Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.450
Filter
Add more filters

Publication year range
1.
Cell ; 186(21): 4676-4693.e29, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37729907

ABSTRACT

The assembly of the neuronal and other major cell type programs occurred early in animal evolution. We can reconstruct this process by studying non-bilaterians like placozoans. These small disc-shaped animals not only have nine morphologically described cell types and no neurons but also show coordinated behaviors triggered by peptide-secreting cells. We investigated possible neuronal affinities of these peptidergic cells using phylogenetics, chromatin profiling, and comparative single-cell genomics in four placozoans. We found conserved cell type expression programs across placozoans, including populations of transdifferentiating and cycling cells, suggestive of active cell type homeostasis. We also uncovered fourteen peptidergic cell types expressing neuronal-associated components like the pre-synaptic scaffold that derive from progenitor cells with neurogenesis signatures. In contrast, earlier-branching animals like sponges and ctenophores lacked this conserved expression. Our findings indicate that key neuronal developmental and effector gene modules evolved before the advent of cnidarian/bilaterian neurons in the context of paracrine cell signaling.


Subject(s)
Biological Evolution , Invertebrates , Neurons , Animals , Ctenophora/genetics , Gene Expression , Neurons/physiology , Phylogeny , Single-Cell Analysis , Invertebrates/cytology , Invertebrates/genetics , Invertebrates/metabolism , Paracrine Communication
2.
Cell ; 185(16): 2975-2987.e10, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35853453

ABSTRACT

Horizontal gene transfer (HGT) is an important evolutionary force shaping prokaryotic and eukaryotic genomes. HGT-acquired genes have been sporadically reported in insects, a lineage containing >50% of animals. We systematically examined HGT in 218 high-quality genomes of diverse insects and found that they acquired 1,410 genes exhibiting diverse functions, including many not previously reported, via 741 distinct transfers from non-metazoan donors. Lepidopterans had the highest average number of HGT-acquired genes. HGT-acquired genes containing introns exhibited substantially higher expression levels than genes lacking introns, suggesting that intron gains were likely involved in HGT adaptation. Lastly, we used the CRISPR-Cas9 system to edit the prevalent unreported gene LOC105383139, which was transferred into the last common ancestor of moths and butterflies. In diamondback moths, males lacking LOC105383139 courted females significantly less. We conclude that HGT has been a major contributor to insect adaptation.


Subject(s)
Butterflies , Gene Transfer, Horizontal , Animals , Butterflies/genetics , Courtship , Evolution, Molecular , Male , Phylogeny
3.
Cell ; 179(7): 1623-1635.e11, 2019 12 12.
Article in English | MEDLINE | ID: mdl-31835036

ABSTRACT

Marine bacteria and archaea play key roles in global biogeochemistry. To improve our understanding of this complex microbiome, we employed single-cell genomics and a randomized, hypothesis-agnostic cell selection strategy to recover 12,715 partial genomes from the tropical and subtropical euphotic ocean. A substantial fraction of known prokaryoplankton coding potential was recovered from a single, 0.4 mL ocean sample, which indicates that genomic information disperses effectively across the globe. Yet, we found each genome to be unique, implying limited clonality within prokaryoplankton populations. Light harvesting and secondary metabolite biosynthetic pathways were numerous across lineages, highlighting the value of single-cell genomics to advance the identification of ecological roles and biotechnology potential of uncultured microbial groups. This genome collection enabled functional annotation and genus-level taxonomic assignments for >80% of individual metagenome reads from the tropical and subtropical surface ocean, thus offering a model to improve reference genome databases for complex microbiomes.


Subject(s)
Metagenome , Microbiota , Seawater/microbiology , Archaea/classification , Archaea/genetics , Bacteria/classification , Bacteria/genetics , Energy Metabolism , Metagenomics/methods , Phylogeography , Plankton , Single-Cell Analysis/methods , Transcriptome
4.
Trends Genet ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38971670

ABSTRACT

Organisms are complex assemblages of cells, cells that produce light, shoot harpoons, and secrete glue. Therefore, identifying the mechanisms that generate novelty at the level of the individual cell is essential for understanding how multicellular life evolves. For decades, the field of evolutionary developmental biology (Evo-Devo) has been developing a framework for connecting genetic variation that arises during embryonic development to the emergence of diverse adult forms. With increasing access to new single cell 'omics technologies and an array of techniques for manipulating gene expression, we can now extend these inquiries inward to the level of the individual cell. In this opinion, I argue that applying an Evo-Devo framework to single cells makes it possible to explore the natural history of cells, where this was once only possible at the organismal level.

5.
Annu Rev Genomics Hum Genet ; 25(1): 369-395, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38608642

ABSTRACT

The ethical standards for the responsible conduct of human research have come a long way; however, concerns surrounding equity remain in human genetics and genomics research. Addressing these concerns will help society realize the full potential of human genomics research. One outstanding concern is the fair and equitable sharing of benefits from research on human participants. Several international bodies have recognized that benefit-sharing can be an effective tool for ethical research conduct, but international laws, including the Convention on Biological Diversity and its Nagoya Protocol on Access and Benefit-Sharing, explicitly exclude human genetic and genomic resources. These agreements face significant challenges that must be considered and anticipated if similar principles are applied in human genomics research. We propose that benefit-sharing from human genomics research can be a bottom-up effort and embedded into the existing research process. We propose the development of a "benefit-sharing by design" framework to address concerns of fairness and equity in the use of human genomic resources and samples and to learn from the aspirations and decade of implementation of the Nagoya Protocol.


Subject(s)
Genomics , Humans , Genomics/ethics , Genomics/methods , Genome, Human , Genetic Research/ethics , Genetic Research/legislation & jurisprudence
6.
Proc Natl Acad Sci U S A ; 121(2): e2221791120, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38165929

ABSTRACT

Using data from a wide range of natural communities including the human microbiome, plants, fish, mushrooms, rodents, beetles, and trees, we show that universally just a few percent of the species account for most of the biomass. This is in line with the classical observation that the vast bulk of biodiversity is very rare. Attempts to find traits allowing the tiny fraction of abundant species to escape rarity have remained unsuccessful. Here, we argue that this might be explained by the fact that hyper-dominance can emerge through stochastic processes. We demonstrate that in neutrally competing groups of species, rarity tends to become a trap if environmental fluctuations result in gains and losses proportional to abundances. This counter-intuitive phenomenon arises because absolute change tends to zero for very small abundances, causing rarity to become a "sticky state", a pseudoattractor that can be revealed numerically in classical ball-in-cup landscapes. As a result, the vast majority of species spend most of their time in rarity leaving space for just a few others to dominate the neutral community. However, fates remain stochastic. Provided that there is some response diversity, roles occasionally shift as stochastic events or natural enemies bring an abundant species down allowing a rare species to rise to dominance. Microbial time series spanning thousands of generations support this prediction. Our results suggest that near-neutrality within niches may allow numerous rare species to persist in the wings of the dominant ones. Stand-ins may serve as insurance when former key species collapse.


Subject(s)
Ecosystem , Microbiota , Animals , Humans , Biodiversity , Biomass , Trees , Stochastic Processes
7.
Proc Natl Acad Sci U S A ; 121(6): e2308769121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38285947

ABSTRACT

Microbial interactions are key to maintaining soil biodiversity. However, whether negative or positive associations govern the soil microbial system at a global scale remains virtually unknown, limiting our understanding of how microbes interact to support soil biodiversity and functions. Here, we explored ecological networks among multitrophic soil organisms involving bacteria, protists, fungi, and invertebrates in a global soil survey across 20 regions of the planet and found that positive associations among both pairs and triads of soil taxa governed global soil microbial networks. We further revealed that soil networks with greater levels of positive associations supported larger soil biodiversity and resulted in lower network fragility to withstand potential perturbations of species losses. Our study provides unique evidence of the widespread positive associations between soil organisms and their crucial role in maintaining the multitrophic structure of soil biodiversity worldwide.


Subject(s)
Soil Microbiology , Soil , Soil/chemistry , Biodiversity , Bacteria , Fungi , Ecosystem
8.
Proc Natl Acad Sci U S A ; 121(14): e2314231121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527197

ABSTRACT

Despite experimental and observational studies demonstrating that biodiversity enhances primary productivity, the best metric for predicting productivity at broad geographic extents-functional trait diversity, phylogenetic diversity, or species richness-remains unknown. Using >1.8 million tree measurements from across eastern US forests, we quantified relationships among functional trait diversity, phylogenetic diversity, species richness, and productivity. Surprisingly, functional trait and phylogenetic diversity explained little variation in productivity that could not be explained by tree species richness. This result was consistent across the entire eastern United States, within ecoprovinces, and within data subsets that controlled for biomass or stand age. Metrics of functional trait and phylogenetic diversity that were independent of species richness were negatively correlated with productivity. This last result suggests that processes that determine species sorting and packing are likely important for the relationships between productivity and biodiversity. This result also demonstrates the potential confusion that can arise when interdependencies among different diversity metrics are ignored. Our findings show the value of species richness as a predictive tool and highlight gaps in knowledge about linkages between functional diversity and ecosystem functioning.


Subject(s)
Biodiversity , Forests , Biomass , Ecosystem , Phylogeny , United States
9.
Proc Natl Acad Sci U S A ; 121(15): e2320687121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557179

ABSTRACT

The Mediterranean Sea is a marine biodiversity hotspot already affected by climate-driven biodiversity collapses. Its highly endemic fauna is at further risk if global warming triggers an invasion of tropical Atlantic species. Here, we combine modern species occurrences with a unique paleorecord from the Last Interglacial (135 to 116 ka), a conservative analog of future climate, to model the future distribution of an exemplary subset of tropical West African mollusks, currently separated from the Mediterranean by cold upwelling off north-west Africa. We show that, already under an intermediate climate scenario (RCP 4.5) by 2050, climatic connectivity along north-west Africa may allow tropical species to colonize a by then largely environmentally suitable Mediterranean. The worst-case scenario RCP 8.5 leads to a fully tropicalized Mediterranean by 2100. The tropical Atlantic invasion will add to the ongoing Indo-Pacific invasion through the Suez Canal, irreversibly transforming the entire Mediterranean into a novel ecosystem unprecedented in human history.


Subject(s)
Biodiversity , Ecosystem , Humans , Mediterranean Sea , Global Warming , Africa, Western
10.
Proc Natl Acad Sci U S A ; 121(20): e2320674121, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38684007

ABSTRACT

Identifying and protecting hotspots of endemism and species richness is crucial for mitigating the global biodiversity crisis. However, our understanding of spatial diversity patterns is far from complete, which severely limits our ability to conserve biodiversity hotspots. Here, we report a comprehensive analysis of amphibian species diversity in China, one of the most species-rich countries on Earth. Our study combines 20 y of field surveys with new molecular analyses of 521 described species and also identifies 100 potential cryptic species. We identify 10 hotspots of amphibian diversity in China, each with exceptional species richness and endemism and with exceptional phylogenetic diversity and phylogenetic endemism (based on a new time-calibrated, species-level phylogeny for Chinese amphibians). These 10 hotspots encompass 59.6% of China's described amphibian species, 49.0% of cryptic species, and 55.6% of species endemic to China. Only four of these 10 hotspots correspond to previously recognized biodiversity hotspots. The six new hotspots include the Nanling Mountains and other mountain ranges in South China. Among the 186 species in the six new hotspots, only 9.7% are well covered by protected areas and most (88.2%) are exposed to high human impacts. Five of the six new hotspots are under very high human pressure and are in urgent need of protection. We also find that patterns of richness in cryptic species are significantly related to those in described species but are not identical.


Subject(s)
Amphibians , Biodiversity , Phylogeny , Animals , Amphibians/classification , China , Conservation of Natural Resources
11.
Proc Natl Acad Sci U S A ; 121(7): e2317866121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38315840

ABSTRACT

Mature forests and their extremely old trees are rare and threatened ancient vestiges in remote European high-mountain regions. Here, we analyze the role that extremely long-living trees have in mature forests biodiversity in relation to their singular traits underlying longevity. Tree size and age determine relative growth rates, bud abortion, and the water status of long-living trees. The oldest trees suffer indefectible age-related constraints but possess singular evolutionary traits defined by fitness adaptation, modular autonomy, and a resilient metabolism that allow them to have irreplaceable roles in the ecosystem as biodiversity anchors of vulnerable lichen species like Letharia vulpina. We suggest that the role of ancient trees as unique biodiversity reservoirs is linked to their singular physiological traits associated with longevity. The set of evolutionarily plastic tools that can only be provided by centuries or millennia of longevity helps the oldest trees of mature forests drive singular ecological relationships that are irreplaceable and necessary for ecosystem dynamics.


Subject(s)
Ecosystem , Trees , Trees/physiology , Conservation of Natural Resources , Forests , Biodiversity
12.
Proc Natl Acad Sci U S A ; 121(37): e2318296121, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39236239

ABSTRACT

Anthropogenic habitat destruction and climate change are reshaping the geographic distribution of plants worldwide. However, we are still unable to map species shifts at high spatial, temporal, and taxonomic resolution. Here, we develop a deep learning model trained using remote sensing images from California paired with half a million citizen science observations that can map the distribution of over 2,000 plant species. Our model-Deepbiosphere-not only outperforms many common species distribution modeling approaches (AUC 0.95 vs. 0.88) but can map species at up to a few meters resolution and finely delineate plant communities with high accuracy, including the pristine and clear-cut forests of Redwood National Park. These fine-scale predictions can further be used to map the intensity of habitat fragmentation and sharp ecosystem transitions across human-altered landscapes. In addition, from frequent collections of remote sensing data, Deepbiosphere can detect the rapid effects of severe wildfire on plant community composition across a 2-y time period. These findings demonstrate that integrating public earth observations and citizen science with deep learning can pave the way toward automated systems for monitoring biodiversity change in real-time worldwide.


Subject(s)
Citizen Science , Deep Learning , Ecosystem , Plants , Remote Sensing Technology , Remote Sensing Technology/methods , Citizen Science/methods , Plants/classification , Climate Change , Forests , Biodiversity , California , Wildfires , Humans , Conservation of Natural Resources/methods
13.
Proc Natl Acad Sci U S A ; 121(32): e2310074121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39074285

ABSTRACT

In this review and synthesis, we argue that California is an important test case for the nation and world because terrestrial biodiversity is very high, present and anticipated threats to biodiversity from climate change and other interacting stressors are severe, and innovative approaches to protecting biodiversity in the context of climate change are being developed and tested. We first review salient dimensions of California's terrestrial physical, biological, and human diversity. Next, we examine four facets of the threat to their sustainability of these dimensions posed by climate change: direct impacts, illustrated by a new analysis of shifting diversity hotspots for plants; interactive effects involving invasive species, land-use change, and other stressors; the impacts of changing fire regimes; and the impacts of land-based renewable energy development. We examine recent policy responses in each of these areas, representing attempts to better protect biodiversity while advancing climate adaptation and mitigation. We conclude that California's ambitious 30 × 30 Initiative and its efforts to harmonize biodiversity conservation with renewable energy development are important areas of progress. Adapting traditional suppression-oriented fire policies to the reality of new fire regimes is an area in which much progress remains to be made.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , California , Humans , Fires , Introduced Species , Plants , Animals
14.
Proc Natl Acad Sci U S A ; 121(34): e2402970121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39133856

ABSTRACT

Ecosystem restoration is inherently a complex activity with inevitable tradeoffs in environmental and societal outcomes. These tradeoffs can potentially be large when policies and practices are focused on single outcomes versus joint achievement of multiple outcomes. Few studies have assessed the tradeoffs in Nature's Contributions to People (NCP) and the distributional equity of NCP from forest restoration strategies. Here, we optimized a defined forest restoration area across India with systematic conservation planning to assess the tradeoffs between three NCP: i) climate change mitigation NCP, ii) biodiversity value NCP (habitat created for forest-dependent mammals), and iii) societal NCP (human direct use of restored forests for livelihoods, housing construction material, and energy). We show that restoration plans aimed at a single-NCP tend not to deliver other NCP outcomes efficiently. In contrast, integrated spatial forest restoration plans aimed at achievement of multiple outcomes deliver on average 83.3% (43.2 to 100%) of climate change mitigation NCP, 89.9% (63.8 to 100%) of biodiversity value NCP, and 93.9% (64.5 to 100%) of societal NCP delivered by single-objective plans. Integrated plans deliver NCP more evenly across the restoration area when compared to other plans that identify certain regions such as the Western Ghats and north-eastern India. Last, 38 to 41% of the people impacted by integrated spatial plans belong to socioeconomically disadvantaged groups, greater than their overall representation in India's population. Moving ahead, effective policy design and evaluation integrating ecosystem protection and restoration strategies can benefit from the blueprint we provide in this study for India.


Subject(s)
Biodiversity , Climate Change , Conservation of Natural Resources , Forests , Conservation of Natural Resources/methods , Humans , India , Ecosystem , Environmental Restoration and Remediation/methods
15.
Proc Natl Acad Sci U S A ; 121(17): e2307216121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621126

ABSTRACT

Uncontrolled fires place considerable burdens on forest ecosystems, compromising our ability to meet conservation and restoration goals. A poor understanding of the impacts of fire on ecosystems and their biodiversity exacerbates this challenge, particularly in tropical regions where few studies have applied consistent analytical techniques to examine a broad range of ecological impacts over multiyear time frames. We compiled 16 y of data on ecosystem properties (17 variables) and biodiversity (21 variables) from a tropical peatland in Indonesia to assess fire impacts and infer the potential for recovery. Burned forest experienced altered structural and microclimatic conditions, resulting in a proliferation of nonforest vegetation and erosion of forest ecosystem properties and biodiversity. Compared to unburned forest, habitat structure, tree density, and canopy cover deteriorated by 58 to 98%, while declines in species diversity and abundance were most pronounced for trees, damselflies, and butterflies, particularly for forest specialist species. Tracking ecosystem property and biodiversity datasets over time revealed most to be sensitive to recurrent high-intensity fires within the wider landscape. These megafires immediately compromised water quality and tree reproductive phenology, crashing commercially valuable fish populations within 3 mo and driving a gradual decline in threatened vertebrates over 9 mo. Burned forest remained structurally compromised long after a burn event, but vegetation showed some signs of recovery over a 12-y period. Our findings demonstrate that, if left uncontrolled, fire may be a pervasive threat to the ecological functioning of tropical forests, underscoring the importance of fire prevention and long-term restoration efforts, as exemplified in Indonesia.


Subject(s)
Butterflies , Fires , Animals , Ecosystem , Soil , Forests , Trees , Biodiversity
16.
Proc Natl Acad Sci U S A ; 121(17): e2307220121, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38621138

ABSTRACT

The expansion of the oil palm industry in Indonesia has improved livelihoods in rural communities, but comes at the cost of biodiversity and ecosystem degradation. Here, we investigated ways to balance ecological and economic outcomes of oil palm cultivation. We compared a wide range of production systems, including smallholder plantations, industrialized company estates, estates with improved agronomic management, and estates with native tree enrichment. Across all management types, we assessed multiple indicators of biodiversity, ecosystem functions, management, and landscape structure to identify factors that facilitate economic-ecological win-wins, using palm yields as measure of economic performance. Although, we found that yields in industrialized estates were, on average, twice as high as those in smallholder plantations, ecological indicators displayed substantial variability across systems, regardless of yield variations, highlighting potential for economic-ecological win-wins. Reducing management intensity (e.g., mechanical weeding instead of herbicide application) did not lower yields but improved ecological outcomes at moderate costs, making it a potential measure for balancing economic and ecological demands. Additionally, maintaining forest cover in the landscape generally enhanced local biodiversity and ecosystem functioning within plantations. Enriching plantations with native trees is also a promising strategy to increase ecological value without reducing productivity. Overall, we recommend closing yield gaps in smallholder cultivation through careful intensification, whereas conventional plantations could reduce management intensity without sacrificing yield. Our study highlights various pathways to reconcile the economics and ecology of palm oil production and identifies management practices for a more sustainable future of oil palm cultivation.


Subject(s)
Arecaceae , Industrial Oils , Ecosystem , Forests , Biodiversity , Agriculture , Trees , Palm Oil , Conservation of Natural Resources
17.
Proc Natl Acad Sci U S A ; 121(13): e2313334121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38498717

ABSTRACT

Multiple facets of global change affect the earth system interactively, with complex consequences for ecosystem functioning and stability. Simultaneous climate and biodiversity change are of particular concern, because biodiversity may contribute to ecosystem resistance and resilience and may mitigate climate change impacts. Yet, the extent and generality of how climate and biodiversity change interact remain insufficiently understood, especially for the decomposition of organic matter, a major determinant of the biosphere-atmosphere carbon feedbacks. With an inter-biome field experiment using large rainfall exclusion facilities, we tested how drought, a common prediction of climate change models for many parts of the world, and biodiversity in the decomposer system drive decomposition in forest ecosystems interactively. Decomposing leaf litter lost less carbon (C) and especially nitrogen (N) in five different forest biomes following partial rainfall exclusion compared to conditions without rainfall exclusion. An increasing complexity of the decomposer community alleviated drought effects, with full compensation when large-bodied invertebrates were present. Leaf litter mixing increased diversity effects, with increasing litter species richness, which contributed to counteracting drought effects on C and N loss, although to a much smaller degree than decomposer community complexity. Our results show at a relevant spatial scale covering distinct climate zones that both, the diversity of decomposer communities and plant litter in forest floors have a strong potential to mitigate drought effects on C and N dynamics during decomposition. Preserving biodiversity at multiple trophic levels contributes to ecosystem resistance and appears critical to maintain ecosystem processes under ongoing climate change.


Subject(s)
Droughts , Ecosystem , Biodiversity , Forests , Plant Leaves , Carbon
18.
Proc Natl Acad Sci U S A ; 121(14): e2311597121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38527199

ABSTRACT

Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.


Subject(s)
Ecosystem , Mollusca , Humans , Animals , French Guiana , Plants , Pollen , Fossils
19.
Proc Natl Acad Sci U S A ; 121(6): e2312569121, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38285935

ABSTRACT

Human-wildlife conflict is an important factor in the modern biodiversity crisis and has negative effects on both humans and wildlife (such as property destruction, injury, or death) that can impede conservation efforts for threatened species. Effectively addressing conflict requires an understanding of where it is likely to occur, particularly as climate change shifts wildlife ranges and human activities globally. Here, we examine how projected shifts in cropland density, human population density, and climatic suitability-three key drivers of human-elephant conflict-will shift conflict pressures for endangered Asian and African elephants to inform conflict management in a changing climate. We find that conflict risk (cropland density and/or human population density moving into the 90th percentile based on current-day values) increases in 2050, with a larger increase under the high-emissions "regional rivalry" SSP3 - RCP 7.0 scenario than the low-emissions "sustainability" SSP1 - RCP 2.6 scenario. We also find a net decrease in climatic suitability for both species along their extended range boundaries, with decreasing suitability most often overlapping increasing conflict risk when both suitability and conflict risk are changing. Our findings suggest that as climate changes, the risk of conflict with Asian and African elephants may shift and increase and managers should proactively mitigate that conflict to preserve these charismatic animals.


Subject(s)
Elephants , Hominidae , Animals , Humans , Ecosystem , Animals, Wild , Asia , Africa , Climate Change , Conservation of Natural Resources
20.
Proc Natl Acad Sci U S A ; 121(34): e2319989121, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39133854

ABSTRACT

Vascular plants are diverse and a major component of terrestrial ecosystems, yet their geographic distributions remain incomplete. Here, I present a global database of vascular plant distributions by integrating species distribution models calibrated to species' dispersal ability and natural habitats to predict native range maps for 201,681 vascular plant species into unsurveyed areas. Using these maps, I uncover unique patterns of native vascular plant diversity, endemism, and phylogenetic diversity revealing hotspots in underdocumented biodiversity-rich regions. These hotspots, based on detailed species-level maps, show a pronounced latitudinal gradient, strongly supporting the theory of increasing diversity toward the equator. I trained random forest models to extrapolate diversity patterns under unbiased global sampling and identify overlaps with modeled estimations but unveiled cryptic hotspots that were not captured by modeled estimations. Only 29% to 36% of extrapolated plant hotspots are inside protected areas, leaving more than 60% outside and vulnerable. However, the unprotected hotspots harbor species with unique attributes that make them good candidates for conservation prioritization.


Subject(s)
Biodiversity , Phylogeny , Plants , Plants/classification , Ecosystem , Conservation of Natural Resources , Plant Dispersal
SELECTION OF CITATIONS
SEARCH DETAIL