Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Electrocardiol ; 86: 153763, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39079367

ABSTRACT

Brugada syndrome (BrS) is a rare autosomal dominant inherited channel disorder characterized by a specific electrocardiographic pattern of right precordial ST-segment elevation. Clinically, patients may experience polymorphic ventricular tachycardia and ventricular fibrillation, leading to recurrent syncope and sudden cardiac death (SCD) in the absence of structural cardiomyopathy. The A-kinase anchor protein 9 (AKAP9) gene, located on chromosome 7, encodes the AKAP9 protein, which plays a crucial role in regulating the phosphorylation of slowly activating delayed rectifier potassium channels (IKs). Here, we present a rare case of BrS associated with an insertion mutation in AKAP9, resulting in a frameshift mutation.

2.
Int J Mol Sci ; 25(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38203733

ABSTRACT

Thyroid carcinoma is the primary endocrine malignancy worldwide. The preoperative examination of thyroid tissue lesion is often unclear. Approximately 25% of thyroid cancers cannot be diagnosed definitively without post-surgery histopathological examination. The assessment of diagnostic and differential markers of thyroid cancers is needed to improve preoperative diagnosis and reduce unnecessary treatments. Here, we assessed the expression of RASSF1A, DIRAS3, and AKAP9 genes, and the presence of BRAF V600E point mutation in benign and malignant thyroid lesions in a Polish cohort (120 patients). We have also performed a comparative analysis of gene expression using data obtained from the Gene Expression Omnibus (GEO) database (307 samples). The expression of RASSF1A and DIRAS3 was decreased, whereas AKAP9's was increased in pathologically changed thyroid compared with normal thyroid tissue, and significantly correlated with e.g., histopathological type of lesion papillary thyroid cancer (PTC) vs follicular thyroid cancer (FTC), patient's age, tumour stage, or its encapsulation. The receiver operating characteristic (ROC) analysis for the more aggressive FTC subtype differential marker suggests value in estimating RASSF1A and AKAP9 expression, with their area under curve (AUC), specificity, and sensitivity at 0.743 (95% CI: 0.548-0.938), 82.2%, and 66.7%; for RASSF1A, and 0.848 (95% CI: 0.698-0.998), 54.8%, and 100%, for AKAP9. Our research gives new insight into the basis of the aggressiveness and progression of thyroid cancers, and provides information on potential differential markers that may improve preoperative diagnosis.


Subject(s)
Adenocarcinoma, Follicular , Thyroid Neoplasms , Humans , A Kinase Anchor Proteins/genetics , Cytoskeletal Proteins/genetics , Diagnosis, Differential , Thyroid Neoplasms/diagnosis , Thyroid Neoplasms/genetics
3.
FASEB J ; 35(10): e21925, 2021 10.
Article in English | MEDLINE | ID: mdl-34569663

ABSTRACT

In mammalian testes, extensive remodeling of the microtubule (MT) and actin cytoskeletons takes place in Sertoli cells across the seminiferous epithelium to support spermatogenesis. However, the mechanism(s) involving regulatory and signaling proteins remains poorly understood. Herein, A-kinase anchoring protein 9 (AKAP9, a member of the AKAP multivalent scaffold protein family) was shown to be one of these crucial regulatory proteins in the rat testis. Earlier studies have shown that AKAP9 serves as a signaling platform by recruiting multiple signaling and regulatory proteins to create a large protein complex that binds to the Golgi and centrosome to facilitate the assembly of the MT-nucleating γ-tubulin ring complex to initiate MT polymerization. We further expanded our earlier studies based on a Sertoli cell-specific AKAP9 knockout mouse model to probe the function of AKAP9 by using the techniques of immunofluorescence analysis, RNA interference (RNAi), and biochemical assays on an in vitro primary Sertoli cell culture model, and an adjudin-based animal model. AKAP9 robustly expressed across the seminiferous epithelium in adult rat testes, colocalizing with MT-based tracks, and laid perpendicular across the seminiferous epithelium, and prominently expressed at the Sertoli-spermatid cell-cell anchoring junction (called apical ectoplasmic specialization [ES]) and at the Sertoli cell-cell interface (called basal ES, which together with tight junction [TJ] created the blood-testis barrier [BTB]) stage specifically. AKAP9 knockdown in Sertoli cells by RNAi was found to perturb the TJ-permeability barrier through disruptive changes in the distribution of BTB-associated proteins at the Sertoli cell cortical zone, mediated by a considerable loss of ability to induce both MT polymerization and actin filament bundling. A considerable decline in AKAP9 expression and a disruptive distribution of AKAP9 across the seminiferous tubules was also noted during adjudin-induced germ cell (GC) exfoliation in this animal model, illustrating AKAP9 is essential to maintain the homeostasis of cytoskeletons to maintain Sertoli and GC adhesion in the testis.


Subject(s)
A Kinase Anchor Proteins/metabolism , Actin Cytoskeleton/metabolism , Cytoskeletal Proteins/metabolism , Microtubules/metabolism , Spermatogenesis , Testis/cytology , Testis/metabolism , Animals , Cell Nucleus/metabolism , Hydrazines/metabolism , Indazoles/metabolism , Male , Models, Animal , Rats , Sertoli Cells/cytology , Sertoli Cells/metabolism , Testis/chemistry
4.
J Biol Chem ; 292(50): 20394-20409, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29054927

ABSTRACT

Microtubules in animal cells assemble (nucleate) from both the centrosome and the cis-Golgi cisternae. A-kinase anchor protein 350 kDa (AKAP350A, also called AKAP450/CG-NAP/AKAP9) is a large scaffolding protein located at both the centrosome and Golgi apparatus. Previous findings have suggested that AKAP350 is important for microtubule dynamics at both locations, but how this scaffolding protein assembles microtubule nucleation machinery is unclear. Here, we found that overexpression of the C-terminal third of AKAP350A, enhanced GFP-AKAP350A(2691-3907), induces the formation of multiple microtubule-nucleation centers (MTNCs). Nevertheless, these induced MTNCs lacked "true" centriole proteins, such as Cep135. Mapping analysis with AKAP350A truncations demonstrated that AKAP350A contains discrete regions responsible for promoting or inhibiting the formation of multiple MTNCs. Moreover, GFP-AKAP350A(2691-3907) recruited several pericentriolar proteins to MTNCs, including γ-tubulin, pericentrin, Cep68, Cep170, and Cdk5RAP2. Proteomic analysis indicated that Cdk5RAP2 and Cep170 both interact with the microtubule nucleation-promoting region of AKAP350A, whereas Cep68 interacts with the distal C-terminal AKAP350A region. Yeast two-hybrid assays established a direct interaction of Cep170 with AKAP350A. Super-resolution and deconvolution microscopy analyses were performed to define the association of AKAP350A with centrosomes, and these studies disclosed that AKAP350A spans the bridge between centrioles, co-localizing with rootletin and Cep68 in the linker region. siRNA-mediated depletion of AKAP350A caused displacement of both Cep68 and Cep170 from the centrosome. These results suggest that AKAP350A acts as a scaffold for factors involved in microtubule nucleation at the centrosome and coordinates the assembly of protein complexes associating with the intercentriolar bridge.


Subject(s)
A Kinase Anchor Proteins/metabolism , Centrosome/metabolism , Cytoskeletal Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Microtubule-Organizing Center/metabolism , Models, Molecular , Nerve Tissue Proteins/metabolism , Phosphoproteins/metabolism , A Kinase Anchor Proteins/antagonists & inhibitors , A Kinase Anchor Proteins/chemistry , A Kinase Anchor Proteins/genetics , Biomarkers/metabolism , Cell Cycle Proteins , Cell Line , Centrosome/ultrastructure , Cytoskeletal Proteins/antagonists & inhibitors , Cytoskeletal Proteins/chemistry , Cytoskeletal Proteins/genetics , Humans , Imaging, Three-Dimensional , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Luminescent Proteins/chemistry , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Microscopy, Electron, Transmission , Microtubule-Associated Proteins/chemistry , Microtubule-Associated Proteins/genetics , Microtubule-Organizing Center/ultrastructure , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/genetics , Peptide Fragments/chemistry , Peptide Fragments/genetics , Peptide Fragments/metabolism , Phosphoproteins/chemistry , Phosphoproteins/genetics , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Protein Multimerization , Proteomics/methods , RNA Interference , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Two-Hybrid System Techniques
5.
Biochim Biophys Acta ; 1862(6): 1172-81, 2016 06.
Article in English | MEDLINE | ID: mdl-27039663

ABSTRACT

Our previous studies have shown that PRKA kinase anchor protein 9 (AKAP-9) is involved in colorectal cancer (CRC) cell proliferation and migration in vitro. However, whether or not AKAP-9 is important for CRC development or metastasis in vivo remains unknown. In the present study, we found that AKAP-9 expression was significantly higher in human colorectal cancer tissues than the paired normal tissues. In fact, AKAP-9 level correlated with the CRC infiltrating depth and metastasis. Moreover, the higher AKAP-9 expression was associated with the lower survival rate in patients. In cultured CRC cells, knockdown of AKAP-9 inhibited cell proliferation, invasion, and migration. AKAP-9 deficiency also attenuated CRC tumor growth and metastasis in vivo. Mechanistically, AKAP-9 interacted with cdc42 interacting protein 4 (CIP4) and regulated its expression. CIP4 levels were interrelated to the AKAP-9 level in CRC cells. Functionally, AKAP-9 was essential for TGF-ß1-induced epithelial-mesenchymal transition of CRC cells, and CIP4 played a critical role in mediating the function of AKAP-9. Importantly, CIP4 expression was significantly up-regulated in human CRC tissues. Taken together, our results demonstrated that AKAP-9 facilitates CRC development and metastasis via regulating CIP4-mediated epithelial-mesenchymal transition of CRC cells.


Subject(s)
A Kinase Anchor Proteins/metabolism , Colorectal Neoplasms/pathology , Cytoskeletal Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Minor Histocompatibility Antigens/metabolism , Neoplasm Invasiveness/pathology , A Kinase Anchor Proteins/genetics , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colorectal Neoplasms/metabolism , Cytoskeletal Proteins/genetics , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Humans , Mice, Inbred BALB C , Mice, Nude , Microtubule-Associated Proteins/genetics , Middle Aged , Minor Histocompatibility Antigens/genetics , Neoplasm Invasiveness/genetics , Protein Interaction Maps
6.
Mol Cell Biochem ; 429(1-2): 11-21, 2017 May.
Article in English | MEDLINE | ID: mdl-28213771

ABSTRACT

Natural product-inspired libraries of molecules with diverse architectures have evolved as one of the most useful tools for discovering lead molecules for drug discovery. In comparison to conventional combinatorial libraries, these molecules have been inferred to perform better in phenotypic screening against complicated targets. Diversity-oriented synthesis (DOS) is a forward directional strategy to access such multifaceted library of molecules. From a successful DOS campaign of a natural product-inspired library, recently a small molecule with spiroindoline motif was identified as a potent anti-breast cancer compound. Herein we report the subcellular studies performed for this molecule on breast cancer cells. Our investigation revealed that it repositions microtubule cytoskeleton and displaces AKAP9 located at the microtubule organization centre. DNA ladder assay and cell cycle experiments further established the molecule as an apoptotic agent. This work further substantiated the amalgamation of DOS-phenotypic screening-sub-cellular studies as a consolidated blueprint for the discovery of potential pharmaceutical drug candidates.


Subject(s)
A Kinase Anchor Proteins/metabolism , Antineoplastic Agents/pharmacology , Cell Cycle/drug effects , Cytoskeletal Proteins/metabolism , Indoles/pharmacology , Small Molecule Libraries/pharmacology , A549 Cells , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Cytoskeleton/drug effects , Drug Screening Assays, Antitumor , Humans , Indoles/chemistry , MCF-7 Cells , Microtubules/drug effects , Molecular Structure , Protein Transport/drug effects , Small Molecule Libraries/chemistry
7.
Mol Cell Biochem ; 430(1-2): 115-125, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28210903

ABSTRACT

Despite the current progress in cancer research and therapy, breast cancer remains the leading cause of mortality among half a million women worldwide. Migration and invasion of cancer cells are associated with prevalent tumor metastasis as well as high mortality. Extensive studies have powerfully established the role of prototypic second messenger cAMP and its two ubiquitously expressed intracellular cAMP receptors namely the classic protein kinaseA/cAMP-dependent protein kinase (PKA) and the more recently discovered exchange protein directly activated by cAMP/cAMP-regulated guanine nucleotide exchange factor (EPAC/cAMP-GEF) in cell migration, cell cycle regulation, and cell death. Herein, we performed the analysis of the Cancer Genome Atlas (TCGA) dataset to evaluate the essential role of cAMP molecular network in breast cancer. We report that EPAC1, PKA, and AKAP9 along with other molecular partners are amplified in breast cancer patients, indicating the importance of this signaling network. To evaluate the functional role of few of these proteins, we used pharmacological modulators and analyzed their effect on cell migration and cell death in breast cancer cells. Hence, we report that inhibition of EPAC1 activity using pharmacological modulators leads to inhibition of cell migration and induces cell death. Additionally, we also observed that the inhibition of EPAC1 resulted in disruption of its association with the microtubule cytoskeleton and delocalization of AKAP9 from the centrosome as analyzed by in vitro imaging. Finally, this study suggests for the first time the mechanistic insights of mode of action of a primary cAMP-dependent sensor, Exchange protein activated by cAMP 1 (EPAC1), via its interaction with A-kinase anchoring protein 9 (AKAP9). This study provides a new cell signaling cAMP-EPAC1-AKAP9 direction to the development of additional biotherapeutics for breast cancer.


Subject(s)
Apoptosis , Breast Neoplasms/metabolism , Cell Movement , Cyclic AMP/metabolism , Guanine Nucleotide Exchange Factors/metabolism , Neoplasm Proteins/metabolism , Second Messenger Systems , A Kinase Anchor Proteins/genetics , A Kinase Anchor Proteins/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Female , Guanine Nucleotide Exchange Factors/genetics , Humans , MCF-7 Cells , Neoplasm Proteins/genetics
8.
Alzheimers Dement ; 10(6): 609-618.e11, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25172201

ABSTRACT

BACKGROUND: Less is known about the genetic basis of Alzheimer's disease (AD) in African Americans (AAs) than in non-Hispanic whites. METHODS: Whole exome sequencing (WES) was performed on seven AA AD cases. Disease association with potentially AD-related variants from WES was assessed in an AA discovery cohort of 422 cases and 394 controls. Replication was sought in an AA sample of 1037 cases and 1869 controls from the Alzheimer Disease Genetics Consortium (ADGC). RESULTS: Forty-four single nucleotide polymorphisms (SNPs) from WES passed filtering criteria and were successfully genotyped. Nominally significant (P < .05) association to AD was observed with two African-descent specific AKAP9 SNPs in tight linkage disequilibrium: rs144662445 (P = .014) and rs149979685 (P = .037). These associations were replicated in the ADGC sample (rs144662445: P = .0022, odds ratio [OR] = 2.75; rs149979685: P = .0022, OR = 3.61). CONCLUSIONS: Because AKAP9 was not previously linked to AD risk, this study indicates a potential new disease mechanism.


Subject(s)
A Kinase Anchor Proteins/genetics , Alzheimer Disease/ethnology , Alzheimer Disease/genetics , Black or African American/genetics , Cytoskeletal Proteins/genetics , Genetic Predisposition to Disease/genetics , Polymorphism, Single Nucleotide/genetics , Aged , Aged, 80 and over , Cluster Analysis , Female , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Male
9.
Leuk Res Rep ; 21: 100465, 2024.
Article in English | MEDLINE | ID: mdl-38952949

ABSTRACT

Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy associated with various combinations of gene mutations, epigenetic abnormalities, and chromosome rearrangement-related gene fusions. Despite the significant degree of heterogeneity in its pathogenesis, many gene fusions and point mutations are recurrent in AML and have been employed in risk stratification over the last several decades. Gene fusions have long been recognized for understanding tumorigenesis and their proven roles in clinical diagnosis and targeted therapies. Advances in DNA sequencing technologies and computational biology have contributed significantly to the detection of known fusion genes as well as for the discovery of novel ones. Several recurring gene fusions in AML have been linked to prognosis, treatment response, and disease progression. In this report, we present a case with a long history of essential thrombocythemia and hallmark CALR mutation transforming to AML characterized by a previously unreported AKAP9::PDGFRA fusion gene. We propose mechanisms by which this fusion may contribute to the pathogenesis of AML and its potential as a molecular target for tyrosine kinase inhibitors.

10.
Mol Syndromol ; 15(2): 136-142, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38585551

ABSTRACT

Introduction: Long QT syndrome (LQTS) is a common congenital cause of fatal cardiac arrhythmia. Characteristic clinical findings are prolonged QT interval and ventricular arrhythmia on electrocardiogram (ECG), syncope, seizure, and sudden death. It is a genetically heterogeneous disease. To date, disease-causing variant have been reported in seventeen genes. The AKAP9 is still considered controversial among those genes. Case Report: We report the case of a 10-year-old female who was born from a non-consanguineous Turkish couple. She visited pediatrics cardiology clinic presenting with dyspnea and tachycardia. Prolongation of the QT interval was detected in her ECG. Panel test associated with LQTS genes was performed. She was diagnosed with long QTS type 11 due to a heterozygous variant in AKAP9:c.11487_11489 delTACinsCGTA, p.(Thr3830ValfsTer12), that was revealed through next-generation sequencing test. The variant was also found in her mother and brother. Discussion and Conclusion: Novel heterozygous frameshift variant in the AKAP9 gene was considered as "Uncertain Significance (VUS)" in the ACMG classification. The novel variant is absent from population databases (PM2); it is a null variant (PVS1_moderate). AKAP9 gene has the lowest known rate among the causes of LQTS. Information is limited on genotype-phenotype correlation. Yet it is still among the candidate genes. Although the relationship of the AKAP9 gene with LQTS has not yet been fully indicated, individuals with a pathogenic variant in AKAP9 gene and silent carriers may be at risk for fatal cardiac events. Improvements of the genetic tests in the near future may contribute to the literature and clinical research about AKAP9 gene.

11.
J Clin Med ; 12(16)2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37629231

ABSTRACT

Black/African American (AA) individuals have a higher risk of Alzheimer's disease (AD) than White non-Hispanic persons of European ancestry (EUR) for reasons that may include economic disparities, cardiovascular health, quality of education, and biases in the methods used to diagnose AD. AD is also heritable, and some of the differences in risk may be due to genetics. Many AD-associated variants have been identified by candidate gene studies, genome-wide association studies (GWAS), and genome-sequencing studies. However, most of these studies have been performed using EUR cohorts. In this paper, we review the genetics of AD and AD-related traits in AA individuals. Importantly, studies of genetic risk factors in AA cohorts can elucidate the molecular mechanisms underlying AD risk in AA and other populations. In fact, such studies are essential to enable reliable precision medicine approaches in persons with considerable African ancestry. Furthermore, genetic studies of AA cohorts allow exploration of the ways the impact of genes can vary by ancestry, culture, and economic and environmental disparities. They have yielded important gains in our knowledge of AD genetics, and increasing AA individual representation within genetic studies should remain a priority for inclusive genetic study design.

12.
Front Physiol ; 13: 933963, 2022.
Article in English | MEDLINE | ID: mdl-35837016

ABSTRACT

Myosin VI (MVI) is a unique unconventional myosin ubiquitously expressed in metazoans. Its diverse cellular functions are mediated by interactions with a number of binding partners present in multi-protein complexes. MVI is proposed to play important roles in muscle function and myogenesis. Previously, we showed that MVI is present in striated muscles and myogenic cells, and MVI interacts with A-kinase anchoring protein 9 (AKAP9), a scaffold for PKA and its regulatory proteins. Since PKA directly phosphorylates the MVI cargo binding domain, we hypothesized that the cellular effects of MVI are mediated by the cAMP/PKA signaling pathway, known to play important roles in skeletal muscle metabolism and myogenesis. To elucidate the potential role of MVI in PKA signaling in hindlimb muscle function, we used mice lacking MVI (Snell's waltzer, SV), considered as natural MVI knockouts, and heterozygous littermates. We used muscles isolated from newborn (P0) as well as 3- and 12-month-old adult mice. We observed a significant increase in the muscle to body mass ratio, which was most evident for the soleus muscle, as well as changes in fiber size, indicating alterations in muscle metabolism. These observations were accompanied by age-dependent changes in the activity of PKA and cAMP/PKA-dependent transcriptional factor (CREB). Additionally, the levels of adenylate cyclase isoforms and phosphodiesterase (PDE4) were age-dependent. Also, cAMP levels were decreased in the muscle of P0 mice. Together, these observations indicate that lack of MVI impairs PKA signaling and results in the observed alterations in the SV muscle metabolism, in particular in newborn mice.

13.
Genes (Basel) ; 13(11)2022 11 20.
Article in English | MEDLINE | ID: mdl-36421840

ABSTRACT

Disease-associated pathogenic variants in the A-Kinase Anchor Protein 9 (AKAP9) (MIM *604001) have been recently identified in patients with autosomal dominant long QT syndrome 11 (MIM #611820), lethal arrhythmia (ventricular fibrillation, polymorphic ventricular tachycardia), Brugada syndrome, and sudden unexpected death. However, AKAP9 sequence variations were rarely reported and AKAP9 was classified as a "disputed evidence" gene to support disease causation due to the insufficient genetic evidence and a limited number of reported AKAP9-mutated patients. Here, we describe a 47-year-old male carrying a novel frameshift AKAP9 pathogenic variant who presented recurrent syncopal attacks and sudden cardiac arrest that required a semi-automatic external defibrillator implant and an electric shock treatment of ventricular arrhythmia. This study provides insight into the mechanism underlying cardiac arrest and confirms that AKAP9 loss-of-function variants predispose to serious, life-threatening ventricular arrhythmias.


Subject(s)
Brugada Syndrome , Channelopathies , Male , Humans , Middle Aged , Channelopathies/complications , A Kinase Anchor Proteins/genetics , Death, Sudden, Cardiac/etiology , Arrhythmias, Cardiac/genetics , Brugada Syndrome/genetics , Cytoskeletal Proteins
14.
Front Pediatr ; 10: 1027177, 2022.
Article in English | MEDLINE | ID: mdl-36699290

ABSTRACT

Introduction: The aim of the present study is to report the diagnosis and treatment of a rare case of frequent torsades de pointes (Tdp) in a child with a novel AKAP9 mutation. A 13-year-old girl suffered from repeated syncope and frequent Tdp. An electrocardiogram (ECG) showed frequent multisource premature ventricular contractions with the R-ON-T phenomenon. The QTc ranged from 410 to 468 ms. The genetic test indicated a heterozygous mutation, namely, c.11714T > C (p.M3905T), in the AKAP9 gene, which is a controversial gene in long QT syndrome. After treatment with propranolol, recurrent syncope occurred, and the patient received an implantable cardioverter defibrillator (ICD). Due to frequent electrical storms at home, the child was additionally treated with propafenone to prevent arrhythmia. The antitachycardia pacing (ATP) function in the ICD was turned off, and the threshold of ventricular tachycardia (VT) assessment was adjusted from 180 beats/min to 200 beats/min. The patient was followed up for 12 months without malignant arrhythmia and electric shock. Conclusion: Genetic testing may be a useful tool to determine the origin of channelopathy, but the results should be interpreted in combination with the actual situation. Rational parameter settings for the ICD and application of antiarrhythmic drugs can reduce the mortality rates of children.

15.
Elife ; 92020 12 09.
Article in English | MEDLINE | ID: mdl-33295871

ABSTRACT

The switch from centrosomal microtubule-organizing centers (MTOCs) to non-centrosomal MTOCs during differentiation is poorly understood. Here, we identify AKAP6 as key component of the nuclear envelope MTOC. In rat cardiomyocytes, AKAP6 anchors centrosomal proteins to the nuclear envelope through its spectrin repeats, acting as an adaptor between nesprin-1α and Pcnt or AKAP9. In addition, AKAP6 and AKAP9 form a protein platform tethering the Golgi to the nucleus. Both Golgi and nuclear envelope exhibit MTOC activity utilizing either AKAP9, or Pcnt-AKAP9, respectively. AKAP6 is also required for formation and activity of the nuclear envelope MTOC in human osteoclasts. Moreover, ectopic expression of AKAP6 in epithelial cells is sufficient to recruit endogenous centrosomal proteins. Finally, AKAP6 is required for cardiomyocyte hypertrophy and osteoclast bone resorption activity. Collectively, we decipher the MTOC at the nuclear envelope as a bi-layered structure generating two pools of microtubules with AKAP6 as a key organizer.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cytoskeletal Proteins/metabolism , Golgi Apparatus/physiology , Microtubule-Organizing Center/physiology , Myocytes, Cardiac/metabolism , Nuclear Envelope/physiology , A Kinase Anchor Proteins/genetics , Animals , Antigens/genetics , Antigens/metabolism , Cell Line , Cytoskeletal Proteins/genetics , Gene Expression Regulation , Humans , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Osteoclasts/metabolism , Rats , Rats, Sprague-Dawley
16.
Front Neurosci ; 12: 592, 2018.
Article in English | MEDLINE | ID: mdl-30210277

ABSTRACT

The genetic architecture of late-onset Alzheimer disease (AD) in African Americans (AAs) differs from that in persons of European ancestry. In addition to APOE, genome-wide association studies (GWASs) of AD in AA samples have implicated ABCA7, COBL, and SLC10A2 as AA-AD risk genes. Previously, we identified by whole exome sequencing a small number of AA AD cases and subsequent genotyping in a large AA sample of AD cases and controls association of AD risk with a pair of rare missense variants in AKAP9. In this study, we performed targeted deep sequencing (including both introns and exons) of approximately 100 genes previously linked to AD or AD-related traits in an AA cohort of 489 AD cases and 472 controls to find novel AD risk variants. We observed association with an 11 base-pair frame-shift loss-of-function (LOF) variant in ABCA7 (rs567222111) for which the evidence was bolstered when combined with data from a replication AA cohort of 484 cases and 484 controls (OR = 2.42, p = 0.022). We also found association of AD with a rare 9 bp deletion (rs371245265) located very close to the AKAP9 transcription start site (rs371245265, OR = 10.75, p = 0.0053). The most significant findings were obtained with a rare protective variant in F5 (OR = 0.053, p = 6.40 × 10-5), a gene that was previously associated with a brain MRI measure of hippocampal atrophy, and two common variants in KIAA0196 (OR = 1.51, p<8.6 × 10-5). Gene-based tests of aggregated rare variants yielded several nominally significant associations with KANSL1, CNN2, and TRIM35. Although no associations passed multiple test correction, our study adds to a body of literature demonstrating the utility of examining sequence data from multiple ethnic populations for discovery of new and impactful risk variants. Larger sample sizes will be needed to generate well-powered epidemiological investigations of rare variation, and functional studies are essential for establishing the pathogenicity of variants identified by sequencing.

17.
J Neuroimmune Pharmacol ; 13(2): 254-264, 2018 06.
Article in English | MEDLINE | ID: mdl-29516269

ABSTRACT

We studied the effect of two rare mutations (rs144662445 and rs149979685) in the A-kinase anchoring protein 9 (AKAP9) gene, previously associated with Alzheimer disease (AD) in African Americans (AA), on post-translational modifications of AD-related pathogenic molecules, amyloid precursor protein (APP) and microtubule-associated protein Tau using lymphoblastoid cell lines (LCLs) from 11 AA subjects with at least one AKAP9 mutation and 17 AA subjects lacking these mutations. LCLs were transduced by viral vectors expressing causative AD mutations in APP or human full-length wild type Tau. Cell lysates were analyzed for total APP, Aß40, and total and T181 phospho-Tau (pTau). AKAP9 mutations had no effect on Aß40/APP, but significantly increased pTau/Tau ratio in LCLs treated with phosphodiesterase-4 inhibitor rolipram, which activates protein kinase A. Proteomic analysis of Tau interactome revealed enrichment of RNA binding proteins and decrease of proteasomal molecules in rolipram-treated cells with AKAP9 mutations. This study shows the impact of rare functional AKAP9 mutations on Tau, a central mechanism of AD pathogenesis, in LCLs derived from AD and control subjects.


Subject(s)
A Kinase Anchor Proteins/genetics , Alzheimer Disease/genetics , Cytoskeletal Proteins/genetics , Protein Processing, Post-Translational/genetics , tau Proteins/metabolism , Black or African American , Aged , Alzheimer Disease/metabolism , Female , Genetic Predisposition to Disease , Genotype , Humans , Male , Mutation, Missense , Phosphorylation
18.
Pathol Oncol Res ; 22(3): 587-92, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26786868

ABSTRACT

A-kinase-anchoring protein 9 (AKAP9) coordinates the cellular location and function of protein kinase A. AKAP9 plays an important role in centrosome duplication, cell cycle progression and maintenance of cell membrane integrity, alterations of which contribute to tumorigenesis. Somatic mutations of AKAP9 gene have been detected in many cancers including gastric (GC) and colorectal cancers (CRC), but the mutation status with respect to microsatellite instability (MSI) has not been reported. In a public database, we found that AKAP9 gene had mononucleotide repeats in the coding sequences that might be mutation targets in the cancers with MSI. We analyzed the mutations in 79 GCs and 124 CRCs including high MSI (MSI-H) and microsatellite stable/low MSI (MSS/MSI-L) cases by single-strand conformation polymorphism analysis and DNA sequencing. Overall, we found AKAP9 frameshift mutations in 4 (11.7 %) GCs and 20 (17.7 %) CRCs with MSI-H (24/113), but not in MSS/MSI-L cancers (0/90) (p < 0.001). In addition, we analyzed intratumoral heterogeneity (ITH) of AKAP9 frameshift mutations in 16 CRCs and found that five CRCs (31.3 %) harbored regional ITH of the AKAP9 frameshift mutations. Our data indicate that AKAP9 gene harbors not only somatic frameshift mutations but also mutational ITH, which together may be features of GC and CRC with MSI-H. Our results also suggest that regional mutation analysis is needed for a better evaluation of mutation status in these tumors to overcome ITH.


Subject(s)
A Kinase Anchor Proteins/genetics , Colorectal Neoplasms/genetics , Cytoskeletal Proteins/genetics , Frameshift Mutation/genetics , Stomach Neoplasms/genetics , Carcinogenesis/genetics , DNA Mutational Analysis/methods , DNA, Neoplasm/genetics , Exons/genetics , Humans , Microsatellite Instability , Polymorphism, Single-Stranded Conformational/genetics
19.
Oncotarget ; 7(10): 11733-43, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26887056

ABSTRACT

Our earlier findings indicate that the long non-coding RNA MALAT1 promotes colorectal cancer (CRC) cell proliferation, invasion and metastasis in vitro and in vivo by increasing expression of AKAP-9. In the present study, we investigated the molecular mechanism by which MALAT1 enhances AKAP9 expression in CRC SW480 cells. We found that MALAT1 interacts with both SRPK1 and SRSF1. MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation. Following MALAT1 knockdown, overexpression of SRPK1 was sufficient to restore SRSF1 phosphorylation and AKAP-9 expression to a level that promoted cell proliferation, invasion and migration in vitro. Conversely, SRPK1 knockdown after overexpression of MALAT1 in SW480 cells diminished SRSF1 phosphorylation and AKAP-9 expression and suppressed cell proliferation, invasion and migration in vitro. These findings suggest MALAT1 increases AKAP-9 expression by promoting SRPK1-catalyzed SRSF1 phosphorylation in CRC cells. These results reveal a novel molecular mechanism by which MALAT1 regulates AKAP-9 expression in CRC cells.


Subject(s)
A Kinase Anchor Proteins/metabolism , Colorectal Neoplasms/metabolism , Cytoskeletal Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , RNA, Long Noncoding/metabolism , Serine-Arginine Splicing Factors/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Phosphorylation , RNA, Long Noncoding/genetics , Serine-Arginine Splicing Factors/genetics , Transfection
20.
J Psychiatr Res ; 66-67: 38-44, 2015.
Article in English | MEDLINE | ID: mdl-25943950

ABSTRACT

A fraction of genetic risk to develop schizophrenia may be due to low-frequency variants. This multistep study attempted to find low-frequency variants of high effect at coding regions of eleven schizophrenia susceptibility genes supported by genome-wide association studies (GWAS) and nine genes for the DISC1 interactome, a susceptibility gene-set. During the discovery step, a total of 125 kb per sample were resequenced in 153 schizophrenia patients and 153 controls from Galicia (NW Spain), and the cumulative role of low-frequency variants at a gene or at the DISC1 gene-set were analyzed by burden and variance-based tests. Relevant results were meta-analyzed when appropriate data were available. In addition, case-only putative damaging variants were genotyped in a further 419 cases and 398 controls. The discovery step revealed a protective effect of rare missense variants at NRXN1, a result supported by meta-analysis (OR = 0.67, 95% CI: 0.47-0.94, P = 0.021, based on 3848 patients and 3896 controls from six studies). The follow-up step based on case-only putative damaging variants revealed a promising risk variant at AKAP9. This variant, K873R, reached nominal significance after inclusion of 240 additional Spanish controls from databases. The variant, located in an ADCY2 binding region, is absent from large public databases. Interestingly, GWAS revealed an association between common ADCY2 variants and bipolar disorder, a disorder with considerable genetic overlap with schizophrenia. These data suggest a role of rare missense variants at NRXN1 and AKAP9 in schizophrenia susceptibility, probably related to alteration of the excitatory/inhibitory synaptic balance, deserving further investigation.


Subject(s)
A Kinase Anchor Proteins/genetics , Cell Adhesion Molecules, Neuronal/genetics , Cytoskeletal Proteins/genetics , Genetic Predisposition to Disease , Nerve Tissue Proteins/genetics , Open Reading Frames , Schizophrenia/genetics , Adenylyl Cyclases/genetics , Calcium-Binding Proteins , Databases, Genetic , Female , Genome-Wide Association Study , Humans , Male , Neural Cell Adhesion Molecules , Polymorphism, Single Nucleotide , Risk , Spain
SELECTION OF CITATIONS
SEARCH DETAIL