

BACKGROUND: Phospholipids in the central nervous system are enriched in n-3 and n-6 polyunsaturated fatty acids (PUFA), especially docosahexaenoic acid (DHA) and arachidonic acid (ARA). These PUFA can undergo enzymatic reactions to produce lipid mediators, as well as reaction with oxygen free radicals to produce 4-hydroxyhexenal (4-HHE) from DHA and 4-hydroxynonenal (4-HNE) from ARA. Recent studies demonstrated pleiotropic properties of these peroxidation products through interaction with oxidative and anti-oxidant response pathways. In this study, BV-2 microglial cells were used to investigate ability for DHA, 4-HHE, and 4-HNE to stimulate the anti-oxidant stress responses involving the nuclear factor erythroid-2-related factor 2 (Nrf2) pathway and synthesis of heme oxygenase (HO-1), as well as to mitigate lipopolysaccharide (LPS)-induced nitric oxide (NO), reactive oxygen species (ROS), and cytosolic phospholipase A2 (cPLA2). In addition, LC-MS/MS analysis was carried out to examine effects of exogenous DHA and LPS stimulation on endogenous 4-HHE and 4-HNE levels in BV-2 microglial cells. METHODS: Effects of DHA, 4-HHE, and 4-HNE on LPS-induced NO production was determined using the Griess reagent. LPS-induced ROS production was measured using CM-H2DCFDA. Western blots were used to analyze expression of p-cPLA2, Nrf2, and HO-1. Cell viability and cytotoxicity were measured using the WST-1 assay, and cell protein concentrations were measured using the BCA protein assay kit. An ultra-high-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was used to determine levels of free 4-HHE and 4-HNE in cells. RESULTS: DHA (12.5-100 µM), 4-HHE (1.25-10 µM), and 4-HNE (1.25-10 µM) dose dependently suppressed LPS-induced production of NO, ROS, and as p-cPLA2 in BV-2 microglial cells. With the same concentrations, these compounds could enhance Nrf2 and HO-1 expression in these cells. Based on the estimated IC50 values, 4-HHE and 4-HNE were five- to tenfold more potent than DHA in inhibiting LPS-induced NO, ROS, and p-cPLA2. LC-MS/MS analysis indicated ability for DHA (10-50 µM) to increase levels of 4-HHE and attenuate levels of 4-HNE in BV-2 microglial cells. Stimulation of cells with LPS caused an increase in 4-HNE which could be abrogated by cPLA2 inhibitor. In contrast, bromoenol lactone (BEL), a specific inhibitor for the Ca2+-independent phospholipase A2 (iPLA2), could only partially suppress levels of 4-HHE induced by DHA or DHA + LPS. CONCLUSIONS: This study demonstrated the ability of DHA and its lipid peroxidation products, namely, 4-HHE and 4-HNE at 1.25-10 µM, to enhance Nrf2/HO-1 and mitigate LPS-induced NO, ROS, and p-cPLA2 in BV-2 microglial cells. In addition, LC-MS/MS analysis of the levels of 4-HHE and 4-HNE in microglial cells demonstrates that increases in production of 4-HHE from DHA and 4-HNE from LPS are mediated by different mechanisms.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Docosahexaenoic Acids/pharmacology , Lipid Peroxidation/drug effects , Lipopolysaccharides/pharmacology , Microglia/drug effects , Aldehydes/metabolism , Aldehydes/pharmacology , Animals , Cell Line, Transformed , Cell Survival/drug effects , Cytokines/metabolism , Dose-Response Relationship, Drug , Mice , Nitric Oxide Synthase Type II/metabolism , Phospholipases A2/metabolism , Prostaglandin-Endoperoxide Synthases/metabolism , Reactive Oxygen Species/metabolism
6.
Exp Cell Res ; 353(2): 72-78, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28267438

ABSTRACT

The advent of imatinib mesylate (IM) has dramatically improved the outcome of patients with chronic myeloid leukemia, but drug resistance, particularly in advanced stage of disease, portents eventual relapse and progression. To identify the candidate molecule responsible for resistance during IM treatment, an IM-resistant K562 cell line was generated by culturing in gradually increasing dose of IM. The expression of Nrf-2 and its downstream target, Gst-α, were significantly induced in these cells. GST-α, in turn, mediated cell survival by maintaining intracellular low level of 4-HNE. Inhibition of Nrf-2 effectively reduced the expression of Gst-α, resulting in accumulation of 4-HNE and elevated sensitiveness to IM. Moreover, in IM-sensitive K562 cells enforced Gst-α expression strikingly protected cells from the insult of IM. Finally, we also examined the levels of Nrf-2 in clinical bone morrow samples. Nrf-2 and Gst-α were more abundant in bone morrow of CML patients compared with that of healthy donors. In addition, Nrf-2 and Gst-α were further up-regulated in samples of patients with weak response to IM. In conclusion, our study shows that rapid clearance of 4-HNE by Nrf-2/GST may represents a novel molecular basis of IM resistance in CML.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Glutathione Transferase/biosynthesis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , NF-E2-Related Factor 2/biosynthesis , Adult , Aldehydes/administration & dosage , Bone Marrow Cells , Female , Gene Expression Regulation, Leukemic/drug effects , Glutathione Transferase/antagonists & inhibitors , Glutathione Transferase/genetics , Humans , Imatinib Mesylate/administration & dosage , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Male , Middle Aged , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics
7.
Int J Mol Sci ; 19(9)2018 Aug 22.
Article in English | MEDLINE | ID: mdl-30131474

ABSTRACT

Institut George Lopez-1 (IGL-1) and Histidine-tryptophan-ketoglutarate (HTK) solutions are proposed as alternatives to UW (gold standard) in liver preservation. Their composition differs in terms of the presence/absence of oncotic agents such as HES or PEG, and is decisive for graft conservation before transplantation. This is especially so when fatty (steatotic) livers are used since these grafts are more vulnerable to ischemia insult during conservation. Their composition determines the extent of the subsequent reperfusion injury after transplantation. Aldehyde dehydrogenase-2 (ALDH2), a mitochondrial enzyme, has been reported to play a protective role in warm ischemia-reperfusion injury (IRI), but its potential in fatty liver cold ischemic injury has not yet been investigated. We evaluated the relevance of ALDH2 activity in cold ischemia injury when fatty liver grafts from Zucker Obese rats were preserved in UW, HTK, and IGL-1 solutions, in order to study the mechanisms involved. ALDH2 upregulation was highest in livers preserved in IGL-1. It was accompanied by a decrease in transaminases, apoptosis (Caspase 3 and TUNEL assay), and lipoperoxidation, which was concomitant with the effective clearance of toxic aldehydes such as 4-hydroxy-nonenal. Variations in ATP levels were also determined. The results were consistent with levels of NF-E2 p45-related factor 2 (Nrf2), an antioxidant factor. Here we report for the first time the relevance of mitochondrial ALDH2 in fatty liver cold preservation and suggest that ALDH2 could be considered a potential therapeutic target or regulator in clinical transplantation.


Subject(s)
Aldehyde Dehydrogenase, Mitochondrial/metabolism , Cold Ischemia , Fatty Liver/metabolism , Animals , Apoptosis , Biomarkers , Cryopreservation , Fatty Liver/pathology , Liver Transplantation , Mitochondria/metabolism , Organ Preservation , Organ Preservation Solutions , Rats , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Time Factors
8.
J Arthroplasty ; 29(4): 843-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24290740

ABSTRACT

This study investigated the hypothesis that wear particle-induced oxidative stress initiates osteolysis after total hip arthroplasty (THA). Patient radiographs were scored for osteolysis and periprosthetic tissues were immunostained and imaged to quantify polyethylene wear, inflammation, and five osteoinflammatory and oxidative stress-responsive factors. These included high mobility group protein-B1 (HMGB1), cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), 4-hydroxynonenal (4-HNE), and nitrotyrosine (NT). The results show wear debris correlated with inflammation, 4-HNE, NT and HMGB1, whereas inflammation only correlated with NT and HMGB1. Similar to wear debris and inflammation, osteolysis correlated with HMGB1. Additionally, osteolysis correlated with COX2 and 4-HNE, but not iNOS or NT. Understanding the involvement of oxidative stress in wear-induced osteolysis will help identify diagnostic biomarkers and therapeutic targets to prevent osteolysis after THA.


Subject(s)
Arthroplasty, Replacement, Hip/adverse effects , Hip Prosthesis/adverse effects , Osteolysis/metabolism , Oxidative Stress , Prosthesis Failure , Aged , Arthroplasty, Replacement, Hip/instrumentation , Biomarkers/analysis , Female , Humans , Male , Middle Aged , Osteolysis/diagnostic imaging , Osteolysis/etiology , Radiography
9.
Front Biosci (Landmark Ed) ; 29(4): 153, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38682198

ABSTRACT

Oxidative stress often affects the structure and metabolism of lipids, which in the case of polyunsaturated free fatty acids (PUFAs) leads to a self-catalysed chain reaction of lipid peroxidation (LPO). The LPO of PUFAs leads to the formation of various aldehydes, such as malondialdehyde, 4-hydroxynonenal (4-HNE), 4-hydroxyhexenal, and 4-oxo-2-nonenal. Among the reactive aldehydes, 4-HNE is the major bioactive product of LPO, which has a high affinity for binding to proteins. This review briefly discusses the available information on the applicability of assessment options for 4-HNE and its protein adducts determined by immunosorbent assay (the 4-HNE-ELISA) in patients with various diseases known to be associated with oxidative stress, LPO, and 4-HNE. Despite the differences in the protocols applied and the antibodies used, all studies confirmed the usefulness of the 4-HNE-ELISA for research purposes. Since different protocols and the antibodies used could give different values when applied to the same samples, the 4-HNE-ELISA should be combined with other complementary analytical methods to allow comparisons between the values obtained in patients and in healthy individuals. Despite large variations, the studies reviewed in this paper have mostly shown significantly increased levels of 4-HNE-protein adducts in the samples obtained from patients when compared to healthy individuals. As with any other biomarker studied in patients, it is preferred to perform not only a single-time analysis but measurements at multiple time points to monitor the dynamics of the occurrence of oxidative stress and the systemic response to the disease causing it. This is especially important for acute diseases, as individual levels of 4-HNE-protein adducts in blood can fluctuate more than threefold within a few days depending on the state of health, as was shown for the COVID-19 patients.


Subject(s)
Aldehydes , Enzyme-Linked Immunosorbent Assay , Lipid Peroxidation , Humans , Aldehydes/metabolism , Biomarkers/metabolism , Biomarkers/blood , Enzyme-Linked Immunosorbent Assay/methods , Oxidative Stress
10.
Antioxidants (Basel) ; 12(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37107229

ABSTRACT

It is well known that oxidative stress and lipid peroxidation (LPO) play a role in physiology and pathology. The most studied LPO product with pleiotropic capabilities is 4-hydroxynonenal (4-HNE). It is considered as an important mediator of cellular signaling processes and a second messenger of reactive oxygen species. The effects of 4-HNE are mainly attributed to its adduction with proteins. Whereas the Michael adducts thus formed are preferred in an order of potency of cysteine > histidine > lysine over Schiff base formation, it is not known which proteins are the preferred targets for 4-HNE under what physiological or pathological conditions. In this review, we briefly discuss the methods used to identify 4-HNE-protein adducts, the progress of mass spectrometry in deciphering the specific protein targets, and their biological relevance, focusing on the role of 4-HNE protein adducts in the adaptive response through modulation of the NRF2/KEAP1 pathway and ferroptosis.

11.
Environ Toxicol Pharmacol ; 100: 104148, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37182728

ABSTRACT

Mancozeb is a widely-used, broad-spectrum contact dithiocarbamate fungicide. Dithiocarbamates are known to trans-chelate metals. This study was designed to evaluate the potential of Mancozeb to mobilize and bioaccumulate essential trace metals in various tissues. Long-Evans rats were orally gavaged with 0, 50, or 100 mg/kg/day of Mancozeb for 28 days. Mancozeb caused a significant increase in copper and manganese in the hippocampus and manganese in the liver. Exceedingly higher level of copper was detected in the renal cortex using ICP-OES in both dose groups. This was confirmed histologically in the tubular epithelial cells. In addition, copper-associated protein levels were also increased. Copper bioaccumulation in the renal cortex was accompanied by oxidative damage and tubular insult indicated by increased 4-HNE, KIM-1, and NGAL immunoreactivity. These findings demonstrate that low-dose Mancozeb exposure is a potential risk for kidney injury due to copper overload and warrants further in vivo and human population-based investigations.


Subject(s)
Copper , Manganese , Rats , Humans , Animals , Copper/toxicity , Lipocalin-2/metabolism , Bioaccumulation , Rats, Long-Evans
12.
Front Nutr ; 9: 997015, 2022.
Article in English | MEDLINE | ID: mdl-36726822

ABSTRACT

Introduction: Diabetes is a major public health issue that is approaching epidemic proportions globally. Diabetes mortality is increasing in all ethnic groups, irrespective of socio-economic class. Obesity is often seen as the main contributor to an increasing prevalence of diabetes. Oxidative stress has been shown to trigger obesity by stimulating the deposition of white adipose tissue. In this study, we measured reactive aldehydes by liquid chromatography-mass spectrometry (LC-MS), in the urine and plasma of type-2 diabetic mellitus (T2DM) patients, as potential surrogates of oxidative stress. Our hypothesis was that reactive aldehydes play a significant role in the pathophysiology of diabetes, and these reactive species, may present potential drug targets for patient treatment. Materials and methods: Study participants [N = 86; control n = 26; T2DM n = 32, and diabetic nephropathy (DN) n = 28] were recruited between 2019 and 2020. Urine and blood samples were collected from all participants, including a detailed clinical history, to include patient behaviours, medications, and co-morbidities. Reactive aldehyde concentrations in urine and plasma were measured using pre-column derivatisation and LC-MS, for control, T2DM and DN patients. Results: Reactive aldehydes were measured in the urine and plasma of control subjects and patients with T2DM and DN. In all cases, the reactive aldehydes under investigation; 4-HNE, 4-ONE, 4-HHE, pentanal, methylglyoxal, and glyoxal, were significantly elevated in the urine and serum of the patients with T2DM and DN, compared to controls (p < 0.001) (Kruskal-Wallis). Urine and serum reactive aldehydes were significantly correlated (≥0.7) (p < 0.001) (Spearman rho). The concentrations of the reactive aldehydes were significantly higher in plasma samples, when compared to urine, suggesting that plasma is the optimal matrix for screening T2DM and DN patients for oxidative stress. Conclusion: Reactive aldehydes are elevated in the urine and plasma of T2DM and DN patients. Reactive aldehydes have been implicated in the pathobiology of T2DM. Therefore, if reactive aldehydes are surrogates of oxidative stress, these reactive aldehyde species could be therapeutic targets for potential drug development.

13.
Cells ; 11(3)2022 01 27.
Article in English | MEDLINE | ID: mdl-35159254

ABSTRACT

A recent comparison of clinical and inflammatory parameters, together with biomarkers of oxidative stress, in patients who died from aggressive COVID-19 and survivors suggested that the lipid peroxidation product 4-hydroxynonenal (4-HNE) might be detrimental in lethal SARS-CoV-2 infection. The current study further explores the involvement of inflammatory cells, systemic vascular stress, and 4-HNE in lethal COVID-19 using specific immunohistochemical analyses of the inflammatory cells within the vital organs obtained by autopsy of nine patients who died from aggressive SAR-CoV-2 infection. Besides 4-HNE, myeloperoxidase (MPO) and mitochondrial superoxide dismutase (SOD2) were analyzed alongside standard leukocyte biomarkers (CDs). All the immunohistochemical slides were simultaneously prepared for each analyzed biomarker. The results revealed abundant 4-HNE in the vital organs, but the primary origin of 4-HNE was sepsis-like vascular stress, not an oxidative burst of the inflammatory cells. In particular, inflammatory cells were often negative for 4-HNE, while blood vessels were always very strongly immunopositive, as was edematous tissue even in the absence of inflammatory cells. The most affected organs were the lungs with diffuse alveolar damage and the brain with edema and reactive astrocytes, whereas despite acute tubular necrosis, 4-HNE was not abundant in the kidneys, which had prominent SOD2. Although SOD2 in most cases gave strong immunohistochemical positivity similar to 4-HNE, unlike 4-HNE, it was always limited to the cells, as was MPO. Due to their differential expressions in blood vessels, inflammatory cells, and the kidneys, we think that SOD2 could, together with 4-HNE, be a potential link between a malfunctioning immune system, oxidative stress, and vascular stress in lethal COVID-19.


Subject(s)
Aldehydes/metabolism , COVID-19/metabolism , Macrophages, Alveolar/metabolism , Oxidative Stress , T-Lymphocytes/metabolism , Aged , Autopsy , Biomarkers/metabolism , COVID-19/epidemiology , COVID-19/virology , Child , Female , Humans , Lipid Peroxidation , Macrophages, Alveolar/pathology , Macrophages, Alveolar/virology , Male , Middle Aged , Pandemics/prevention & control , Reactive Oxygen Species/metabolism , Respiratory Burst , SARS-CoV-2/physiology , Superoxide Dismutase/metabolism , T-Lymphocytes/pathology , T-Lymphocytes/virology
14.
Front Biosci (Landmark Ed) ; 27(4): 119, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35468678

ABSTRACT

BACKGROUND: It is commonly believed that cancer development is irreversible, organ-specific as well as systemic malignant disorder, often associated with harmful oxidative stress and inflammation. However, there are also well-documented cases of spontaneous cancer regression, the causative mechanisms of which are not understood. It is known that inflammation is a negative pathophysiological process that may support the development of cancer, but it is also believed that the immune system as well as oxidative stress play important roles in prevention of cancer development and defense against tumor progression. Hence, in animal models spontaneous regression of cancer could be mediated by rapid inflammatory response of granulocytes, acting against cancer mostly as innate immune response. In addition, the administration of granulocytes at the site of solid tumors can lead to tumor regression or can slow down tumor growth and extend the overall survival of animals. In both cases, similar to the radiotherapy, surgery and various chemotherapies, oxidative stress occurs generating lipid peroxidation product 4-hydroxynonenal (4-HNE). This "second messenger of free radicals" acts as growth regulating signaling molecule that exerts relatively selective cytotoxicity against cancer cells. CONCLUSIONS: We hypothesize that abundant inflammation and metabolic changes caused by cancer and oxidative stress producing of 4-HNE may be crucial mechanisms for spontaneous cancer regression.


Subject(s)
Aldehydes , Neoplasms , Aldehydes/metabolism , Animals , Granulocytes/metabolism , Granulocytes/pathology , Inflammation , Neoplasms/metabolism , Oxidative Stress/physiology
15.
Biomolecules ; 11(9)2021 09 15.
Article in English | MEDLINE | ID: mdl-34572578

ABSTRACT

Repeated activation of the hypothalamic-pituitary-adrenal axis system, sleep disturbances, and other symptoms related to posttraumatic stress disorder (PTSD) elevate reactive oxygen species, increase inflammation, and accelerate cellular aging, leading to neuroprogression and cognitive decline. However, there is no information about possible involvement of 4-hydroxynonenal (4-HNE), the product of lipid peroxidation associated with stress-associated diseases, in the complex etiology of PTSD. Therefore, the aim of this study was to compare the plasma levels of 4-HNE between war veterans with PTSD (n = 62) and age-, sex- and ethnicity- matched healthy control subjects (n = 58) in order to evaluate the potential of HNE-modified proteins as blood-based biomarker of PTSD. The genuine 4-HNE-Enzyme-Linked Immunosorbent Assay (HNE-ELISA), based on monoclonal antibody specific for HNE-histidine (HNE-His) adducts, was used to determine plasma HNE-protein conjugates. Our results revealed significantly elevated levels of 4-HNE in patients with PTSD. Moreover, the accumulation of plasma 4-HNE seems to increase with aging but in a negative correlation with BMI, showing specific pattern of change for individuals diagnosed with PTSD. These findings suggest that oxidative stress and altered lipid metabolism reflected by increase of 4-HNE might be associated with PTSD. If confirmed with further studies, elevated 4-HNE plasma levels might serve as a potential biomarker of PTSD.


Subject(s)
Aldehydes/adverse effects , Lipid Peroxidation , Stress Disorders, Post-Traumatic/etiology , Adult , Aged , Aldehydes/blood , Body Mass Index , Case-Control Studies , Humans , Male , Middle Aged , Stress Disorders, Post-Traumatic/blood
16.
Biomolecules ; 11(11)2021 10 21.
Article in English | MEDLINE | ID: mdl-34827557

ABSTRACT

Aldehyde dehydrogenase 2 (ALDH2) rs671 polymorphism is a common genetic variant in Asians that is responsible for defective toxic aldehyde and lipid peroxidation metabolism after alcohol consumption. The extent to which low alcohol consumption may cause atrial substrates to trigger atrial fibrillation (AF) development in users with ALDH2 variants remains to be determined. We prospectively enrolled 249 ethnic Asians, including 56 non-drinkers and 193 habitual drinkers (135 (70%) as ALDH2 wild-type: GG, rs671; 58 (30%) as ALDH2 variants: G/A or A/A, rs671). Novel left atrial (LA) mechanical substrates with dynamic characteristics were assessed using a speckle-tracking algorithm and correlated to daily alcohol consumption and ALDH2 genotypes. Despite modest and comparable alcohol consumption by the habitual alcohol users (14.3 [8.3~28.6] and 12.3 [6.3~30.7] g/day for those without and with ALDH2 polymorphism, p = 0.31), there was a substantial and graded increase in the 4-HNE adduct and prolonged PR, and a reduction in novel LA mechanical parameters (including peak atrial longitudinal strain (PALS) and phasic strain rates (reservoir, conduit, and booster pump functions), p < 0.05), rather than an LA emptying fraction (LAEF) or LA volume index across non-drinkers, and in habitual drinkers without and with ALDH2 polymorphism (all p < 0.05). The presence of ALDH2 polymorphism worsened the association between increasing daily alcohol dose and LAEF, PALS, and phasic reservoir and booster functions (all Pinteraction: <0.05). Binge drinking superimposed on regular alcohol use exclusively further worsened LA booster pump function compared to regular drinking without binge use (1.66 ± 0.57 vs. 1.97 ± 0.56 1/s, p = 0.001). Impaired LA booster function further independently helped to predict AF after consideration of the CHARGE-AF score (adjusted 1.68 (95% CI: 1.06-2.67), p = 0.028, per 1 z-score increment). Habitual modest alcohol consumption led to mechanical LA substrate formation in an ethnic Asian population, which was more pronounced in subjects harboring ALDH2 variants. Impaired LA booster functions may serve as a useful predictor of AF in such populations.


Subject(s)
Atrial Fibrillation , Alcohol Drinking , Humans , Polymorphism, Genetic , Risk Factors
17.
Front Cell Dev Biol ; 9: 721795, 2021.
Article in English | MEDLINE | ID: mdl-34660582

ABSTRACT

Background: Necroptosis is a vital regulator of myocardial ischemia/reperfusion (MI/R) injury. Meanwhile, 4-hydroxy-2-nonenal (4-HNE) is abundantly increased during MI/R injury. However, whether 4-HNE induces cardiomyocyte necroptosis during MI/R remains unknown. Methods: To observe the relationship between 4-HNE and necroptosis during MI/R, C57BL/6 mice and aldehyde dehydrogenase 2-transgenic (ALDH2-Tg) mice were both exposed to left anterior descending artery ligation surgery to establish MI/R injury models. For further study, isolated mouse hearts and H9c2 cells were both treated with 4-HNE to elucidate the underlying mechanisms. Results: Necroptosis and 4-HNE were both upregulated in I/R-injured hearts. Cardiomyocyte necroptosis was significantly decreased in I/R-injured hearts from ALDH2-Tg mice as compared with that of wild-type mice. In vitro studies showed that necroptosis was enhanced by 4-HNE perfusion in a time- and concentration-dependent manner. Knockdown of receptor-interacting serine/threonine-protein kinase 1 (RIP1) using small interfering RNA (siRNA) prevented 4-HNE-induced cardiomyocyte necroptosis, manifesting that RIP1 played a key role in the upregulation of cell necroptosis by 4-HNE. Further studies found that 4-HNE reduced the protein degradation of RIP1 by preventing K48-polyubiquitination of RIP1. Conclusion: 4-HNE contributes to cardiomyocyte necroptosis by regulating ubiquitin-mediated proteasome degradation of RIP1.

18.
Cancers (Basel) ; 13(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34944997

ABSTRACT

Her2-amplified breast cancers resistant to available Her2-targeted therapeutics continue to be a challenge in breast cancer therapy. Dox is the mainstay of chemotherapy of all types of breast cancer, but its usefulness is limited by cumulative cardiotoxicity. Because oxidative stress caused by dox generates the pro-apoptotic Ω-6 PUFA metabolite 4-hydroxynonenal (4-HNE), we surmised that Ω-6 PUFAs would increase the effectiveness of dox chemotherapy. Since the mercapturic acid pathway enzyme RALBP1 (also known as RLIP76 or Rlip) that limits cellular accumulation of 4-HNE also mediates dox resistance, the combination of Ω-6 PUFAs and Rlip depletion could synergistically improve the efficacy of dox. Thus, we studied the effects of the Ω-6 PUFA arachidonic acid (AA) and Rlip knockdown on the antineoplastic activity of dox towards Her2-amplified breast cancer cell lines SK-BR-3, which is sensitive to Her2 inhibitors, and AU565, which is resistant. AA increased lipid peroxidation, 4-HNE generation, apoptosis, cellular dox concentration and dox cytotoxicity in both cell lines while sparing cultured immortalized cardiomyocyte cells. The known functions of Rlip including clathrin-dependent endocytosis and dox efflux were inhibited by AA. Our results support a model in which 4-HNE generated by AA overwhelms the capacity of Rlip to defend against apoptosis caused by dox or 4-HNE. We propose that Ω-6 PUFA supplementation could improve the efficacy of dox or Rlip inhibitors for treating Her2-amplified breast cancer.

19.
Neuropharmacology ; 170: 108023, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32142792

ABSTRACT

The 21-aminosteroid ("lazaroid") U-74389G (U74), an inhibitor of lipid peroxidation (LP), was used to protect mitochondrial function following TBI in young adult male rats. The animals received a severe (2.2 mm) controlled cortical impact-TBI. U74 was administered intravenous at 15 min and 2 h post injury (hpi) followed by intraperitoneal dose at 8 hpi at the following doses (mg/kg): 0.3 (IV) + 1 (IP), 1 + 3, 3 + 10, 10 + 30. Total cortical mitochondria were isolated at 72 hpi and respiratory rates were measured. Mitochondrial 4-HNE and acrolein were evaluated as indicators of LP-mediated oxidative damage. At 72 h post-TBI injured animals had significantly lower mitochondrial respiration rates compared to sham. Administration of U74 at the 1 mg/kg dosing paradigm significantly improved mitochondrial respiration rates for States II, III, V(II) and RCR compared to vehicle-treated animals. At 72 h post-TBI injured animals administration of U74 also reduced reactive aldehydes levels compared to vehicle-treated animals. The aim of this study was to explore the hypothesis that interrupting secondary oxidative damage via acute pharmacological inhibition of LP by U74 following a CCI-TBI would provide mitochondrial neuroprotective effects in a dose-dependent manner. We found acute administration of U74 to injured rats resulted in improved mitochondrial function and lowered the levels of reactive aldehydes in the mitochondria. These results establish not only the most effective dose of U74 treatment to attenuate LP-mediated oxidative damage, but also set the foundation for further studies to explore additional neuroprotective effects following TBI.


Subject(s)
Antioxidants/therapeutic use , Brain Injuries, Traumatic/drug therapy , Cerebral Cortex/drug effects , Lipid Peroxidation/drug effects , Mitochondria/drug effects , Pregnatrienes/therapeutic use , Age Factors , Animals , Antioxidants/pharmacology , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Lipid Peroxidation/physiology , Male , Mitochondria/physiology , Oxidative Stress/drug effects , Oxidative Stress/physiology , Pregnatrienes/pharmacology , Rats , Rats, Sprague-Dawley
20.
Exp Neurol ; 330: 113322, 2020 08.
Article in English | MEDLINE | ID: mdl-32325157

ABSTRACT

Traumatic brain injury (TBI) results in mitochondrial dysfunction and induction of lipid peroxidation (LP). Lipid peroxidation-derived neurotoxic aldehydes such as 4-HNE and acrolein bind to mitochondrial proteins, inducing additional oxidative damage and further exacerbating mitochondrial dysfunction and LP. Mitochondria are heterogeneous, consisting of both synaptic and non-synaptic populations, with synaptic mitochondria being more vulnerable to injury-dependent consequences. The goal of these studies was to explore the hypothesis that interrupting secondary oxidative damage following TBI using phenelzine (PZ), an aldehyde scavenger, would preferentially protect synaptic mitochondria against LP-mediated damage in a dose- and time-dependent manner. Male Sprague-Dawley rats received a severe (2.2 mm) controlled cortical impact (CCI)-TBI. PZ (3-30 mg/kg) was administered subcutaneously (subQ) at different times post-injury. We found PZ treatment preserves both synaptic and non-synaptic mitochondrial bioenergetics at 24 h and that this protection is partially maintained out to 72 h post-injury using various dosing regimens. The results from these studies indicate that the therapeutic window for the first dose of PZ is likely within the first hour after injury, and the window for administration of the second dose seems to fall between 12 and 24 h. Administration of PZ was able to significantly improve mitochondrial respiration compared to vehicle-treated animals across various states of respiration for both the non-synaptic and synaptic mitochondria. The synaptic mitochondria appear to respond more robustly to PZ treatment than the non-synaptic, and further experimentation will need to be done to further understand these effects in the context of TBI.


Subject(s)
Brain Injuries, Traumatic/pathology , Mitochondria/drug effects , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Phenelzine/pharmacology , Animals , Brain Injuries, Traumatic/metabolism , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Lipid Peroxidation/drug effects , Male , Mitochondria/metabolism , Mitochondria/pathology , Rats , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , Synapses/pathology
SELECTION OF CITATIONS
SEARCH DETAIL