Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Biochem Biophys Res Commun ; 708: 149786, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38493545

ABSTRACT

Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.


Subject(s)
Metabolic Diseases , Mitochondrial Diseases , Humans , Muscle, Skeletal/metabolism , Mitochondria/metabolism , Fatty Alcohols/pharmacology , Fatty Alcohols/metabolism , Catechols/pharmacology , Fructose/metabolism , Metabolic Diseases/metabolism , Mitochondrial Diseases/metabolism
2.
Methods Mol Biol ; 1732: 343-361, 2018.
Article in English | MEDLINE | ID: mdl-29480486

ABSTRACT

Here we describe an assay for simultaneous measurement of cellular uptake rates of long-chain fatty acids (LCFA) and glucose that can be applied to cells in suspension. The uptake assay includes the use of radiolabeled substrates at such concentrations and incubation periods that exact information is provided about unidirectional uptakes rates. Cellular uptake of both substrates is under regulation of AMPK. The underlying mechanism includes the translocation of LCFA and glucose transporters from intracellular membrane compartments to the cell surface, leading to an increase in substrate uptake. In this chapter, we explain the principles of the uptake assay before detailing the exact procedure. We also provide information of the specific LCFA and glucose transporters subject to AMPK-mediated subcellular translocation. Finally, we discuss the application of AMPK inhibitors and activators in combination with cellular substrate uptake assays.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Enzyme Assays/methods , Fatty Acids/metabolism , Glucose/metabolism , Animals , Cells, Cultured , Enzyme Assays/instrumentation , Glucose Transporter Type 4/metabolism , Intracellular Membranes/metabolism , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Primary Cell Culture , Rats
SELECTION OF CITATIONS
SEARCH DETAIL