Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 185
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell ; 180(6): 1144-1159.e20, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32169217

ABSTRACT

In eukaryotic cells, organelle biogenesis is pivotal for cellular function and cell survival. Chloroplasts are unique organelles with a complex internal membrane network. The mechanisms of the migration of imported nuclear-encoded chloroplast proteins across the crowded stroma to thylakoid membranes are less understood. Here, we identified two Arabidopsis ankyrin-repeat proteins, STT1 and STT2, that specifically mediate sorting of chloroplast twin arginine translocation (cpTat) pathway proteins to thylakoid membranes. STT1 and STT2 form a unique hetero-dimer through interaction of their C-terminal ankyrin domains. Binding of cpTat substrate by N-terminal intrinsically disordered regions of STT complex induces liquid-liquid phase separation. The multivalent nature of STT oligomer is critical for phase separation. STT-Hcf106 interactions reverse phase separation and facilitate cargo targeting and translocation across thylakoid membranes. Thus, the formation of phase-separated droplets emerges as a novel mechanism of intra-chloroplast cargo sorting. Our findings highlight a conserved mechanism of phase separation in regulating organelle biogenesis.


Subject(s)
Arabidopsis/metabolism , Protein Transport/physiology , Twin-Arginine-Translocation System/metabolism , Chloroplast Proteins/metabolism , Chloroplasts/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Organelle Biogenesis , Organelles/metabolism , Phase Transition , Plant Proteins/metabolism , Thylakoids/metabolism , Twin-Arginine-Translocation System/physiology
2.
Genes Cells ; 29(9): 746-756, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38964745

ABSTRACT

An autism-associated gene Shank3 encodes multiple splicing isoforms, Shank3a-f. We have recently reported that Shank3a/b-knockout mice were more susceptible to kainic acid-induced seizures than wild-type mice at 4 weeks of age. Little is known, however, about how the N-terminal and ankyrin repeat domains (NT-Ank) of Shank3a/b regulate multiple molecular signals in the developing brain. To explore the functional roles of Shank3a/b, we performed a mass spectrometry-based proteomic search for proteins interacting with GFP-tagged NT-Ank. In this study, NT-Ank was predicted to form a variety of complexes with a total of 348 proteins, in which RNA-binding (n = 102), spliceosome (n = 22), and ribosome-associated molecules (n = 9) were significantly enriched. Among them, an X-linked intellectual disability-associated protein, Nono, was identified as a NT-Ank-binding protein. Coimmunoprecipitation assays validated the interaction of Shank3 with Nono in the mouse brain. In agreement with these data, the thalamus of Shank3a/b-knockout mice aberrantly expressed splicing isoforms of autism-associated genes, Nrxn1 and Eif4G1, before and after seizures with kainic acid treatment. These data indicate that Shank3 interacts with multiple RNA-binding proteins in the postnatal brain, thereby regulating the homeostatic expression of splicing isoforms for autism-associated genes after birth.


Subject(s)
Mice, Knockout , Nerve Tissue Proteins , RNA-Binding Proteins , Animals , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Mice , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Ankyrin Repeat , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , RNA Splicing , Brain/metabolism , Seizures/metabolism , Seizures/genetics , Seizures/chemically induced , Humans , Protein Binding , Mice, Inbred C57BL
3.
Proc Natl Acad Sci U S A ; 119(49): e2211549119, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36459651

ABSTRACT

Biomineral-forming organisms produce inorganic materials with complex, genetically encoded morphologies that are unmatched by current synthetic chemistry. It is poorly understood which genes are involved in biomineral morphogenesis and how the encoded proteins guide this process. We addressed these questions using diatoms, which are paradigms for the self-assembly of hierarchically meso- and macroporous silica under mild reaction conditions. Proteomics analysis of the intracellular organelle for silica biosynthesis led to the identification of new biomineralization proteins. Three of these, coined dAnk1-3, contain a common protein-protein interaction domain (ankyrin repeats), indicating a role in coordinating assembly of the silica biomineralization machinery. Knocking out individual dank genes led to aberrations in silica biogenesis that are consistent with liquid-liquid phase separation as underlying mechanism for pore pattern morphogenesis. Our work provides an unprecedented path for the synthesis of tailored mesoporous silica materials using synthetic biology.


Subject(s)
Diatoms , Diatoms/genetics , Silicon Dioxide , Morphogenesis/genetics , Ankyrin Repeat , Biomineralization
4.
J Biol Chem ; 299(1): 102754, 2023 01.
Article in English | MEDLINE | ID: mdl-36442513

ABSTRACT

S-acylation is an essential post-translational modification, which is mediated by a family of 23 zDHHC enzymes in humans. Several thousand proteins are modified by S-acylation; however, we lack a detailed understanding of how enzyme-substrate recognition and specificity is achieved. Previous work showed that the ankyrin repeat domain of zDHHC17 (ANK17) recognizes a short linear motif, known as the zDHHC ANK binding motif (zDABM) in substrate protein SNAP25, as a mechanism of substrate recruitment prior to S-acylation. Here, we investigated the S-acylation of the Sprouty and SPRED family of proteins by zDHHC17. Interestingly, although Sprouty-2 (Spry2) contains a zDABM that interacts with ANK17, this mode of binding is dispensable for S-acylation, and indeed removal of the zDABM does not completely ablate binding to zDHHC17. Furthermore, the related SPRED3 protein interacts with and is efficiently S-acylated by zDHHC17, despite lacking a zDABM. We undertook mutational analysis of SPRED3 to better understand the basis of its zDABM-independent interaction with zDHHC17. This analysis found that the cysteine-rich SPR domain of SPRED3, which is the defining feature of all Sprouty and SPRED proteins, interacts with zDHHC17. Surprisingly, the interaction with SPRED3 was independent of ANK17. Our mutational analysis of Spry2 was consistent with the SPR domain of this protein containing a zDHHC17-binding site, and Spry2 also showed detectable binding to a zDHHC17 mutant lacking the ANK domain. Thus, zDHHC17 can recognize its substrates through zDABM-dependent and/or zDABM-independent mechanisms, and some substrates display more than one mode of binding to this enzyme.


Subject(s)
Acyltransferases , Membrane Proteins , Animals , Humans , Mice , Rats , Acylation , Acyltransferases/genetics , Acyltransferases/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Ankyrin Repeat , Binding Sites , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism
5.
BMC Plant Biol ; 24(1): 762, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39123107

ABSTRACT

BACKGROUND: Dendrobium Sw. represents one of the most expansive genera within the Orchidaceae family, renowned for its species' high medicinal and ornamental value. In higher plants, the ankyrin (ANK) repeat protein family is characterized by a unique ANK repeat domain, integral to a plethora of biological functions and biochemical activities. The ANK gene family plays a pivotal role in various plant physiological processes, including stress responses, hormone signaling, and growth. Hence, investigating the ANK gene family and identifying disease-resistance genes in Dendrobium is of paramount importance. RESULTS: This research identified 78 ANK genes in Dendrobium officinale Kimura et Migo, 77 in Dendrobium nobile Lindl., and 58 in Dendrobium chrysotoxum Lindl. Subsequently, we conducted comprehensive bioinformatics analyses on these ANK gene families, encompassing gene classification, chromosomal localization, phylogenetic relationships, gene structure and motif characterization, cis-acting regulatory element identification, collinearity assessment, protein-protein interaction network construction, and gene expression profiling. Concurrently, three DoANK genes (DoANK14, DoANK19, and DoANK47) in D. officinale were discerned to indirectly activate the NPR1 transcription factor in the ETI system via SA, thereby modulating the expression of the antibacterial PR gene. Hormonal treatments with GA3 and ABA revealed that 17 and 8 genes were significantly up-regulated, while 4 and 8 genes were significantly down-regulated, respectively. DoANK32 was found to localize to the ArfGAP gene in the endocytosis pathway, impacting vesicle transport and the polar movement of auxin. CONCLUSION: Our findings provide a robust framework for the taxonomic classification, evolutionary analysis, and functional prediction of Dendrobium ANK genes. The three highlighted ANK genes (DoANK14, DoANK19, and DoANK47) from D. officinale may prove valuable in disease resistance and stress response research. DoANK32 is implicated in the morphogenesis and development of D. officinale through its role in vesicular transport and auxin polarity, with subcellular localization studies confirming its presence in the nucleus and cell membrane. ANK genes displaying significant expression changes in response to hormonal treatments could play a crucial role in the hormonal response of D. officinale, potentially inhibiting its growth and development through the modulation of plant hormones such as GA3 and ABA.


Subject(s)
Abscisic Acid , Dendrobium , Gibberellins , Plant Growth Regulators , Abscisic Acid/pharmacology , Abscisic Acid/metabolism , Ankyrin Repeat/genetics , Dendrobium/genetics , Dendrobium/drug effects , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Gibberellins/pharmacology , Gibberellins/metabolism , Multigene Family , Phylogeny , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
6.
Microb Cell Fact ; 23(1): 110, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609906

ABSTRACT

BACKGROUND: The wasabi receptor, also known as the Transient Receptor Potential Ankyrin 1 (TRPA1) ion channel, is a potential target for development of repellents for insects, like the pine weevil (Hylobius abietis) feeding on conifer seedlings and causing damage in forestry. Heterologous expression of TRPA1 from pine weevil in the yeast Pichia pastoris can potentially provide protein for structural and functional studies. Here we take advantage of the Green Fluorescent Protein (GFP) tag to examine the various steps of heterologous expression, to get more insight in clone selection, expression and isolation of the intact purified protein. RESULTS: The sequence of HaTRPA1 is reported and GFP-tagged constructs were made of the full-length protein and a truncated version (Δ1-708 HaTRPA1), lacking the N-terminal ankyrin repeat domain. Clones were screened on GFP expression plates, induced in small liquid cultures and in fed-batch cultures, and evaluated by flow cytometry and fluorescence microscopy. The screening on plates successfully identifies low-expression clones, but fails to predict the ranking of the best performing clones in small-scale liquid cultures. The two constructs differ in their cellular localization. Δ1-708 HaTRPA1 is found in a ring at the perimeter of cell, whereas HaTRPA1 is forming highly fluorescent speckles in interior regions of the cell. The pattern is consistent in different clones of the same construct and persists in fed-batch culture. The expression of Δ1-708 HaTRPA1 decreases the viability more than HaTRPA1, and in fed-batch culture it is clear that intact cells first express Δ1-708 HaTRPA1 and then become damaged. Purifications show that both constructs suffer from degradation of the expressed protein, but especially the HaTRPA1 construct. CONCLUSIONS: The GFP tag makes it possible to follow expression by flow cytometry and fluorescence microscopy. Analyses of localization, cell viability and expression show that the former two parameters are specific for each of the two evaluated constructs, whereas the relative expression of the constructs varies with the cultivation method. High expression is not all that matters, so taking damaged cells into account, something that may be linked to protein degradation, is important when picking the most suitable construct, clone, and expression scheme.


Subject(s)
Saccharomycetales , Weevils , Animals , Green Fluorescent Proteins/genetics , Flow Cytometry
7.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000082

ABSTRACT

Drought stress is one of the significant abiotic stresses that limit soybean (Glycine max [L.] Merr.) growth and production. Ankyrin repeat (ANK) proteins, being highly conserved, occupy a pivotal role in diverse biological processes. ANK genes were classified into nine subfamilies according to conserved domains in the soybean genome. However, the function of ANK-TM subfamily proteins (Ankyrin repeat proteins with a transmembrane domain) in the abiotic-stress response to soybean remains poorly understood. In this study, we first demonstrated the subcellular localization of GmANKTM21 in the cell membrane and nucleus. Drought stress-induced mRNA levels of GmANKTM21, which encodes proteins belonging to the ANK-TM subfamily, Transgenic 35S:GmANKTM21 soybean improved drought tolerance at the germination and seedling stages, with higher stomatal closure in soybean, lower water loss, lower malondialdehyde (MDA) content, and less reactive oxygen species (ROS) production compared with the wild-type soybean (Dongnong50). RNA-sequencing (RNA-seq) and RT-qPCR analysis of differentially expressed transcripts in overexpression of GmANKTM21 further identified potential downstream genes, including GmSPK2, GmSPK4, and GmCYP707A1, which showed higher expression in transgenic soybean, than those in wild-type soybean and KEGG enrichment analysis showed that MAPK signaling pathways were mostly enriched in GmANKTM21 overexpressing soybean plants under drought stress conditions. Therefore, we demonstrate that GmANKTM21 plays an important role in tolerance to drought stress in soybeans.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Glycine max , MAP Kinase Signaling System , Plant Proteins , Plant Stomata , Plants, Genetically Modified , Stress, Physiological , Glycine max/genetics , Glycine max/metabolism , Glycine max/physiology , Glycine max/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/genetics , Plant Stomata/physiology , Plant Stomata/metabolism , Reactive Oxygen Species/metabolism , Ankyrin Repeat/genetics , Drought Resistance
8.
J Biol Chem ; 298(1): 101403, 2022 01.
Article in English | MEDLINE | ID: mdl-34793836

ABSTRACT

Designed ankyrin repeat proteins (DARPins) are antibody mimetics with high and mostly unexplored potential in drug development. By using in silico analysis and a rationally guided Ala scanning, we identified position 17 of the N-terminal capping repeat to play a key role in overall protein thermostability. The melting temperature of a DARPin domain with a single full-consensus internal repeat was increased by 8 °C to 10 °C when Asp17 was replaced by Leu, Val, Ile, Met, Ala, or Thr. We then transferred the Asp17Leu mutation to various backgrounds, including clinically validated DARPin domains, such as the vascular endothelial growth factor-binding domain of the DARPin abicipar pegol. In all cases, these proteins showed improvements in the thermostability on the order of 8 °C to 16 °C, suggesting the replacement of Asp17 could be generically applicable to this drug class. Molecular dynamics simulations showed that the Asp17Leu mutation reduces electrostatic repulsion and improves van-der-Waals packing, rendering the DARPin domain less flexible and more stable. Interestingly, this beneficial Asp17Leu mutation is present in the N-terminal caps of three of the five DARPin domains of ensovibep, a SARS-CoV-2 entry inhibitor currently in clinical development, indicating this mutation could be partly responsible for the very high melting temperature (>90 °C) of this promising anti-COVID-19 drug. Overall, such N-terminal capping repeats with increased thermostability seem to be beneficial for the development of innovative drugs based on DARPins.


Subject(s)
Antiviral Agents/pharmacology , Designed Ankyrin Repeat Proteins/chemistry , Temperature , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/therapeutic use , COVID-19/virology , Drug Development , Drug Stability , SARS-CoV-2/drug effects , Sequence Alignment , COVID-19 Drug Treatment
10.
Phytother Res ; 37(9): 4282-4297, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37282760

ABSTRACT

Transient receptor potential vanilloid 4 (TRPV4) plays a role in regulating pulmonary fibrosis (PF). While several TRPV4 antagonists including magnolol (MAG), have been discovered, the mechanism of action is not fully understood. This study aimed to investigate the effect of MAG on alleviating fibrosis in chronic obstructive pulmonary disease (COPD) based on TRPV4, and to further analyze its mechanism of action on TRPV4. COPD was induced using cigarette smoke and LPS. The therapeutic effect of MAG on COPD-induced fibrosis was evaluated. TRPV4 was identified as the main target protein of MAG using target protein capture with MAG probe and drug affinity response target stability assay. The binding sites of MAG at TRPV4 were analyzed using molecular docking and small molecule interaction with TRPV4-ankyrin repeat domain (ARD). The effects of MAG on TRPV4 membrane distribution and channel activity were analyzed by co-immunoprecipitation, fluorescence co-localization, and living cell assay of calcium levels. By targeting TRPV4-ARD, MAG disrupted the binding between phosphatidylinositol 3 kinase γ and TRPV4, leading to hampered membrane distribution on fibroblasts. Additionally, MAG competitively impaired ATP binding to TRPV4-ARD, inhibiting TRPV4 channel opening activity. MAG effectively blocked the fibrotic process caused by mechanical or inflammatory signals, thus alleviating PF in COPD. Targeting TRPV4-ARD presents a novel treatment strategy for PF in COPD.


Subject(s)
Antineoplastic Agents , Pulmonary Disease, Chronic Obstructive , Pulmonary Fibrosis , Humans , Ankyrin Repeat , Pulmonary Fibrosis/metabolism , TRPV Cation Channels/metabolism , Molecular Docking Simulation , Fibrosis
11.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762658

ABSTRACT

Breast cancer is a major global health burden with high morbidity and mortality rates. Previous studies have reported that increased expression of ASAP1 is associated with poor prognosis in various types of cancer. This study was conducted on 452 breast cancer patients who underwent surgery at Hanyang University Hospital, Seoul, South Korea. Data on clinicopathological characteristics including molecular pathologic markers were collected. Immunohistochemical staining of ASAP1 expression level were used to classify patients into high and low groups. In total, 452 cases low ASAP1 expression group was associated with significantly worse recurrence-free survival (p = 0.029). In ER-positive cases (n = 280), the low ASAP1 expression group was associated with significantly worse overall survival (p = 0.039) and recurrence-free survival (p = 0.029). In multivariate cox analysis, low ASAP1 expression was an independent significant predictor of poor recurrence-free survival in the overall patient group (hazard ratio = 2.566, p = 0.002) and ER-positive cases (hazard ratio = 4.046, p = 0.002). In the analysis of the TCGA dataset, the low-expression group of ASAP1 protein demonstrated a significantly poorer progression-free survival (p = 0.005). This study reports that low ASAP1 expression was associated with worse recurrence-free survival in invasive breast cancer.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/genetics , Prognosis , Hospitals, University , Multivariate Analysis , Progression-Free Survival , Adaptor Proteins, Signal Transducing
12.
FASEB J ; 35(4): e21488, 2021 04.
Article in English | MEDLINE | ID: mdl-33734499

ABSTRACT

Cardiac ankyrin repeat protein (CARP) is a cardiac-specific stress-response protein which exerts diverse effects to modulate cardiac remodeling in response to pathological stimuli. We examined the role of CARP in postnatal cardiac development and function under basal conditions in mice. Transgenic mice that selectively overexpressed CARP in heart (CARP Tg) exhibited dilated cardiac chambers, impaired heart function, and cardiac fibrosis as assessed by echocardiography and histological staining. Furthermore, the mice had a shorter lifespan and reduced survival rate in response to ischemic acute myocardial infarction. Immunofluorescence demonstrated the overexpressed CARP protein was predominantly accumulated in the nuclei of cardiomyocytes. Microarray analysis revealed that the nuclear localization of CARP was associated with the suppression of calcium-handling proteins. In vitro experiments revealed that CARP overexpression resulted in decreased cell contraction and calcium transient. In post-mortem cardiac specimens from patients with dilated cardiomyopathy and end-stage heart failure, CARP was significantly increased. Taken together, our data identified CARP as a crucial contributor in dilated cardiomyopathy and heart failure which was associated with its regulation of calcium-handling proteins.


Subject(s)
Cardiomyopathy, Dilated/metabolism , Heart Failure/metabolism , Myocardial Infarction/etiology , Myocardium/metabolism , Animals , Heart Failure/etiology , Humans , Mice , Muscle Proteins/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism
13.
Cell Biol Int ; 46(9): 1433-1446, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35842770

ABSTRACT

Ankyrin repeat and KH domain-containing protein 1, ANKHD1, has been identified as a regulator of signaling pathways and cellular processes of relevance in carcinogenesis. However, the role of ANKHD1 in breast cancer remains unclear. The aim of the present study was to characterize the expression pattern and involvement of ANKHD1 in the malignant phenotype of breast cancer cell lines and to investigate the clinical relevance of ANKHD1 in a breast cancer context. Gene and protein expressions were assessed in the cell lines by quantitative reverse transcription PCR and Western blot analysis, respectively, and ANKHD1 silencing through siRNA transfection was conducted for further in vitro functional assays. The expression of ANKHD1 was identified in non-tumorigenic breast epithelium and breast cancer cell lines, but differences in cellular localization were found among the neoplasia subtypes. ANKHD1 silencing reduced the viability, clonogenicity, and migration of triple-negative breast cancer (TNBC) cells. Bioinformatics analyses demonstrated that patients with triple-negative basal-like 2 and mesenchymal breast cancer subtypes had high ANKHD1 expression associated with poor recurrence-free survival. Therefore, these data indicate that ANKHD1 relevance in breast cancer varies among its subtypes, indicating the importance of ANKHD1 in TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic , Humans , Phenotype , RNA, Small Interfering/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
14.
Int J Mol Sci ; 23(22)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36430781

ABSTRACT

Transient receptor potential (TRP) ankyrin repeat 1 (TRPA1), which is involved in inflammatory pain sensation, is activated by endogenous factors, such as intracellular Zn2+ and hydrogen peroxide, and by irritant chemical compounds. The synthetic compound JT010 potently and selectively activates human TRPA1 (hTRPA1) among the TRPs. Therefore, JT010 is a useful tool for analyzing TRPA1 functions in biological systems. Here, we show that JT010 is a potent activator of hTRPA1, but not mouse TRPA1 (mTRPA1) in human embryonic kidney (HEK) cells expressing hTRPA1 and mTRPA1. Application of 0.3-100 nM of JT010 to HEK cells with hTRPA1 induced large Ca2+ responses. However, in HEK cells with mTRPA1, the response was small. In contrast, both TRPA1s were effectively activated by allyl isothiocyanate (AITC) at 10-100 µM. Similar selective activation of hTRPA1 by JT010 was observed in electrophysiological experiments. Additionally, JT010 activated TRPA1 in human fibroblast-like synoviocytes with inflammation, but not TRPA1 in mouse dorsal root ganglion cells. As cysteine at 621 (C621) of hTRPA1, a critical cysteine for interaction with JT010, is conserved in mTRPA1, we applied JT010 to HEK cells with mutations in mTRPA1, where the different residue of mTRPA1 with tyrosine at 60 (Y60), with histidine at 1023 (H1023), and with asparagine at 1027 (N1027) were substituted with cysteine in hTRPA1. However, these mutants showed low sensitivity to JT010. In contrast, the mutation of hTRPA1 at position 669 from phenylalanine to methionine (F669M), comprising methionine at 670 in mTRPA1 (M670), significantly reduced the response to JT010. Moreover, the double mutant at S669 and M670 of mTRPA1 to S669E and M670F, respectively, induced slight but substantial sensitivity to 30 and 100 nM JT010. Taken together, our findings demonstrate that JT010 potently and selectively activates hTRPA1 but not mTRPA1.


Subject(s)
Transient Receptor Potential Channels , Humans , Transient Receptor Potential Channels/genetics , Calcium Channels/genetics , TRPA1 Cation Channel/genetics , Cysteine , Calcium/metabolism , Methionine
15.
Int J Mol Sci ; 23(4)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35216282

ABSTRACT

Molecular biology combined with genomics can be a powerful tool for developing potential intervention strategies for improving outcomes in children with autism spectrum disorders (ASD). Monogenic etiologies rarely cause autism. Instead, ASD is more frequently due to many polygenic contributing factors interacting with each other, combined with the epigenetic effects of diet, lifestyle, and environment. One limitation of genomics has been identifying ways of responding to each identified gene variant to translate the information to something clinically useful. This paper will illustrate how understanding the function of a gene and the effects of a reported variant on a molecular level can be used to develop actionable and targeted potential interventions for a gene variant or combinations of variants. For illustrative purposes, this communication highlights a specific genomic variant, SHANK3. The steps involved in developing molecularly genomically targeted actionable interventions will be demonstrated. Cases will be shared to support the efficacy of this strategy and to show how clinicians utilized these targeted interventions to improve ASD-related symptoms significantly. The presented approach demonstrates the utility of genomics as a part of clinical decision-making.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Chromosome Disorders , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/therapy , Autistic Disorder/genetics , Child , Chromosome Deletion , Chromosome Disorders/genetics , Humans , Nerve Tissue Proteins/genetics
16.
Molecules ; 27(2)2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35056738

ABSTRACT

Ankyrin is one of the most abundant protein repeat families found across all forms of life. It is found in a variety of multi-domain and single domain proteins in humans with diverse number of repeating units. They are observed to occur in several functionally diverse proteins, such as transcriptional initiators, cell cycle regulators, cytoskeletal organizers, ion transporters, signal transducers, developmental regulators, and toxins, and, consequently, defects in ankyrin repeat proteins have been associated with a number of human diseases. In this study, we have classified the human ankyrin proteins into clusters based on the sequence similarity in their ankyrin repeat domains. We analyzed the amino acid compositional bias and consensus ankyrin motif sequence of the clusters to understand the diversity of the human ankyrin proteins. We carried out network-based structural analysis of human ankyrin proteins across different clusters and showed the association of conserved residues with topologically important residues identified by network centrality measures. The analysis of conserved and structurally important residues helps in understanding their role in structural stability and function of these proteins. In this paper, we also discuss the significance of these conserved residues in disease association across the human ankyrin protein clusters.


Subject(s)
Ankyrin Repeat , Ankyrins/chemistry , Databases, Protein , Humans
17.
Medicina (Kaunas) ; 59(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36676695

ABSTRACT

Background and objectives: It has been shown that electromagnetic fields (EMFs) have negative effects on the reproductive system. The biological effects of EMF on the male reproductive system are controversial and vary depending on the frequency and exposure time. Although a limited number of studies have focused on the structural and functional effects of EMF, the effects of prenatal and postnatal EMF exposure on testes are not clear. We aimed to investigate the effects of 50-Hz, 3-mT EMF exposure (5 days/wk, 4 h/day) during pre- and postnatal periods on testis development. Materials and Methods: Pups from three groups of Sprague-Dawley pregnant rats were used: Sham, EMF-28 (EMF-exposure applied during pregnancy and until postnatal day 28), EMF-42 (EMF-exposure applied during pregnancy and until postnatal day 42). The testis tissues and blood samples of male offspring were collected on the postnatal day 42. Results: Morphometric analyses showed a decrease in seminiferous tubule diameter as a result of testicular degeneration in the EMF-42 group. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) levels were decreased in the EMF-42 group. Lipid peroxidation levels were increased in both EMF groups, while antioxidant levels were decreased only in the EMF-28 group. We found decreased levels of vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF1) in the EMF-42 group, and decreased levels of the SRC homology 3 (SH3) and multiple ankyrin repeat domain (SHANK3) in the EMF-28 group in the testis tissue. Conclusions: EMF exposure during pre- and postnatal periods may cause deterioration in the structure and function of testis and decrease in growing factors that would affect testicular functions in male rat pups. In addition to the oxidative stress observed in testis, decreased SHANK3, VEGF, and IGF1 protein levels suggests that these proteins may be mediators in testis affected by EMF exposure. This study shows that EMF exposure during embryonic development and adolescence can cause apoptosis and structural changes in the testis.


Subject(s)
Electromagnetic Fields , Vascular Endothelial Growth Factor A , Pregnancy , Female , Rats , Animals , Male , Electromagnetic Fields/adverse effects , Rats, Sprague-Dawley , Vascular Endothelial Growth Factor A/metabolism , Testis/metabolism , Follicle Stimulating Hormone , Vitamins
18.
J Biol Chem ; 295(36): 12588-12604, 2020 09 04.
Article in English | MEDLINE | ID: mdl-32636301

ABSTRACT

Nutrient-transporting enterocytes interact with their luminal environment using a densely packed collection of apical microvilli known as the brush border. Assembly of the brush border is controlled by the intermicrovillar adhesion complex (IMAC), a protocadherin-based complex found at the tips of brush border microvilli that mediates adhesion between neighboring protrusions. ANKS4B is known to be an essential scaffold within the IMAC, although its functional properties have not been thoroughly characterized. We report here that ANKS4B is directed to the brush border using a noncanonical apical targeting sequence that maps to a previously unannotated region of the scaffold. When expressed on its own, this sequence targeted to microvilli in the absence of any direct interaction with the other IMAC components. Sequence analysis revealed a coiled-coil motif and a putative membrane-binding basic-hydrophobic repeat sequence within this targeting region, both of which were required for the scaffold to target and mediate brush border assembly. Size-exclusion chromatography of the isolated targeting sequence coupled with in vitro brush border binding assays suggests that it functions as an oligomer. We further show that the corresponding sequence found in the closest homolog of ANKS4B, the scaffold USH1G that operates in sensory epithelia as part of the Usher complex, lacks the inherent ability to target to microvilli. This study further defines the underlying mechanism of how ANKS4B targets to the apical domain of enterocytes to drive brush border assembly and identifies a point of functional divergence between the ankyrin repeat-based scaffolds found in the IMAC and Usher complex.


Subject(s)
Carrier Proteins/metabolism , Enterocytes/metabolism , Microvilli/metabolism , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/metabolism , Animals , Caco-2 Cells , Carrier Proteins/genetics , Cell Adhesion , HEK293 Cells , Humans , Mice , Microvilli/genetics , Multiprotein Complexes/genetics , Nerve Tissue Proteins/genetics
19.
J Biol Chem ; 295(21): 7501-7515, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32317281

ABSTRACT

S-Acylation of the SNARE protein SNAP25 (synaptosome-associated protein of 25 kDa) is mediated by a subset of Golgi zinc finger DHHC-type palmitoyltransferase (zDHHC) enzymes, particularly zDHHC17. The ankyrin repeat domain of zDHHC17 interacts with a short linear motif known as the zDHHC ankyrin repeat-binding motif (zDABM) in SNAP25 (112VVASQP117), which is downstream of its S-acylated, cysteine-rich domain (85CGLCVCPC92). Here, we investigated the importance of a flexible linker region (amino acids 93-111, referred to hereafter as the "mini-linker" region) that separates the zDABM and S-acylated cysteines in SNAP25. Shortening the mini-linker did not affect the SNAP25-zDHHC17 interaction but blocked S-acylation. Insertion of additional flexible glycine-serine repeats had no effect on S-acylation, but extended and rigid alanine-proline repeats perturbed it. A SNAP25 mutant in which the mini-linker region was substituted with a flexible glycine-serine linker of the same length underwent efficient S-acylation. Furthermore, this mutant displayed the same intracellular localization as WT SNAP25, indicating that the amino acid composition of the mini-linker is not important for SNAP25 localization. Using the results of previous peptide array experiments, we generated a SNAP25 mutant predicted to have a higher-affinity zDABM. This mutant interacted with zDHHC17 more strongly but was S-acylated with reduced efficiency in HEK293T cells, implying that a lower-affinity interaction of the SNAP25 zDABM with zDHHC17 is optimal for S-acylation efficiency. These results show that amino acids 93-111 in SNAP25 act as a flexible molecular spacer that ensures efficient coupling of the SNAP25-zDHHC17 interaction and S-acylation of SNAP25.


Subject(s)
Synaptosomal-Associated Protein 25/metabolism , Acylation , Amino Acid Motifs , Animals , HEK293 Cells , Humans , PC12 Cells , Protein Domains , Rats , Synaptosomal-Associated Protein 25/genetics
20.
J Biol Chem ; 295(32): 11303-11315, 2020 08 07.
Article in English | MEDLINE | ID: mdl-32444496

ABSTRACT

The Arf GTPase-activating protein (Arf GAP) with SH3 domain, ankyrin repeat and PH domain 1 (ASAP1) establishes a connection between the cell membrane and the cortical actin cytoskeleton. The formation, maintenance, and turnover of actin filaments and bundles in the actin cortex are important for cell adhesion, invasion, and migration. Here, using actin cosedimentation, polymerization, and depolymerization assays, along with total internal reflection fluorescence (TIRF), confocal, and EM analyses, we show that the N-terminal N-BAR domain of ASAP1 directly binds to F-actin. We found that ASAP1 homodimerization aligns F-actin in predominantly unipolar bundles and stabilizes them against depolymerization. Furthermore, the ASAP1 N-BAR domain moderately reduced the spontaneous polymerization of G-actin. The overexpression of the ASAP1 BAR-PH tandem domain in fibroblasts induced the formation of actin-filled projections more effectively than did full-length ASAP1. An ASAP1 construct that lacked the N-BAR domain failed to induce cellular projections. Our results suggest that ASAP1 regulates the dynamics and the formation of higher-order actin structures, possibly through direct binding to F-actin via its N-BAR domain. We propose that ASAP1 is a hub protein for dynamic protein-protein interactions in mechanosensitive structures, such as focal adhesions, invadopodia, and podosomes, that are directly implicated in oncogenic events. The effect of ASAP1 on actin dynamics puts a spotlight on its function as a central signaling molecule that regulates the dynamics of the actin cytoskeleton by transmitting signals from the plasma membrane.


Subject(s)
Actin Cytoskeleton/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Mice , NIH 3T3 Cells , Protein Binding , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL