Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 324
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 33: 107-38, 2015.
Article in English | MEDLINE | ID: mdl-25493331

ABSTRACT

Immune responses occur in the midst of a variety of cellular stresses that can severely perturb endoplasmic reticulum (ER) function. The unfolded protein response is a three-pronged signaling axis dedicated to preserving ER homeostasis. In this review, we highlight many important and emerging functional roles for ER stress in immunity, focusing on how the bidirectional cross talk between immunological processes and basic cell biology leads to pleiotropic signaling outcomes and enhanced sensitivity to inflammatory stimuli. We also discuss how dysregulated ER stress responses can provoke many diseases, including autoimmunity, firmly positioning the unfolded protein response as a major therapeutic target in human disease.


Subject(s)
Endoplasmic Reticulum Stress/immunology , Immunity , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/metabolism , Autoimmunity , Cell Differentiation/immunology , Endoplasmic Reticulum/metabolism , Humans , Immune System Phenomena , Infections/etiology , Infections/metabolism , Inflammation/immunology , Inflammation/metabolism , Protein Binding , Signal Transduction , Transcription Factors/metabolism , Unfolded Protein Response
2.
Cell ; 168(4): 692-706, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28187289

ABSTRACT

Malignant cells utilize diverse strategies that enable them to thrive under adverse conditions while simultaneously inhibiting the development of anti-tumor immune responses. Hostile microenvironmental conditions within tumor masses, such as nutrient deprivation, oxygen limitation, high metabolic demand, and oxidative stress, disturb the protein-folding capacity of the endoplasmic reticulum (ER), thereby provoking a cellular state of "ER stress." Sustained activation of ER stress sensors endows malignant cells with greater tumorigenic, metastatic, and drug-resistant capacity. Additionally, recent studies have uncovered that ER stress responses further impede the development of protective anti-cancer immunity by manipulating the function of myeloid cells in the tumor microenvironment. Here, we discuss the tumorigenic and immunoregulatory effects of ER stress in cancer, and we explore the concept of targeting ER stress responses to enhance the efficacy of standard chemotherapies and evolving cancer immunotherapies in the clinic.


Subject(s)
Endoplasmic Reticulum Stress , Neoplasms/immunology , Neoplasms/pathology , Animals , Neoplasm Metastasis/immunology , Neoplasm Metastasis/pathology , Neoplasms/drug therapy , Neovascularization, Pathologic , Tumor Escape , Tumor Microenvironment , Unfolded Protein Response
3.
Mol Cell ; 82(8): 1477-1491, 2022 04 21.
Article in English | MEDLINE | ID: mdl-35452616

ABSTRACT

Endoplasmic reticulum quality control (ERQC) pathways comprising chaperones, folding enzymes, and degradation factors ensure the fidelity of ER protein folding and trafficking to downstream secretory environments. However, multiple factors, including tissue-specific secretory proteomes, environmental and genetic insults, and organismal aging, challenge ERQC. Thus, a key question is: how do cells adapt ERQC to match the diverse, ever-changing demands encountered during normal physiology and in disease? The answer lies in the unfolded protein response (UPR), a signaling mechanism activated by ER stress. In mammals, the UPR comprises three signaling pathways regulated downstream of the ER membrane proteins IRE1, ATF6, and PERK. Upon activation, these UPR pathways remodel ERQC to alleviate cellular stress and restore ER function. Here, we describe how UPR signaling pathways adapt ERQC, highlighting their importance for maintaining ER function across tissues and the potential for targeting the UPR to mitigate pathologies associated with protein misfolding diseases.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Animals , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress/genetics , Mammals , Quality Control , Signal Transduction
4.
Mol Cell ; 69(2): 169-181, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29107536

ABSTRACT

The secretory capacity of a cell is constantly challenged by physiological demands and pathological perturbations. To adjust and match the protein-folding capacity of the endoplasmic reticulum (ER) to changing secretory needs, cells employ a dynamic intracellular signaling pathway known as the unfolded protein response (UPR). Homeostatic activation of the UPR enforces adaptive programs that modulate and augment key aspects of the entire secretory pathway, whereas maladaptive UPR outputs trigger apoptosis. Here, we discuss recent advances into how the UPR integrates information about the intensity and duration of ER stress stimuli in order to control cell fate. These findings are timely and significant because they inform an evolving mechanistic understanding of a wide variety of human diseases, including diabetes mellitus, neurodegeneration, and cancer, thus opening up the potential for new therapeutic modalities to treat these diverse diseases.


Subject(s)
Cell Lineage/physiology , Unfolded Protein Response/physiology , Activating Transcription Factor 6/metabolism , Animals , Apoptosis , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Endoribonucleases/metabolism , Homeostasis , Humans , Models, Biological , Protein Folding , Protein Serine-Threonine Kinases/metabolism , Secretory Pathway/physiology , Signal Transduction , eIF-2 Kinase/metabolism
5.
Proc Natl Acad Sci U S A ; 119(12): e2122657119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35286189

ABSTRACT

SignificanceMembrane and secretory proteins are synthesized in the endoplasmic reticulum (ER). Perturbations to ER function disrupts protein folding, causing misfolded proteins to accumulate, a condition known as ER stress. Cells adapt to stress by activating the unfolded protein response (UPR), which ultimately restores proteostasis. A key player in the UPR response is ATF6α, which requires release from ER retention and modulation of its redox status during activation. Here, we report that ER stress promotes formation of a specific ATF6α dimer, which is preferentially trafficked to the Golgi for processing. We show that ERp18 regulates ATF6α by mitigating its dimerization and trafficking to the Golgi and identify redox-dependent oligomerization of ATF6α as a key mechanism regulating its function during the UPR.


Subject(s)
Endoplasmic Reticulum , Unfolded Protein Response , Dimerization , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Oxidation-Reduction , Proteins/metabolism
6.
J Mol Cell Cardiol ; 189: 12-24, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38401179

ABSTRACT

Cardiomyocytes activate the unfolded protein response (UPR) transcription factor ATF6 during pressure overload-induced hypertrophic growth. The UPR is thought to increase ER protein folding capacity and maintain proteostasis. ATF6 deficiency during pressure overload leads to heart failure, suggesting that ATF6 protects against myocardial dysfunction by preventing protein misfolding. However, conclusive evidence that ATF6 prevents toxic protein misfolding during cardiac hypertrophy is still pending. Here, we found that activation of the UPR, including ATF6, is a common response to pathological cardiac hypertrophy in mice. ATF6 KO mice failed to induce sufficient levels of UPR target genes in response to chronic isoproterenol infusion or transverse aortic constriction (TAC), resulting in impaired cardiac growth. To investigate the effects of ATF6 on protein folding, the accumulation of poly-ubiquitinated proteins as well as soluble amyloid oligomers were directly quantified in hypertrophied hearts of WT and ATF6 KO mice. Whereas only low levels of protein misfolding was observed in WT hearts after TAC, ATF6 KO mice accumulated increased quantities of misfolded protein, which was associated with impaired myocardial function. Collectively, the data suggest that ATF6 plays a critical adaptive role during cardiac hypertrophy by protecting against protein misfolding.


Subject(s)
Aortic Valve Stenosis , Cardiomegaly , Animals , Mice , Cardiomegaly/pathology , Myocytes, Cardiac/metabolism , Myocardium/metabolism , Transcription Factors/metabolism , Gene Expression Regulation , Aortic Valve Stenosis/metabolism , Mice, Knockout
7.
J Proteome Res ; 23(1): 356-367, 2024 01 05.
Article in English | MEDLINE | ID: mdl-38038604

ABSTRACT

Coronaviruses (CoV), including SARS-CoV-2, modulate host proteostasis through the activation of stress-responsive signaling pathways such as the Unfolded Protein Response (UPR), which remedies misfolded protein accumulation by attenuating translation and increasing protein folding capacity. While CoV nonstructural proteins (nsps) are essential for infection, little is known about the role of nsps in modulating the UPR. We characterized the impact of overexpression of SARS-CoV-2 nsp4, a key driver of replication, on the UPR in cell culture using quantitative proteomics to sensitively detect pathway-wide upregulation of effector proteins. We find that nsp4 preferentially activates the ATF6 and PERK branches of the UPR. Previously, we found that an N-terminal truncation of nsp3 (nsp3.1) can suppress pharmacological ATF6 activation. To determine how nsp3.1 and nsp4 tune the UPR, their coexpression demonstrated that nsp3.1 suppresses nsp4-mediated PERK, but not ATF6 activation. Reanalysis of SARS-CoV-2 infection proteomics data revealed time-dependent activation of PERK targets early in infection, which subsequently fades. This temporal regulation suggests a role for nsp3 and nsp4 in tuning the PERK pathway to attenuate host translation beneficial for viral replication while avoiding later apoptotic signaling caused by chronic activation. This work furthers our understanding of CoV-host proteostasis interactions and highlights the power of proteomic methods for systems-level analysis of the UPR.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Proteomics , Unfolded Protein Response , Cell Culture Techniques
8.
J Cell Mol Med ; 28(14): e18561, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39072992

ABSTRACT

Endoplasmic reticulum (ER) stress, which ensues from an overwhelming protein folding capacity, activates the unfolded protein response (UPR) in an effort to restore cellular homeostasis. As ER stress is associated with numerous diseases, it is highly important to delineate the molecular mechanisms governing the ER stress to gain insight into the disease pathology. Long non-coding RNAs, transcripts with a length of over 200 nucleotides that do not code for proteins, interact with proteins and nucleic acids, fine-tuning the UPR to restore ER homeostasis via various modes of actions. Dysregulation of specific lncRNAs is implicated in the progression of ER stress-related diseases, presenting these molecules as promising therapeutic targets. The comprehensive analysis underscores the importance of understanding the nuanced interplay between lncRNAs and ER stress for insights into disease mechanisms. Overall, this review consolidates current knowledge, identifies research gaps and offers a roadmap for future investigations into the multifaceted roles of lncRNAs in ER stress and associated diseases to shed light on their pivotal roles in the pathogenesis of related diseases.


Subject(s)
Endoplasmic Reticulum Stress , RNA, Long Noncoding , Unfolded Protein Response , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Endoplasmic Reticulum Stress/genetics , Humans , Animals , Gene Expression Regulation , Signal Transduction
9.
J Biol Chem ; 299(6): 104810, 2023 06.
Article in English | MEDLINE | ID: mdl-37172729

ABSTRACT

RNA sequencing (RNA-seq) is a powerful technique for understanding cellular state and dynamics. However, comprehensive transcriptomic characterization of multiple RNA-seq datasets is laborious without bioinformatics training and skills. To remove the barriers to sequence data analysis in the research community, we have developed "RNAseqChef" (RNA-seq data controller highlighting expression features), a web-based platform of systematic transcriptome analysis that can automatically detect, integrate, and visualize differentially expressed genes and their biological functions. To validate its versatile performance, we examined the pharmacological action of sulforaphane (SFN), a natural isothiocyanate, on various types of cells and mouse tissues using multiple datasets in vitro and in vivo. Notably, SFN treatment upregulated the ATF6-mediated unfolded protein response in the liver and the NRF2-mediated antioxidant response in the skeletal muscle of diet-induced obese mice. In contrast, the commonly downregulated pathways included collagen synthesis and circadian rhythms in the tissues tested. On the server of RNAseqChef, we simply evaluated and visualized all analyzing data and discovered the NRF2-independent action of SFN. Collectively, RNAseqChef provides an easy-to-use open resource that identifies context-dependent transcriptomic features and standardizes data assessment.


Subject(s)
Gene Expression Profiling , Internet , Isothiocyanates , RNA-Seq , Software , Sulfoxides , Animals , Mice , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Isothiocyanates/pharmacology , Sulfoxides/pharmacology , RNA-Seq/methods , RNA-Seq/standards , Organ Specificity/drug effects , Reproducibility of Results , Mice, Obese , Unfolded Protein Response/drug effects , Liver/drug effects , Muscle, Skeletal/drug effects , Antioxidants/metabolism , Data Visualization
10.
Curr Issues Mol Biol ; 46(5): 4286-4308, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38785529

ABSTRACT

Coronaviruses represent a significant class of viruses that affect both animals and humans. Their replication cycle is strongly associated with the endoplasmic reticulum (ER), which, upon virus invasion, triggers ER stress responses. The activation of the unfolded protein response (UPR) within infected cells is performed from three transmembrane receptors, IRE1, PERK, and ATF6, and results in a reduction in protein production, a boost in the ER's ability to fold proteins properly, and the initiation of ER-associated degradation (ERAD) to remove misfolded or unfolded proteins. However, in cases of prolonged and severe ER stress, the UPR can also instigate apoptotic cell death and inflammation. Herein, we discuss the ER-triggered host responses after coronavirus infection, as well as the pharmaceutical targeting of the UPR as a potential antiviral strategy.

11.
FASEB J ; 37(2): e22758, 2023 02.
Article in English | MEDLINE | ID: mdl-36607288

ABSTRACT

Stress in the endoplasmic reticulum (ER) may perturb proteostasis and activates the unfolded protein response (UPR). UPR activation is frequently observed in cancer cells and is believed to fuel cancer progression. Here, we report that one of the three UPR sensors, ATF6α, was associated with prostate cancer (PCa) development, while both genetic and pharmacological inhibition of ATF6α impaired the survival of castration-resistance PCa (CRPC) cells. Transcriptomic analyses identified the molecular pathways deregulated upon ATF6α depletion, and also discovered considerable disparity in global gene expression between ATF6α knockdown and Ceapin-A7 treatment. In addition, combined analyses of human CRPC bulk RNA-seq and single-cell RNA-seq (scRNA-seq) public datasets confirmed that CRPC tumors with higher ATF6α activity displayed higher androgen receptor (AR) activity, proliferative and neuroendocrine (NE) like phenotypes, as well as immunosuppressive features. Lastly, we identified a 14-gene set as ATF6α NE gene signature with encouraging prognostic power. In conclusion, our results indicate that ATF6α is correlated with PCa progression and is functionally relevant to CRPC cell survival. Both specificity and efficacy of ATF6α inhibitors require further refinement and evaluation.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Male , Humans , Prostatic Neoplasms, Castration-Resistant/drug therapy , Unfolded Protein Response , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Cell Line, Tumor , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
12.
Virus Genes ; 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39312037

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) small envelope protein (E) plays important roles in virus budding, assembly, and release. Our previous study found that PEDV E protein localizes in the endoplasmic reticulum (ER) to trigger the unfolded protein response (UPR). However, how UPR is directly regulated by PEDV E protein remains elusive. Thus, in this study, we investigated the expression of ER chaperone glucose-regulated protein 78 (GRP78) and activations of the three main UPR signaling pathways to elucidate the underlying mechanisms of UPR triggered by PEDV E protein. The results showed that over-expression of PEDV E protein increased expression of GRP78 and induced stronger phosphorylation of both protein kinase RNA-like ER kinase (PERK) and eukaryotic initiation factor-2α (eIF2α), as well as caused the significant degradation of activating transcription factor 6 (ATF6), in both dose- and time-dependent manners. However, PEDV E protein did not induce UPR through the inositol-requiring enzyme 1 (IRE1) signaling pathway, as revealed by the splicing of XBP1 remaining unaffected and unchanged when PEDV E protein was overexpressed. Taken together, these results demonstrate that PEDV E protein induces UPR through activation of both PERK and ATF6 pathways rather than IRE1 signaling. This study not only provides mechanistic details of UPR induced by the PEDV E protein, but also provides insights into these new biologic functions to help us better understand the interactions between PEDV and host cells.

13.
Biol Cell ; 115(4): e2200111, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36751133

ABSTRACT

Protein folding and protein maturation largely occur in the controlled environment of the Endoplasmic Reticulum (ER). Perturbation to the correct functioning of this organelle leads to altered proteostasis and accumulation of misfolded proteins in the ER lumen. This condition is commonly known as ER stress and is appearing as an important contributor in the pathogenesis of several human diseases. Monitoring of the quality control processes is mediated by the Unfolded Protein Response (UPR). This response consists in a complex network of signalling pathways that aim to restore protein folding and ER homeostasis. Conditions in which UPR is not able to overcome ER stress lead to a switch of the UPR signalling program from an adaptive to a pro-apoptotic one, revealing a key role of UPR in modulating cell fate decisions. Because of its high complexity and its involvement in the regulation of different cellular outcomes, UPR has been the centre of the development of computational models, which tried to better dissect the role of UPR or of its specific components in several contexts. In this review, we go through the existing mathematical models of UPR. We emphasize how their study contributed to an improved characterization of the role of this intricate response in the modulation of cellular functions.


Subject(s)
Endoplasmic Reticulum Stress , Unfolded Protein Response , Humans , Endoplasmic Reticulum Stress/physiology , Signal Transduction , Gene Expression , Endoplasmic Reticulum/metabolism
14.
Cell Mol Life Sci ; 80(10): 292, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715829

ABSTRACT

Phosphatase and tensin homolog (PTEN) loss tightly correlates with prostate cancer (PCa) progression and metastasis. Inactivation of PTEN leads to abnormal activation of PI3K/AKT pathway. However, results from clinical trials with AKT inhibitors in PCa have been largely disappointing. Identification of novel regulators of PTEN in PTEN-dysfunctional PCa is urgently needed. Here we demonstrated that the expression level of PTEN is inversely correlated with the signature score of unfolded protein response (UPR) in PCa. Importantly, PTEN suppresses the activity of ATF6α, via interacting to de-phosphorylate ATF6α and consequently inhibiting its nuclear translocation. Conversely, ATF6α promotes the ubiquitination and degradation of PTEN by inducing CHIP expression. Thus, ATF6α and PTEN forms a negative feedback loop during PCa progression. Combination of ATF6α inhibitor with AKT inhibitor suppresses tumor cell proliferation and xenograft growth. Importantly, this study highlighted ATF6α as a therapeutic vulnerability in PTEN dysfunctional PCa.


Subject(s)
Phosphatidylinositol 3-Kinases , Prostatic Neoplasms , Male , Humans , Feedback , Proto-Oncogene Proteins c-akt , Prostatic Neoplasms/genetics , Prostate , Angiogenesis Inhibitors , Protein Kinase Inhibitors , PTEN Phosphohydrolase/genetics
15.
Acta Biochim Biophys Sin (Shanghai) ; 56(6): 844-856, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38606478

ABSTRACT

Lipid droplets (LDs) are dynamic organelles that store neutral lipids and are closely linked to obesity. Previous studies have suggested that Lycium barbarum polysaccharide (LBP) supplements can ameliorate obesity, but the underlying mechanisms remain unclear. In this study, we hypothesize that LBP alleviates LD accumulation in adipose tissue (AT) by inhibiting fat-specific protein 27 (Fsp27) through an activating transcription factor-6 (ATF6)/small-molecule sirtuin 1 (SIRT1)-dependent mechanism. LD accumulation in AT is induced in high-fat diet (HFD)-fed mice, and differentiation of 3T3-L1 preadipocytes (PAs) is induced. The ability of LBP to alleviate LD accumulation and the possible underlying mechanism are then investigated both in vivo and in vitro. The influences of LBP on the expressions of LD-associated genes ( ATF6 and Fsp27) are also detected. The results show that HFD and PA differentiation markedly increase LD accumulation in ATs and adipocytes, respectively, and these effects are markedly suppressed by LBP supplementation. Furthermore, LBP significantly activates SIRT1 and decreases ATF6 and Fsp27 expressions. Interestingly, the inhibitory effects of LBP are either abolished or exacerbated when ATF6 is overexpressed or silenced, respectively. Furthermore, SIRT1 level is transcriptionally regulated by LBP through opposite actions mediated by ATF6. Collectively, our findings suggest that LBP supplementation alleviates obesity by ameliorating LD accumulation, which might be partially mediated by an ATF6/SIRT1-dependent mechanism.


Subject(s)
3T3-L1 Cells , Activating Transcription Factor 6 , Adipose Tissue , Drugs, Chinese Herbal , Lipid Droplets , Mice, Inbred C57BL , Sirtuin 1 , Animals , Sirtuin 1/metabolism , Sirtuin 1/genetics , Mice , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Adipose Tissue/metabolism , Adipose Tissue/drug effects , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Male , Drugs, Chinese Herbal/pharmacology , Diet, High-Fat/adverse effects , Adipocytes/metabolism , Adipocytes/drug effects , Obesity/metabolism , Obesity/drug therapy , Lycium/chemistry , Cell Differentiation/drug effects , Lipid Metabolism/drug effects
16.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34561305

ABSTRACT

Endoplasmic reticulum (ER) stress and Unfolded Protein Response (UPR) signaling promote the pathology of many human diseases. Loss-of-function variants of the UPR regulator Activating Transcription Factor 6 (ATF6) cause severe congenital vision loss diseases such as achromatopsia by unclear pathomechanisms. To investigate this, we generated retinal organoids from achromatopsia patient induced pluripotent stem cells carrying ATF6 disease variants and from gene-edited ATF6 null hESCs. We found that achromatopsia patient and ATF6 null retinal organoids failed to form cone structures concomitant with loss of cone phototransduction gene expression, while rod photoreceptors developed normally. Adaptive optics retinal imaging of achromatopsia patients carrying ATF6 variants also showed absence of cone inner/outer segment structures but preserved rod structures, mirroring the defect in cone formation observed in our retinal organoids. These results establish that ATF6 is essential for human cone development. Interestingly, we find that a selective small molecule ATF6 signaling agonist restores the transcriptional activity of some ATF6 disease-causing variants and stimulates cone growth and gene expression in patient retinal organoids carrying these variants. These findings support that pharmacologic targeting of the ATF6 pathway can promote human cone development and should be further explored for blinding retinal diseases.


Subject(s)
Activating Transcription Factor 6/genetics , Color Vision Defects/genetics , Retina/cytology , Retinal Cone Photoreceptor Cells/pathology , Activating Transcription Factor 6/agonists , Activating Transcription Factor 6/metabolism , Cone Opsins/genetics , Gene Expression , HEK293 Cells , Humans , Induced Pluripotent Stem Cells/cytology , Organoids , Retina/diagnostic imaging , Retinal Cone Photoreceptor Cells/physiology , Vision, Ocular/genetics
17.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Article in English | MEDLINE | ID: mdl-33441483

ABSTRACT

Flaviviruses, including dengue and Zika, are widespread human pathogens; however, no broadly active therapeutics exist to fight infection. Recently, remodeling of endoplasmic reticulum (ER) proteostasis by pharmacologic regulators, such as compound 147, was shown to correct pathologic ER imbalances associated with protein misfolding diseases. Here, we establish an additional activity of compound 147 as an effective host-centered antiviral agent against flaviviruses. Compound 147 reduces infection by attenuating the infectivity of secreted virions without causing toxicity in host cells. Compound 147 is a preferential activator of the ATF6 pathway of the ER unfolded protein response, which requires targeting of cysteine residues primarily on protein disulfide isomerases (PDIs). We find that the antiviral activity of 147 is independent of ATF6 induction but does require modification of reactive thiols on protein targets. Targeting PDIs and additional non-PDI targets using RNAi and other small-molecule inhibitors was unable to recapitulate the antiviral effects, suggesting a unique polypharmacology may mediate the activity. Importantly, 147 can impair infection of multiple strains of dengue and Zika virus, indicating that it is suitable as a broad-spectrum antiviral agent.


Subject(s)
Antiviral Agents/pharmacology , Dengue/drug therapy , Small Molecule Libraries/pharmacology , Zika Virus Infection/drug therapy , Dengue/virology , Dengue Virus/drug effects , Dengue Virus/pathogenicity , Endoplasmic Reticulum/drug effects , Humans , Proteostasis/drug effects , Unfolded Protein Response/drug effects , Virus Replication/drug effects , Zika Virus/drug effects , Zika Virus/pathogenicity , Zika Virus Infection/virology
18.
Ecotoxicol Environ Saf ; 280: 116580, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38865938

ABSTRACT

Inhaling microplastics (MPs) and nanoplastics (NPs) in the air can damage lung function. Xenobiotics in the body can cause endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) activation alleviates ER stress. Degradation of unfolded or misfolded proteins is an important pathway for recovering cellular homeostasis. The UPR and protein degradation induced by MPs/NPs in lung tissues are not well understood. Here, we investigated the UPR and protein ubiquitination in the lungs of mice exposed to polystyrene (PS)-NPs and their possible molecular mechanisms leading to protein ubiquitination. Mice were intratracheally administered with 5.6, 17, and 51 mg/kg PS-NPs once for 24 h. Exposure to PS-NPs elevated protein ubiquitination in the lungs of mice in a dose-dependent manner. PS-NPs activated three branches of UPR including inositol-requiring protein 1α (IRE1α), eukaryotic translation initiator factor 2α (eIF2α), and activating transcription factor 6α (ATF6α) in the lungs of mice. However, activated IRE1α did not trigger X-box binding protein 1 (XBP1) mRNA splicing. Exposure to PS-NPs induced an increase in the levels of E3 ubiquitin ligase hydroxymethyl glutaryl-coenzyme A reductase degradation protein 1 (HRD1) and carboxy terminus of Hsc70 interacting protein (CHIP) in the lungs of mice and BEAS-2B cells. ATF6α siRNA inhibited the levels of HRD1 and CHIP proteins induced by PS-NPs in BEAS-2B cells. These results suggest that ATF6α plays a critical role in increasing ubiquitination of unfolded or misfolded proteins by alleviating PS-NPs induced ER stress through UPR to achieve ER homeostasis in the lungs of mice.


Subject(s)
Lung , Microplastics , Polystyrenes , Ubiquitination , Unfolded Protein Response , Animals , Ubiquitination/drug effects , Mice , Unfolded Protein Response/drug effects , Lung/drug effects , Lung/metabolism , Polystyrenes/toxicity , Microplastics/toxicity , Male , Endoplasmic Reticulum Stress/drug effects , Nanoparticles/toxicity , Mice, Inbred C57BL
19.
Int J Mol Sci ; 25(7)2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38612890

ABSTRACT

The endoplasmic reticulum maintains proteostasis, which can be disrupted by oxidative stress, nutrient deprivation, hypoxia, lack of ATP, and toxicity caused by xenobiotic compounds, all of which can result in the accumulation of misfolded proteins. These stressors activate the unfolded protein response (UPR), which aims to restore proteostasis and avoid cell death. However, endoplasmic response-associated degradation (ERAD) is sometimes triggered to degrade the misfolded and unassembled proteins instead. If stress persists, cells activate three sensors: PERK, IRE-1, and ATF6. Glioma cells can use these sensors to remain unresponsive to chemotherapeutic treatments. In such cases, the activation of ATF4 via PERK and some proteins via IRE-1 can promote several types of cell death. The search for new antitumor compounds that can successfully and directly induce an endoplasmic reticulum stress response ranges from ligands to oxygen-dependent metabolic pathways in the cell capable of activating cell death pathways. Herein, we discuss the importance of the ER stress mechanism in glioma and likely therapeutic targets within the UPR pathway, as well as chemicals, pharmaceutical compounds, and natural derivatives of potential use against gliomas.


Subject(s)
Endoplasmic Reticulum Stress , Glioma , Humans , Unfolded Protein Response , Endoplasmic Reticulum , Glioma/drug therapy , Pharmaceutical Preparations
20.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000233

ABSTRACT

The pathogenesis of non-alcoholic fatty liver disease (NAFLD) is influenced by a number of variables, including endoplasmic reticulum stress (ER). Thioredoxin domain-containing 5 (TXNDC5) is a member of the protein disulfide isomerase family and acts as an endoplasmic reticulum (ER) chaperone. Nevertheless, the function of TXNDC5 in hepatocytes under ER stress remains largely uncharacterized. In order to identify the role of TXNDC5 in hepatic wild-type (WT) and TXNDC5-deficient (KO) AML12 cell lines, tunicamycin, palmitic acid, and thapsigargin were employed as stressors. Cell viability, mRNA, protein levels, and mRNA splicing were then assayed. The protein expression results of prominent ER stress markers indicated that the ERN1 and EIF2AK3 proteins were downregulated, while the HSPA5 protein was upregulated. Furthermore, the ATF6 protein demonstrated no significant alterations in the absence of TXNDC5 at the protein level. The knockout of TXNDC5 has been demonstrated to increase cellular ROS production and its activity is required to maintain normal mitochondrial function during tunicamycin-induced ER stress. Tunicamycin has been observed to disrupt the protein levels of HSPA5, ERN1, and EIF2AK3 in TXNDC5-deficient cells. However, palmitic acid has been observed to disrupt the protein levels of ATF6, HSPA5, and EIF2AK3. In conclusion, TXNDC5 can selectively activate distinct ER stress pathways via HSPA5, contingent on the origin of ER stress. Conversely, the absence of TXNDC5 can disrupt the EIF2AK3 cascade.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Hepatocytes , Protein Disulfide-Isomerases , Signal Transduction , Tunicamycin , Endoplasmic Reticulum Chaperone BiP/metabolism , Protein Disulfide-Isomerases/metabolism , Protein Disulfide-Isomerases/genetics , Hepatocytes/metabolism , Animals , Tunicamycin/pharmacology , Endoplasmic Reticulum/metabolism , Mice , Reactive Oxygen Species/metabolism , Activating Transcription Factor 6/metabolism , Activating Transcription Factor 6/genetics , Cell Line , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Proteins/genetics , Endoribonucleases/metabolism , Endoribonucleases/genetics , Palmitic Acid/pharmacology , Palmitic Acid/metabolism , Thapsigargin/pharmacology , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Thioredoxins/metabolism , Thioredoxins/genetics , Cell Survival/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL