Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 883
Filter
Add more filters

Publication year range
1.
BMC Genomics ; 25(1): 54, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38212678

ABSTRACT

BACKGROUND: Feeding costs represent the largest expenditures in beef production. Therefore, the animal efficiency in converting feed in high-quality protein for human consumption plays a major role in the environmental impact of the beef industry and in the beef producers' profitability. In this context, breeding animals for improved feed efficiency through genomic selection has been considered as a strategic practice in modern breeding programs around the world. Copy number variation (CNV) is a less-studied source of genetic variation that can contribute to phenotypic variability in complex traits. In this context, this study aimed to: (1) identify CNV and CNV regions (CNVRs) in the genome of Nellore cattle (Bos taurus indicus); (2) assess potential associations between the identified CNVR and weaning weight (W210), body weight measured at the time of selection (WSel), average daily gain (ADG), dry matter intake (DMI), residual feed intake (RFI), time spent at the feed bunk (TF), and frequency of visits to the feed bunk (FF); and, (3) perform functional enrichment analyses of the significant CNVR identified for each of the traits evaluated. RESULTS: A total of 3,161 CNVs and 561 CNVRs ranging from 4,973 bp to 3,215,394 bp were identified. The CNVRs covered up to 99,221,894 bp (3.99%) of the Nellore autosomal genome. Seventeen CNVR were significantly associated with dry matter intake and feeding frequency (number of daily visits to the feed bunk). The functional annotation of the associated CNVRs revealed important candidate genes related to metabolism that may be associated with the phenotypic expression of the evaluated traits. Furthermore, Gene Ontology (GO) analyses revealed 19 enrichment processes associated with FF. CONCLUSIONS: A total of 3,161 CNVs and 561 CNVRs were identified and characterized in a Nellore cattle population. Various CNVRs were significantly associated with DMI and FF, indicating that CNVs play an important role in key biological pathways and in the phenotypic expression of feeding behavior and growth traits in Nellore cattle.


Subject(s)
DNA Copy Number Variations , Genome-Wide Association Study , Humans , Cattle/genetics , Animals , Phenotype , Eating/genetics , Feeding Behavior , Animal Feed/analysis
2.
BMC Genomics ; 25(1): 738, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080557

ABSTRACT

BACKGROUND: The selection of individuals based on their predicted breeding values and mating of related individuals can increase the proportion of identical-by-descent alleles. In this context, the objectives of this study were to estimate inbreeding coefficients based on alternative metrics and data sources such as pedigree (FPED), hybrid genomic relationship matrix H (FH), and ROH of different length (FROH); and calculate Pearson correlations between the different metrics in a closed Nellore cattle population selected for body weight adjusted to 378 days of age (W378). In addition to total FROH (all classes) coefficients were also estimated based on the size class of the ROH segments: FROH1 (1-2 Mb), FROH2 (2-4 Mb), FROH3 (4-8 Mb), FROH4 (8-16 Mb), and FROH5 (> 16 Mb), and for each chromosome (FROH_CHR). Furthermore, we assessed the effect of each inbreeding metric on birth weight (BW), body weights adjusted to 210 (W210) and W378, scrotal circumference (SC), and residual feed intake (RFI). We also evaluated the chromosome-specific effects of inbreeding on growth traits. RESULTS: The correlation between FPED and FROH was 0.60 while between FH and FROH and FH and FPED were 0.69 and 0.61, respectively. The annual rate of inbreeding was 0.16% for FPED, 0.02% for FH, and 0.16% for FROH. A 1% increase in FROH5 resulted in a reduction of up to -1.327 ± 0.495 kg in W210 and W378. Four inbreeding coefficients (FPED, FH, FROH2, and FROH5) had a significant effect on W378, with reductions of up to -3.810 ± 1.753 kg per 1% increase in FROH2. There was an unfavorable effect of FPED on RFI (0.01 ± 0.0002 kg dry matter/day) and of FROH on SC (-0.056 ± 0.022 cm). The FROH_CHR coefficients calculated for BTA3, BTA5, and BTA8 significantly affected the growth traits. CONCLUSIONS: Inbreeding depression was observed for all traits evaluated. However, these effects were greater for the criterion used for selection of the animals (i.e., W378). The increase in the genomic inbreeding was associated with a higher inbreeding depression on the traits evaluated when compared to pedigree-based inbreeding. Genomic information should be used as a tool during mating to optimize control of inbreeding and, consequently, minimize inbreeding depression in Nellore cattle.


Subject(s)
Fertility , Inbreeding , Pedigree , Animals , Cattle/genetics , Cattle/growth & development , Fertility/genetics , Genomics/methods , Female , Male , Phenotype , Quantitative Trait, Heritable , Body Weight/genetics
3.
BMC Genomics ; 25(1): 520, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802796

ABSTRACT

BACKGROUND: Increasing evidence points to an active role of oviductal extracellular vesicles (oEVs) in the early embryo-maternal dialogue. However, it remains unclear whether oEVs contribute to the recognition of the presence of embryos and their quality in the oviduct. Hence, we examined whether the molecular cargo of oEVs secreted by bovine oviduct epithelial cells (BOEC) differs depending on the presence of good (≥ 8 cells, G) or poor (< 8 cells, P) quality embryos. In addition, differences in RNA profiles between G and P embryos were analyzed in attempt to distinguish oEVs and embryonic EVs cargos. METHODS: For this purpose, primary BOEC were co-cultured with in vitro produced embryos (IVP) 53 h post fertilization as follows: BOEC with G embryos (BGE); BOEC with P embryos (BPE); G embryos alone (GE); P embryos alone (PE); BOEC alone (B) and medium control (M). After 24 h of co-culture, conditioned media were collected from all groups and EVs were isolated and characterized. MicroRNA profiling of EVs and embryos was performed by small RNA-sequencing. RESULTS: In EVs, 84 miRNAs were identified, with 8 differentially abundant (DA) miRNAs for BGE vs. B and 4 for BPE vs. B (P-value < 0.01). In embryos, 187 miRNAs were identified, with 12 DA miRNAs for BGE vs. BPE, 3 for G vs. P, 8 for BGE vs. GE, and 11 for BPE vs. PE (P-value < 0.01). CONCLUSIONS: These results indicated that oEVs are involved in the oviductal-embryo recognition and pointed to specific miRNAs with signaling and supporting roles during early embryo development.


Subject(s)
Embryo, Mammalian , Extracellular Vesicles , MicroRNAs , Oviducts , Animals , Extracellular Vesicles/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Female , Cattle , Embryo, Mammalian/metabolism , Oviducts/metabolism , Oviducts/cytology , Epithelial Cells/metabolism , Coculture Techniques , Fallopian Tubes/metabolism , Fallopian Tubes/cytology
4.
BMC Genomics ; 25(1): 417, 2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38678201

ABSTRACT

BACKGROUND: Between 2020 and 2022, eight calves in a Nebraska herd (composite Simmental, Red Angus, Gelbvieh) displayed exercise intolerance during forced activity. In some cases, the calves collapsed and did not recover. Available sire pedigrees contained a paternal ancestor within 2-4 generations in all affected calves. Pedigrees of the calves' dams were unavailable, however, the cows were ranch-raised and retained from prior breeding seasons, where bulls used for breeding occasionally had a common ancestor. Therefore, it was hypothesized that a de novo autosomal recessive variant was causative of exercise intolerance in these calves. RESULTS: A genome-wide association analysis utilizing SNP data from 6 affected calves and 715 herd mates, followed by whole-genome sequencing of 2 affected calves led to the identification of a variant in the gene PYGM (BTA29:g.42989581G > A). The variant, confirmed to be present in the skeletal muscle transcriptome, was predicted to produce a premature stop codon (p.Arg650*). The protein product of PYGM, myophosphorylase, breaks down glycogen in skeletal muscle. Glycogen concentrations were fluorometrically assayed as glucose residues demonstrating significantly elevated glycogen concentrations in affected calves compared to cattle carrying the variant and to wild-type controls. The absence of the PYGM protein product in skeletal muscle was confirmed by immunohistochemistry and label-free quantitative proteomics analysis; muscle degeneration was confirmed in biopsy and necropsy samples. Elevated skeletal muscle glycogen persisted after harvest, resulting in a high pH and dark-cutting beef, which is negatively perceived by consumers and results in an economic loss to the industry. Carriers of the variant did not exhibit differences in meat quality or any measures of animal well-being. CONCLUSIONS: Myophosphorylase deficiency poses welfare concerns for affected animals and negatively impacts the final product. The association of the recessive genotype with dark-cutting beef further demonstrates the importance of genetics to not only animal health but to the quality of their product. Although cattle heterozygous for the variant may not immediately affect the beef industry, identifying carriers will enable selection and breeding strategies to prevent the production of affected calves.


Subject(s)
Genome-Wide Association Study , Glycogen Phosphorylase, Muscle Form , Animals , Cattle , Female , Male , Cattle Diseases/genetics , Genes, Recessive , Glycogen Phosphorylase, Muscle Form/genetics , Glycogen Phosphorylase, Muscle Form/deficiency , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Pedigree , Polymorphism, Single Nucleotide , Whole Genome Sequencing
5.
Allergy ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38989779

ABSTRACT

BACKGROUND: Antigen-specific memory B cells play a key role in the induction of desensitization and remission to food allergens in oral immunotherapy and in the development of natural tolerance (NT). Here, we characterized milk allergen Bos d 9-specific B cells in oral allergen-specific immunotherapy (OIT) and in children spontaneously outgrowing cow's milk allergy (CMA) due to NT. METHODS: Samples from children with CMA who received oral OIT (before, during, and after), children who naturally outgrew CMA (NT), and healthy individuals were received from Stanford biobank. Bos d 9-specific B cells were isolated by flow cytometry and RNA-sequencing was performed. Protein profile of Bos d 9-specific B cells was analyzed by proximity extension assay. RESULTS: Increased frequencies of circulating milk allergen Bos d 9-specific B cells were observed after OIT and NT. Milk-desensitized subjects showed the partial acquisition of phenotypic features of remission, suggesting that desensitization is an earlier stage of remission. Within these most significantly expressed genes, IL10RA and TGFB3 were highly expressed in desensitized OIT patients. In both the remission and desensitized groups, B cell activation-, Breg cells-, BCR-signaling-, and differentiation-related genes were upregulated. In NT, pathways associated with innate immunity characteristics, development of marginal zone B cells, and a more established suppressor function of B cells prevail that may play a role in long-term tolerance. The analyses of immunoglobulin heavy chain genes in specific B cells demonstrated that IgG2 in desensitization, IgG1, IgA1, IgA2, IgG4, and IgD in remission, and IgD in NT were predominating. Secreted proteins from allergen-specific B cells revealed higher levels of regulatory cytokines, IL-10, and TGF-ß after OIT and NT. CONCLUSION: Allergen-specific B cells are essential elements in regulating food allergy towards remission in OIT-received and naturally resolved individuals.

6.
Genome ; 67(7): 233-242, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579337

ABSTRACT

Indicine cattle breeds are adapted to the tropical climate, and their coat plays an important role in this process. Coat color influences thermoregulation and the adhesion of ectoparasites and may be associated with productive and reproductive traits. Furthermore, coat color is used for breed qualification, with breeders preferring certain colors. The Gir cattle is characterized by a wide variety of coat colors. Therefore, we performed genome-wide association studies to identify candidate genes for coat color in Gir cattle. Different phenotype scenarios were considered in the analyses and regions were identified on eight chromosomes. Some regions and many candidate genes are influencing coat color in the Gir cattle, which was found to be a polygenic trait. The candidate genes identified have been associated with white spotting patterns and base coat color in cattle and other species. In addition, a possible epistatic effect on coat color determination in the Gir cattle was suggested. This is the first published study that identified genomic regions and listed candidate genes associated with coat color in Gir cattle. The findings provided a better understanding of the genetic architecture of the trait in the breed and will allow to guide future fine-mapping studies for the development of genetic markers for selection.


Subject(s)
Genome-Wide Association Study , Cattle/genetics , Animals , Phenotype , Hair Color/genetics , Polymorphism, Single Nucleotide , Pigmentation/genetics , Genome , Breeding , Quantitative Trait Loci
7.
J Intensive Care Med ; : 8850666241271431, 2024 Aug 07.
Article in English | MEDLINE | ID: mdl-39109630

ABSTRACT

Graft versus host disease (GVHD) in acute and chronic forms is a frequent post-transplant complication and seen in 50% of patients in acute and up to 70% cases in chronic GVHD setting. Patients with multiorgan involvement and those who are steroid refractory, frequently present with complications arising from this post-transplant complication. These GVHD patients are frequently managed in the Intensive care unit for treatment of air leaks, effusions, management of hypoxemia due to lung GVHD or infections. Close coordination between hematologists and Pulmonary medicine specialists is critical for timely management of these complications to improve patient outcomes.

8.
BMC Vet Res ; 20(1): 355, 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39123170

ABSTRACT

Diarrhea is a common issue in domestic yaks (Bos grunniens) that can occur with pasture alterations and significantly impacts growth performance. Previous research has examined the microbiota of diarrhetic yaks; however, the structural changes in gut bacterial community and microbial interactions in yaks with grassland alteration-induced diarrhea remain poorly understood. To explore variations in gut microbiota homeostasis among yaks suffering from diarrhea, fecal microbiota diversity and composition were analyzed using 16 S rRNA amplicon sequencing. Gut fecal microbiota diversity was lower in diarrhetic yaks than in non-diarrhetic yaks. Furthermore, the bacterial community composition (including that of Proteobacteria and Actinobacteria) in the feces of diarrhetic yaks displayed significant alterations. Co-occurrence network analysis further underscored the compromised intestinal flora stability in yaks with diarrhea relative to that in non-diarrhetic yaks. Interestingly, the abundance of beneficial bacteria, such as Lachnospiraceae_AC2044_group and Lachnospiraceae_NK4A136_group, were decreased in yaks with diarrhea, and the reductions were negatively correlated with the fecal water content. Collectively, these findings indicate that diminished microbial stability and increased abundance of certain bacteria in the gut may contribute to diarrhea occurrence in yaks.


Subject(s)
Cattle Diseases , Diarrhea , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Cattle , Diarrhea/veterinary , Diarrhea/microbiology , Feces/microbiology , Cattle Diseases/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
9.
Anim Genet ; 55(3): 344-351, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38426585

ABSTRACT

Bovine familial convulsions and ataxia (BFCA) is considered an autosomal dominant syndrome with incomplete penetrance. Nine Angus calves from the same herd were diagnosed with BFCA within days of birth. Necropsy revealed cerebellar and spinal cord lesions associated with the condition. Parentage testing confirmed that all affected calves had a common sire. The sire was then bred to 36 cows across two herds using artificial insemination, producing an additional 14 affected calves. The objective of this investigation was to identify hypothesized dominant genetic variation underlying the condition. Whole-genome sequencing was performed on the sire, six affected and seven unaffected paternal half-sibling calves and combined with data from 135 unrelated controls. The sire and five of the six affected calves were heterozygous for a nonsense variant (Chr7 g.12367906C>T, c.5073C>T, p.Arg1681*) in CACNA1A. The other affected calves (N = 8) were heterozygous for the variant but it was absent in the other unaffected calves (N = 7) and parents of the sire. This variant was also absent in sequence data from over 6500 other cattle obtained via public repositories and collaborator projects. The variant in CACNA1A is expressed in the cerebellum of the ataxic calves as detected in the transcriptome and was not differentially expressed compared with controls. The CACNA1A protein is part of a highly expressed cerebellar calcium voltage gated channel. The nonsense variant is proposed to cause haploinsufficiency, preventing proper transmission of neuronal signals through the channel and resulting in BFCA.


Subject(s)
Ataxia , Calcium Channels , Cattle Diseases , Seizures , Animals , Cattle/genetics , Calcium Channels/genetics , Ataxia/veterinary , Ataxia/genetics , Cattle Diseases/genetics , Seizures/veterinary , Seizures/genetics , Male , Female , Whole Genome Sequencing/veterinary , Genes, Dominant , Mutation
10.
J Dairy Sci ; 107(4): 2512-2523, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37863293

ABSTRACT

Anti-Müllerian hormone (AMH) concentration and number of recovered oocytes (ROOC) are phenotypic parameters associated with in vitro embryo production (IVEP). More recently, anogenital distance (AGD) has been proposed as a proxy for fertility in dairy cattle that is easy to collect at a low cost. The aim of this study was to characterize the AGD and its phenotypic and genetic associations with AMH and IVEP in Bos indicus Gyr dairy cattle. The hypothesis was that the number of ROOC, in vitro-produced embryos, and AMH concentration would increase as the AGD decreases. From July to December 2021, a single morphometrical measurement of AGD was collected in 552 donors from 6 herds in Brazil. A subset of donors had AMH assayed on the same day. Only ovum pick-up events that occurred up to 12 mo preceding and 7 mo succeeding the AGD measurement were used to assess the association between AGD, AMH, and IVEP. Thus, 472 donors (1,551 ovum pick-up events and 140 donors with AMH) were considered in the analysis. A raw average was calculated for each individual donor's ROOC, viable oocytes, total produced embryos, viability rate, and embryo rate (defined as total produced embryos/viable oocytes). Comparisons were conducted within the age categories of 3 to <6 yr or 6 to <10 yr. Phenotypic associations were performed in SAS software (SAS Institute Inc., Cary, NC). Genetic correlations were estimated using the BLUPF90 family of programs. The AGD (128.7 mm ± 14; mean ± standard deviation) had a normal distribution and was highly variable (83 to 172 mm) among the Gyr population. Our experimental hypothesis was partially supported by a phenotypic association of a greater number of total produced embryos (R2 = 0.023) as AGD decreased. Our results failed to support an increase in AMH concentration along with a decrease in AGD. In addition, positive and low genetic correlations were observed between AGD and viable oocytes (r = 0.08), and embryo rate (r = 0.20). A greater number of viable oocytes and embryos were observed in donors in the high compared with intermediate and low ROOC categories within both age categories. The age interval of 3 to <6 yr showed a greater number of recovered and viable oocytes for the high AMH compared with the low category, but no differences were observed among the AGD categories. In summary, for the Gyr breed, AGD was phenotypically inversely associated with a quantity-related parameter, such as the total number of produced embryos. In contrast, AGD showed a low genetic correlation with qualitative-related outcomes such as viable oocytes and embryo rate. Further studies should be performed to validate these retrospective analyses and to better understand the association between AGD and IVEP.


Subject(s)
Anti-Mullerian Hormone , Embryo, Mammalian , Cattle , Animals , Anti-Mullerian Hormone/genetics , Retrospective Studies , Oocytes , Fertilization in Vitro/veterinary
11.
J Dairy Sci ; 107(5): 2999-3005, 2024 May.
Article in English | MEDLINE | ID: mdl-37977438

ABSTRACT

The effect of carrier status of 10 lethal recessive genetic defects on pregnancy maintenance in Swedish dairy cattle was examined. The genetic defects were Ayrshire Haplotype 1, Ayrshire Haplotype 2, BTA12, BTA23, and Brown Swiss Haplotype 2 in Red Dairy Cattle (RDC), and Holstein Haplotype 1, 3, 4, 6, and 7 (HH1-HH7) in Holstein. Effects of carrier status of BTA12 and HH3 on conception rate (CR), interval from first to last service (FLS), and milk production were also examined. Data were obtained for 1,429 herds in the Swedish milk recording system, while information on carrier status of genetic defects was obtained from the Nordic Cattle Genetic Evaluation. In total, data on 158,795 inseminations in 28,432 RDC and 22,018 Holstein females were available. Data permitted separate analyses of BTA12 and HH3, but carrier frequencies of other defects were too low to enable further analysis. Pregnancy loss was defined as failure to maintain pregnancy, where pregnancy status was confirmed with manual and chemical pregnancy diagnosis, insemination, calving, sales and culling data. Odds ratios (OR) and probabilities of pregnancy loss and CR were estimated using generalized linear mixed models, while pregnancy loss, CR, FLS, milk, protein, and fat yields were analyzed using linear mixed models. Pregnancy losses were reported on average within the first month post-AI. At-risk matings were more prone to suffer pregnancy loss in BTA12 (OR = 1.79) and HH3 carriers (OR = 1.77) than not-at-risk matings. At-risk matings also had lower CR (OR = 0.62 and 0.63 for BTA12 and HH3, respectively) than not-at-risk matings. Carrier females of BTA12 had longer FLS and higher milk production than noncarriers. Conception rate and pregnancy maintenance could be improved by avoiding at-risk matings. This finding could help reduce pregnancy loss due to genetic defects in the breeding program for improved fertility.

12.
J Dairy Sci ; 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39067750

ABSTRACT

Genome-wide association studies (GWAS) are employed to identify genomic regions and candidate genes associated with several traits. The aim of this study was to perform a GWAS to identify causative variants and genes associated with milk yield, frame, and udder conformation traits in Gir dairy cattle. Body conformation traits were classified as "frame," and "udder" traits for this study. After genotyping imputation and quality control 42,105 polymorphisms were available for analyses and 24,489 cows with pedigree information had phenotypes. First, P-value was calculated based on the variance of the prediction error of the SNP-effects on the first iteration. After that, 2 more iterations were performed to carry out the weighted single-step genome-wide association methodology, performed using genomic moving windows defined based on linkage disequilibrium. The significant SNPs and top 10 windows explaining the highest percentage of additive genetic variance were selected and used for QTL and gene annotation. The variants identified in our work overlapped with QTLs from the animal QTL database on chromosomes 1 to 23, except for chromosome 4. The Gir breed is less studied than the Holstein breed and as such the animal QTL database is biased to Holstein results. Hence it is noteworthy that our GWAS had similarities with previously described QTLs. These previously known QTLs were related to milk yield, body height, rump angle, udder width, and udder depth. In total, 5 genes were annotated. Of these genes, FAM13A and CMSS1 had been previously related to bone and carcass weight in cattle.

13.
Pestic Biochem Physiol ; 198: 105750, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38225093

ABSTRACT

Gray mold, caused by the fungus Botrytis cinerea, is one of the most important plant diseases worldwide that is prone to developing resistance to fungicides. Currently, the phenylpyrrole fungicide fludioxonil exhibits excellent efficacy in the control of gray mold in China. In this study, we detected the fludioxonil resistance of gray mold disease in Shouguang City of Shandong Province, where we first found fludioxonil-resistant isolates of B. cinerea in 2014. A total of 87 single spore isolates of B. cinerea were obtained from cucumbers in greenhouse, and 3 of which could grow on PDA plates amended with 50 µg/mL fludioxonil that was defined as high-level resistance, with a resistance frequency of 3.4%. Furthermore, the 3 fludioxonil-resistant isolates also showed high-level resistance to the dicarboximide fungicides iprodione and procymidone. Sequencing comparison revealed that all the 3 fludioxonil-resistant isolates had a point mutation at codon 1158, GAC (Asp) â†’ AAC (Asn) in the histidine kinase Bos1, which was proved to be the reason for fludioxonil resistance. In addition, the fludioxonil-resistant isolates possessed an impaired biological fitness compared to the sensitive isolates based on the results of mycelial growth, conidiation, virulence, and osmotic stress tolerance determination. Taken together, our results indicate that the high-level resistance to fludioxonil caused by the Bos1 point mutation (D1158N) has emerged in the field gray mold disease, and the resistance risk is relatively high, and fludioxonil should be used sparingly.


Subject(s)
Branchio-Oto-Renal Syndrome , Dioxoles , Fungicides, Industrial , Pyrroles , Fungicides, Industrial/pharmacology , Histidine Kinase/genetics , Point Mutation , Drug Resistance, Fungal/genetics , Fungi , Plant Diseases/genetics , Plant Diseases/microbiology , Botrytis
14.
J Anim Breed Genet ; 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39189106

ABSTRACT

This study aimed to investigate functional variants in chromosome 14 (BTA14) and its impact in genomic selection for birth weight (BW), weaning weight (WW), and yearling weight (YW) in Nellore cattle. Genetic parameter estimation and the weighted single-step genomic best linear unbiased prediction (WssGBLUP) analyses were performed. Direct additive heritability estimates were high for WW and YW, and moderate for BW. Trait-associated variants distributed across multiple regions on BTA14 were observed in the weighted single-step genome-wide association studies (WssGWAS) results, implying a polygenic genetic architecture for weight in different ages. Several genes have been found in association with the weight traits, including the CUB And Sushi multiple domains 3 (CSMD3), thyroglobulin (TG), and diacylglycerol O-acyltransferase 1 (DGAT1) genes. The variance explained per SNP was higher in six functional classes of gene regulatory regions (5UTR, CpG islands, downstream, upstream, long non-coding RNA, and transcription factor binding sites (TFBS)), highlighting their importance for weight traits in Nellore cattle. A marginal increase in accuracy was observed when the selected functional variants (SV) information was considered in the WssGBLUP method, probably because of the small number of SV available on BTA14. The identified genes, pathways, and functions contribute to a better understanding of the genetic and physiological mechanisms regulating weight traits in the Nellore breed.

15.
Exp Appl Acarol ; 92(2): 217-232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329588

ABSTRACT

Cattle tick control poses a significant challenge for livestock in tropical and subtropical regions. The objective of this study was to determine the most suitable timing to initiate a strategic tick control program and to identify the ideal number of acaricide treatments for adult taurine cattle (Bos taurus taurus) in a tropical region throughout the year. Three groups with 10 bovines each were performed: T01 (strategic treatment in late autumn/winter/late spring, every 28 days), T02 (strategic treatment to act in the "first tick generation" - early spring/summer/early autumn, every 28 days) and T03 (control). Tick counts (females 4-8 mm) were conducted every 14 days. If the tick burden in any group reached 30 or more during these counts, we applied an additional treatment. Over the course of a year, T02 required significantly fewer (p < 0.05) acaricide treatments than T01, with nine treatments for T02 and eleven for T01. Furthermore, during the tick counts, animals in T02 showed a lower tick burden compared to those in T01. Initiating the strategic tick control program in early spring, corresponding to the first tick generation, proved more effective than starting in autumn. This approach not only required fewer acaricide treatments but also resulted in a reduced tick burden. These benefits are particularly valuable in terms of animal welfare and managing acaricide resistance issues.


Subject(s)
Acaricides , Cattle Diseases , Rhipicephalus , Tick Infestations , Female , Cattle , Animals , Tick Infestations/prevention & control , Tick Infestations/veterinary , Cattle Diseases/prevention & control , Tick Control/methods
16.
Arch Anim Nutr ; 78(1): 16-29, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38230440

ABSTRACT

This study aimed to evaluate intake, energy and nitrogen balance as well as methane emission in Holstein and ½ Holstein ½ Gyr (Girolando-F1) cows during the transition period. Twenty-four cows (12 Holstein and 12 Girolando-F1) were used to evaluate feed intake, apparent digestibility, heat production and methane emission, carried out in two periods: from 28 to 19 days pre-calving and from 15 to 23 days post-calving. A completely randomised design was used and data were analysed by ANOVA within periods (pre- and post-calving) considering the main effect of genetic groups. Girolando-F1cows presented greater body condition score (BCS) compared with Holstein. During pre-calving, there were no differences between genetic groups, except for highest heat production per kilogram of metabolic body weight for Holstein cows. After calving, Holstein cows had greater intake of DM, nitrogen, NDF per kg of BW and produced more heat per kg of metabolic body weight. Holstein cows yielded more milk and fat-corrected milk (FCM4%) compared with Girolando-F1 cows. Holstein cows presented higher methane emission per unit of BW and of metabolic weight. Emissions of enteric methane per kilogram of milk and per kilogram of FCM4% tended to be lower for Holstein compared with Girolando-F1 cows. Nitrogen and energy retention were similar for both Holstein and Girolando-F1 at pre- and post-calving. Despite differences in BCS, DMI, and milk yield, Girolando-F1 and Holstein cows present overall similar energy efficiency, albeit Holstein cows tended to present less methane emission per kg of eligible product (milk).


Subject(s)
Diet , Digestion , Methane , Nitrogen , Animals , Cattle/physiology , Cattle/metabolism , Female , Methane/metabolism , Nitrogen/metabolism , Digestion/physiology , Diet/veterinary , Energy Metabolism , Lactation/physiology , Animal Feed/analysis , Animal Nutritional Physiological Phenomena , Eating , Random Allocation
17.
Trop Anim Health Prod ; 56(4): 155, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727965

ABSTRACT

Kangayam cattle are one of the drought breeds in India with distinct attributes. Agricultural transformation has led to a decline in many pure-breed indigenous cattle, including the Kangayam breed. Hence, a study on the reproductive physiology of male Kangayam breed cattle is necessary to disentangle problems in the area of livestock improvement. In this study, we investigated the relationship between serum hormones and bio-constituents and ascertained the potential of saliva as an indicator of the reproductive status of Kangayam cattle (Bos indicus). The present study confirms that cholesterol was higher in intact males and lower in prepubertal and castrated males. Testosterone levels were also higher in intact males than in castrated or prepubertal males. Hence, it can be inferred that high cholesterol levels contribute to active derivatization of testosterone in intact males. In contrast, reduced cholesterol availability leads to decreased testosterone synthesis in castrated and prepubertal males. Furthermore, it is reasonable to speculate that testosterone could have influenced salivary fern patterns in intact males, and thus, fern-like crystallization in the saliva was apparent. The unique salivary compounds identified through GC-MS across various reproductive statuses of Kangayam males may advertise their physiological status to conspecifics. In addition, the presence of odorant-binding protein (OBP) in saliva further supports its role in olfactory communication. This study attested to a posssible interlink between gonadal status and serum biochemical profiles. The salivary fern pattern revealed in this study can be used as a predictive tool, and the presence of putative volatiles and OBP adds evidence to the role of saliva in chemical communication.


Subject(s)
Cholesterol , Saliva , Testosterone , Animals , Male , Cattle/physiology , Saliva/chemistry , Testosterone/blood , Testosterone/analysis , Cholesterol/analysis , Cholesterol/blood , Cholesterol/metabolism , Reproduction/physiology , India , Gas Chromatography-Mass Spectrometry/veterinary
18.
Trop Anim Health Prod ; 56(7): 221, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039361

ABSTRACT

We aimed to evaluate the metabolic and performance differences in primiparous Nellore cows, which became pregnant at 14 or 24-mo old. Thirty-eight cows with 202 ± 5 days of gestation were divided into two treatments according to breeding age: 14 or 24-mo. Cows were evaluated for body weight (BW), body condition score (BCS), carcass characteristics, milk yield, calves's performance, and blood characteristics. The animals were managed in eight paddocks under continuous grazing and evaluated from 90 d before parturition until 240 d after calving. We observed an interaction between breeding age and time (P < 0.01) for cow BW. Both breeding age categories experienced BW loss during parturition, with a concurrent decrease in BCS. However, following their first calving, the BW of 24-mo cows remained stable (P > 0.05), whereas 14-mo cows exhibited a gradual recovery in BW after parturition (P < 0.05). Milk yield was greater in 24-mo animals (P < 0.01), but decreased with increasing milking days (p < 0.05) for both groups. The weight gain calves from the heifers bred at 24-mo was greater (P < 0.01), which reflected in greater BW at weaning. The beta-hydroxybutyrate (ß-OHB) concentration was greater before calving and a marked decrease after parturition (P < 0.05). The 24-mo cows had greater blood ß-OHB (P < 0.01) at prepartum and 30 days after calving. Blood progesterone was greater in 24-mo cows (P > 0.05). Primiparous beef cows that conceive at either 14 or 24-months of age exhibit distinct nutritional requirements and metabolic profiles. Notably, cows that conceive at 24-months of age have the advantage of weaning heavier calves and displaying a more consistent reproductive cycle following their first calving than cows that conceive at 14-months.


Subject(s)
Lactation , Animals , Cattle/physiology , Female , Pregnancy , Lactation/physiology , Milk/metabolism , Milk/chemistry , Parity , Body Weight , Age Factors , Breeding , Animal Husbandry/methods
19.
J Proteome Res ; 22(11): 3580-3595, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37830897

ABSTRACT

The development of biomarkers of fertility could provide benefits for the genetic improvement of dairy cows. Circulating small extracellular vesicles (sEVs) show promise as diagnostic or prognostic markers since their cargo reflects the metabolic state of the cell of origin; thus, they mirror the physiological status of the host. Here, we employed data-independent acquisition mass spectrometry to survey the plasma and plasma sEV proteomes of two different cohorts of Young (Peripubertal; n = 30) and Aged (Primiparous; n = 20) dairy cows (Bos taurus) of high- and low-genetic merit of fertility and known pregnancy outcomes (ProteomeXchange data set identifier PXD042891). We established predictive models of fertility status with an area under the curve of 0.97 (sEV; p value = 3.302e-07) and 0.95 (plasma; p value = 6.405e-08). Biomarker candidates unique to high-fertility Young cattle had a sensitivity of 0.77 and specificity of 0.67 (*p = 0.0287). Low-fertility biomarker candidates uniquely identified in sEVs from Young and Aged cattle had a sensitivity and specificity of 0.69 and 1.0, respectively (***p = 0.0005). Our bioinformatics pipeline enabled quantification of plasma and circulating sEV proteins associated with fertility phenotype. Further investigations are warranted to validate this research in a larger population, which may lead to improved classification of fertility status in cattle.


Subject(s)
Extracellular Vesicles , Fertility , Pregnancy , Female , Cattle , Animals , Fertility/genetics , Biomarkers , Proteins/genetics , Phenotype , Lactation
20.
Am J Transplant ; 23(2): 214-222, 2023 02.
Article in English | MEDLINE | ID: mdl-36695698

ABSTRACT

Fractures negatively impact quality of life and survival. We hypothesized that recipient frailty score and genetic profile measured before transplant would predict risk of fracture after lung transplant. We conducted a retrospective cohort study of bone mineral density (BMD) and fracture among lung transplant recipients at a single center. The association between predictors and outcomes were assessed by multivariable time-dependent Cox models or regression analysis. Among the 284 participants, osteoporosis and fracture were highly prevalent. Approximately 59% of participants had posttransplant osteopenia, and 35% of participants developed at least 1 fracture. Low BMD was associated with a polygenic osteoporosis risk score, and the interaction between genetic score and BMD predicted fracture. Pretransplant frailty was associated with risk for spine and hip fracture, which were not associated with chronic lung allograft dysfunction or death. Chest fractures were the most frequent type of fracture and conferred a 2.2-fold increased risk of chronic lung allograft dysfunction or death (time-dependent P < .001). Pneumonia, pleural effusions, and acute rejection frequently occurred surrounding chest fracture. Pretransplant frailty and recipient genotype may aid clinical risk stratification for fracture after transplant. Fracture carries significant morbidity, underscoring the importance of surveillance and osteoporosis prevention.


Subject(s)
Fractures, Bone , Frailty , Lung Transplantation , Osteoporosis , Humans , Retrospective Studies , Frailty/complications , Quality of Life , Fractures, Bone/genetics , Fractures, Bone/complications , Osteoporosis/genetics , Osteoporosis/complications , Bone Density , Lung Transplantation/adverse effects , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL