Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 8.243
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 42(1): 235-258, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38271641

ABSTRACT

The choice of developing thymocytes to become CD8+ cytotoxic or CD4+ helper T cells has been intensely studied, but many of the underlying mechanisms remain to be elucidated. Recent multiomics approaches have provided much higher resolution analysis of gene expression in developing thymocytes than was previously achievable, thereby offering a fresh perspective on this question. Focusing on our recent studies using CITE-seq (cellular indexing of transcriptomes and epitopes) analyses of mouse thymocytes, we present a detailed timeline of RNA and protein expression changes during CD8 versus CD4 T cell differentiation. We also revisit our current understanding of the links between T cell receptor signaling and expression of the lineage-defining transcription factors ThPOK and RUNX3. Finally, we propose a sequential selection model to explain the tight linkage between MHC-I versus MHC-II recognition and T cell lineage choice. This model incorporates key aspects of previously proposed kinetic signaling, instructive, and stochastic/selection models.


Subject(s)
CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Cell Differentiation , Cell Lineage , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Core Binding Factor Alpha 3 Subunit/metabolism , Core Binding Factor Alpha 3 Subunit/genetics , Mice , Transcription Factors/metabolism , Transcriptome , Multiomics
2.
Annu Rev Immunol ; 41: 483-512, 2023 04 26.
Article in English | MEDLINE | ID: mdl-36750317

ABSTRACT

Transforming growth factor ß (TGF-ß) is a key cytokine regulating the development, activation, proliferation, differentiation, and death of T cells. In CD4+ T cells, TGF-ß maintains the quiescence and controls the activation of naive T cells. While inhibiting the differentiation and function of Th1 and Th2 cells, TGF-ß promotes the differentiation of Th17 and Th9 cells. TGF-ß is required for the induction of Foxp3 in naive T cells and the development of regulatory T cells. TGF-ß is crucial in the differentiation of tissue-resident memory CD8+ T cells and their retention in the tissue, whereas it suppresses effector T cell function. In addition, TGF-ß also regulates the generation or function of natural killer T cells, γδ T cells, innate lymphoid cells, and gut intraepithelial lymphocytes. Here I highlight the major findings and recent advances in our understanding of TGF-ß regulation of T cells and provide a personal perspective of the field.


Subject(s)
CD8-Positive T-Lymphocytes , Transforming Growth Factor beta1 , Animals , Humans , Cell Differentiation , Immunity, Innate , Lymphocytes/metabolism , T-Lymphocytes, Regulatory/metabolism , Transforming Growth Factor beta1/metabolism
3.
Annu Rev Immunol ; 38: 705-725, 2020 04 26.
Article in English | MEDLINE | ID: mdl-32340571

ABSTRACT

The discovery of CD4+ T cell subset-defining master transcription factors and framing of the Th1/Th2 paradigm ignited the CD4+ T cell field. Advances in in vivo experimental systems, however, have revealed that more complex lineage-defining transcriptional networks direct CD4+ T cell differentiation in the lymphoid organs and tissues. This review focuses on the layers of fate decisions that inform CD4+ T cell differentiation in vivo. Cytokine production by antigen-presenting cells and other innate cells influences the CD4+ T cell effector program [e.g., T helper type 1 (Th1), Th2, Th17]. Signals downstream of the T cell receptor influence whether individual clones bearing hallmarks of this effector program become T follicular helper cells, supporting development of B cells expressing specific antibody isotypes, or T effector cells, which activate microbicidal innate cells in tissues. These bifurcated, parallel axes allow CD4+ T cells to augment their particular effector program and prevent disease.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cell Differentiation/immunology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/cytology , Cell Differentiation/genetics , Cytokines/metabolism , Humans , Lymphocyte Activation/immunology , Receptors, Antigen, T-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism
4.
Annu Rev Immunol ; 38: 229-247, 2020 04 26.
Article in English | MEDLINE | ID: mdl-31928469

ABSTRACT

Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.


Subject(s)
T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adaptive Immunity , Animals , Biomarkers , Cell Differentiation/immunology , Host-Pathogen Interactions , Humans , Immunologic Memory , Lymphocyte Activation/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/cytology
5.
Annu Rev Immunol ; 37: 599-624, 2019 04 26.
Article in English | MEDLINE | ID: mdl-31026411

ABSTRACT

The intestinal microbiota plays a crucial role in influencing the development of host immunity, and in turn the immune system also acts to regulate the microbiota through intestinal barrier maintenance and immune exclusion. Normally, these interactions are homeostatic, tightly controlled, and organized by both innate and adaptive immune responses. However, a combination of environmental exposures and genetic defects can result in a break in tolerance and intestinal homeostasis. The outcomes of these interactions at the mucosal interface have broad, systemic effects on host immunity and the development of chronic inflammatory or autoimmune disease. The underlying mechanisms and pathways the microbiota can utilize to regulate these diseases are just starting to emerge. Here, we discuss the recent evidence in this area describing the impact of microbiota-immune interactions during inflammation and autoimmunity, with a focus on barrier function and CD4+ T cell regulation.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Diabetes Mellitus, Type 1/microbiology , Gastrointestinal Microbiome/immunology , Inflammation/microbiology , Inflammatory Bowel Diseases/microbiology , Intestinal Mucosa/microbiology , Animals , Autoimmunity , Diabetes Mellitus, Type 1/immunology , Homeostasis , Humans , Immune Tolerance , Immunomodulation , Inflammation/immunology , Inflammatory Bowel Diseases/immunology , Intestinal Mucosa/immunology
6.
Cell ; 187(1): 79-94.e24, 2024 01 04.
Article in English | MEDLINE | ID: mdl-38181743

ABSTRACT

The CD4-binding site (CD4bs) is a conserved epitope on HIV-1 envelope (Env) that can be targeted by protective broadly neutralizing antibodies (bnAbs). HIV-1 vaccines have not elicited CD4bs bnAbs for many reasons, including the occlusion of CD4bs by glycans, expansion of appropriate naive B cells with immunogens, and selection of functional antibody mutations. Here, we demonstrate that immunization of macaques with a CD4bs-targeting immunogen elicits neutralizing bnAb precursors with structural and genetic features of CD4-mimicking bnAbs. Structures of the CD4bs nAb bound to HIV-1 Env demonstrated binding angles and heavy-chain interactions characteristic of all known human CD4-mimicking bnAbs. Macaque nAb were derived from variable and joining gene segments orthologous to the genes of human VH1-46-class bnAb. This vaccine study initiated in primates the B cells from which CD4bs bnAbs can derive, accomplishing the key first step in the development of an effective HIV-1 vaccine.


Subject(s)
AIDS Vaccines , HIV-1 , Animals , Humans , Broadly Neutralizing Antibodies , CD4 Antigens , Cell Adhesion Molecules , HIV-1/physiology , Macaca , AIDS Vaccines/immunology
7.
Cell ; 187(22): 6393-6410.e16, 2024 Oct 31.
Article in English | MEDLINE | ID: mdl-39454576

ABSTRACT

Differential expression analysis of single-cell RNA sequencing (scRNA-seq) data is central for characterizing how experimental factors affect the distribution of gene expression. However, distinguishing between biological and technical sources of cell-cell variability and assessing the statistical significance of quantitative comparisons between cell groups remain challenging. We introduce Memento, a tool for robust and efficient differential analysis of mean expression, variability, and gene correlation from scRNA-seq data, scalable to millions of cells and thousands of samples. We applied Memento to 70,000 tracheal epithelial cells to identify interferon-responsive genes, 160,000 CRISPR-Cas9 perturbed T cells to reconstruct gene-regulatory networks, 1.2 million peripheral blood mononuclear cells (PBMCs) to map cell-type-specific quantitative trait loci (QTLs), and the 50-million-cell CELLxGENE Discover corpus to compare arbitrary cell groups. In all cases, Memento identified more significant and reproducible differences in mean expression compared with existing methods. It also identified differences in variability and gene correlation that suggest distinct transcriptional regulation mechanisms imparted by perturbations.


Subject(s)
Quantitative Trait Loci , Sequence Analysis, RNA , Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Gene Regulatory Networks , Animals , Leukocytes, Mononuclear/metabolism , Epithelial Cells/metabolism , T-Lymphocytes/metabolism , Gene Expression Regulation , Mice , CRISPR-Cas Systems/genetics , Trachea/metabolism
8.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428396

ABSTRACT

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Subject(s)
HIV Infections , Inflammasomes , Simian Acquired Immunodeficiency Syndrome , Animals , Humans , Mice , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Disease Progression , HIV Infections/pathology , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/physiology , Viremia , HIV/physiology
9.
Annu Rev Immunol ; 34: 317-34, 2016 05 20.
Article in English | MEDLINE | ID: mdl-27168241

ABSTRACT

CD4(+) T helper (Th) cells play a central role in the adaptive immune response by providing help to B cells and cytotoxic T cells and by releasing different types of cytokines in tissues to mediate protection against a wide range of pathogenic microorganisms. These functions are performed by different types of Th cells endowed with distinct migratory capacities and effector functions. Here we discuss how studies of the human T cell response to microbes have advanced our understanding of Th cell functional heterogeneity, in particular with the discovery of a distinct Th1 subset involved in the response to Mycobacteria and the characterization of two types of Th17 cells specific for extracellular bacteria or fungi. We also review new approaches to dissect at the clonal level the human CD4(+) T cell response induced by pathogens or vaccines that have revealed an unexpected degree of intraclonal diversification and propose a progressive and selective model of CD4(+) T cell differentiation.


Subject(s)
Adaptive Immunity , Bacterial Infections/immunology , Biodiversity , Mycoses/immunology , Th1 Cells/immunology , Th17 Cells/immunology , Vaccines/immunology , Animals , CD4 Antigens/metabolism , Cell Differentiation , Clonal Selection, Antigen-Mediated , Clone Cells , Cytotoxicity, Immunologic , Humans , Immunity, Humoral , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
10.
Cell ; 186(7): 1417-1431.e20, 2023 03 30.
Article in English | MEDLINE | ID: mdl-37001502

ABSTRACT

Senescent cell accumulation has been implicated in the pathogenesis of aging-associated diseases, including cancer. The mechanism that prevents the accumulation of senescent cells in aging human organs is unclear. Here, we demonstrate that a virus-immune axis controls the senescent fibroblast accumulation in the human skin. Senescent fibroblasts increased in old skin compared with young skin. However, they did not increase with advancing age in the elderly. Increased CXCL9 and cytotoxic CD4+ T cells (CD4 CTLs) recruitment were significantly associated with reduced senescent fibroblasts in the old skin. Senescent fibroblasts expressed human leukocyte antigen class II (HLA-II) and human cytomegalovirus glycoprotein B (HCMV-gB), becoming direct CD4 CTL targets. Skin-resident CD4 CTLs eliminated HCMV-gB+ senescent fibroblasts in an HLA-II-dependent manner, and HCMV-gB activated CD4 CTLs from the human skin. Collectively, our findings demonstrate HCMV reactivation in senescent cells, which CD4 CTLs can directly eliminate through the recognition of the HCMV-gB antigen.


Subject(s)
Antineoplastic Agents , Cytomegalovirus Infections , Humans , Aged , Cytomegalovirus , T-Lymphocytes, Cytotoxic , HLA Antigens , CD4-Positive T-Lymphocytes , Cellular Senescence
11.
Cell ; 186(25): 5569-5586.e21, 2023 12 07.
Article in English | MEDLINE | ID: mdl-38016469

ABSTRACT

CD4+ T cells play fundamental roles in orchestrating immune responses and tissue homeostasis. However, our inability to associate peptide human leukocyte antigen class-II (HLA-II) complexes with their cognate T cell receptors (TCRs) in an unbiased manner has hampered our understanding of CD4+ T cell function and role in pathologies. Here, we introduce TScan-II, a highly sensitive genome-scale CD4+ antigen discovery platform. This platform seamlessly integrates the endogenous HLA-II antigen-processing machinery in synthetic antigen-presenting cells and TCR signaling in T cells, enabling the simultaneous screening of multiple HLAs and TCRs. Leveraging genome-scale human, virome, and epitope mutagenesis libraries, TScan-II facilitates de novo antigen discovery and deep exploration of TCR specificity. We demonstrate TScan-II's potential for basic and translational research by identifying a non-canonical antigen for a cancer-reactive CD4+ T cell clone. Additionally, we identified two antigens for clonally expanded CD4+ T cells in Sjögren's disease, which bind distinct HLAs and are expressed in HLA-II-positive ductal cells within affected salivary glands.


Subject(s)
CD4-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Humans , Antigen-Presenting Cells , CD4 Antigens/metabolism , HLA Antigens/metabolism , Receptors, Antigen, T-Cell/metabolism , Cell Line , Genome, Human
12.
Cell ; 185(4): 603-613.e15, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35026152

ABSTRACT

SARS-CoV-2 mRNA vaccines induce robust anti-spike (S) antibody and CD4+ T cell responses. It is not yet clear whether vaccine-induced follicular helper CD4+ T (TFH) cell responses contribute to this outstanding immunogenicity. Using fine-needle aspiration of draining axillary lymph nodes from individuals who received the BNT162b2 mRNA vaccine, we evaluated the T cell receptor sequences and phenotype of lymph node TFH. Mining of the responding TFH T cell receptor repertoire revealed a strikingly immunodominant HLA-DPB1∗04-restricted response to S167-180 in individuals with this allele, which is among the most common HLA alleles in humans. Paired blood and lymph node specimens show that while circulating S-specific TFH cells peak one week after the second immunization, S-specific TFH persist at nearly constant frequencies for at least six months. Collectively, our results underscore the key role that robust TFH cell responses play in establishing long-term immunity by this efficacious human vaccine.


Subject(s)
COVID-19/immunology , COVID-19/virology , Immunity/immunology , SARS-CoV-2/immunology , T Follicular Helper Cells/immunology , Vaccination , Vaccines, Synthetic/immunology , mRNA Vaccines/immunology , Adult , B-Lymphocytes/immunology , BNT162 Vaccine/immunology , COVID-19/blood , Clone Cells , Cohort Studies , Cytokines/metabolism , Female , Germinal Center/immunology , HLA-DP beta-Chains/immunology , Humans , Immunodominant Epitopes/immunology , Jurkat Cells , Lymph Nodes/metabolism , Male , Middle Aged , Peptides/chemistry , Peptides/metabolism , Protein Multimerization , Receptors, Antigen, T-Cell/metabolism
13.
Cell ; 182(3): 625-640.e24, 2020 08 06.
Article in English | MEDLINE | ID: mdl-32702313

ABSTRACT

The brain is a site of relative immune privilege. Although CD4 T cells have been reported in the central nervous system, their presence in the healthy brain remains controversial, and their function remains largely unknown. We used a combination of imaging, single cell, and surgical approaches to identify a CD69+ CD4 T cell population in both the mouse and human brain, distinct from circulating CD4 T cells. The brain-resident population was derived through in situ differentiation from activated circulatory cells and was shaped by self-antigen and the peripheral microbiome. Single-cell sequencing revealed that in the absence of murine CD4 T cells, resident microglia remained suspended between the fetal and adult states. This maturation defect resulted in excess immature neuronal synapses and behavioral abnormalities. These results illuminate a role for CD4 T cells in brain development and a potential interconnected dynamic between the evolution of the immunological and neurological systems. VIDEO ABSTRACT.


Subject(s)
Brain/cytology , CD4-Positive T-Lymphocytes/metabolism , Fetus/cytology , Microglia/cytology , Microglia/metabolism , Synapses/metabolism , Adult , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Behavior Rating Scale , Blood Cells/cytology , Blood Cells/metabolism , Brain/embryology , Brain/metabolism , Child , Female , Fetus/embryology , Humans , Lectins, C-Type/metabolism , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Neurogenesis/genetics , Parabiosis , Pyramidal Cells/metabolism , Pyramidal Cells/physiology , Single-Cell Analysis , Spleen/cytology , Spleen/metabolism , Synapses/immunology , Transcriptome
14.
Cell ; 183(4): 996-1012.e19, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33010815

ABSTRACT

Limited knowledge is available on the relationship between antigen-specific immune responses and COVID-19 disease severity. We completed a combined examination of all three branches of adaptive immunity at the level of SARS-CoV-2-specific CD4+ and CD8+ T cell and neutralizing antibody responses in acute and convalescent subjects. SARS-CoV-2-specific CD4+ and CD8+ T cells were each associated with milder disease. Coordinated SARS-CoV-2-specific adaptive immune responses were associated with milder disease, suggesting roles for both CD4+ and CD8+ T cells in protective immunity in COVID-19. Notably, coordination of SARS-CoV-2 antigen-specific responses was disrupted in individuals ≥ 65 years old. Scarcity of naive T cells was also associated with aging and poor disease outcomes. A parsimonious explanation is that coordinated CD4+ T cell, CD8+ T cell, and antibody responses are protective, but uncoordinated responses frequently fail to control disease, with a connection between aging and impaired adaptive immune responses to SARS-CoV-2.


Subject(s)
Adaptive Immunity , Antigens, Viral/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/pathology , Acute Disease , Adult , Aged , Aged, 80 and over , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Betacoronavirus/isolation & purification , Betacoronavirus/metabolism , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cytokines/blood , Female , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index , Young Adult
15.
Cell ; 181(7): 1489-1501.e15, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32473127

ABSTRACT

Understanding adaptive immunity to SARS-CoV-2 is important for vaccine development, interpreting coronavirus disease 2019 (COVID-19) pathogenesis, and calibration of pandemic control measures. Using HLA class I and II predicted peptide "megapools," circulating SARS-CoV-2-specific CD8+ and CD4+ T cells were identified in ∼70% and 100% of COVID-19 convalescent patients, respectively. CD4+ T cell responses to spike, the main target of most vaccine efforts, were robust and correlated with the magnitude of the anti-SARS-CoV-2 IgG and IgA titers. The M, spike, and N proteins each accounted for 11%-27% of the total CD4+ response, with additional responses commonly targeting nsp3, nsp4, ORF3a, and ORF8, among others. For CD8+ T cells, spike and M were recognized, with at least eight SARS-CoV-2 ORFs targeted. Importantly, we detected SARS-CoV-2-reactive CD4+ T cells in ∼40%-60% of unexposed individuals, suggesting cross-reactive T cell recognition between circulating "common cold" coronaviruses and SARS-CoV-2.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/immunology , Epitopes, T-Lymphocyte , Pneumonia, Viral/immunology , Betacoronavirus/genetics , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19 , COVID-19 Vaccines , Convalescence , Coronavirus Infections/blood , Coronavirus Infections/metabolism , Coronavirus Infections/prevention & control , Coronavirus Infections/virology , Cross Reactions , Humans , Leukocytes, Mononuclear/immunology , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/metabolism , Viral Proteins/metabolism , Viral Vaccines/immunology
16.
Cell ; 183(5): 1340-1353.e16, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33096020

ABSTRACT

The contribution of CD4+ T cells to protective or pathogenic immune responses to SARS-CoV-2 infection remains unknown. Here, we present single-cell transcriptomic analysis of >100,000 viral antigen-reactive CD4+ T cells from 40 COVID-19 patients. In hospitalized patients compared to non-hospitalized patients, we found increased proportions of cytotoxic follicular helper cells and cytotoxic T helper (TH) cells (CD4-CTLs) responding to SARS-CoV-2 and reduced proportion of SARS-CoV-2-reactive regulatory T cells (TREG). Importantly, in hospitalized COVID-19 patients, a strong cytotoxic TFH response was observed early in the illness, which correlated negatively with antibody levels to SARS-CoV-2 spike protein. Polyfunctional TH1 and TH17 cell subsets were underrepresented in the repertoire of SARS-CoV-2-reactive CD4+ T cells compared to influenza-reactive CD4+ T cells. Together, our analyses provide insights into the gene expression patterns of SARS-CoV-2-reactive CD4+ T cells in distinct disease severities.


Subject(s)
COVID-19/immunology , SARS-CoV-2/genetics , T Follicular Helper Cells/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Regulatory/immunology , Transcriptome , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , CD4 Lymphocyte Count , COVID-19/epidemiology , COVID-19/virology , Cohort Studies , England/epidemiology , Female , Humans , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Severity of Illness Index , Single-Cell Analysis/methods , Spike Glycoprotein, Coronavirus/immunology
17.
Cell ; 180(3): 471-489.e22, 2020 02 06.
Article in English | MEDLINE | ID: mdl-32004464

ABSTRACT

Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new VH1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC50 = 0.048 µg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505SOSIP.664 Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection.


Subject(s)
Broadly Neutralizing Antibodies/immunology , HIV Antibodies/immunology , HIV Infections/immunology , HIV-1/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Binding Sites , CD4 Antigens/metabolism , CHO Cells , Cohort Studies , Cricetulus , Epitopes/immunology , Female , HEK293 Cells , HIV Infections/prevention & control , HIV Infections/virology , Heterografts , Humans , Male , Mice , Mice, Inbred NOD , Middle Aged , Mutation , Protein Binding/immunology , env Gene Products, Human Immunodeficiency Virus/genetics
18.
Cell ; 181(7): 1612-1625.e13, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32497499

ABSTRACT

Responses to anti-PD-1 immunotherapy occur but are infrequent in bladder cancer. The specific T cells that mediate tumor rejection are unknown. T cells from human bladder tumors and non-malignant tissue were assessed with single-cell RNA and paired T cell receptor (TCR) sequencing of 30,604 T cells from 7 patients. We find that the states and repertoires of CD8+ T cells are not distinct in tumors compared with non-malignant tissues. In contrast, single-cell analysis of CD4+ T cells demonstrates several tumor-specific states, including multiple distinct states of regulatory T cells. Surprisingly, we also find multiple cytotoxic CD4+ T cell states that are clonally expanded. These CD4+ T cells can kill autologous tumors in an MHC class II-dependent fashion and are suppressed by regulatory T cells. Further, a gene signature of cytotoxic CD4+ T cells in tumors predicts a clinical response in 244 metastatic bladder cancer patients treated with anti-PD-L1.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/metabolism , B7-H1 Antigen/genetics , B7-H1 Antigen/immunology , Biomarkers, Pharmacological/analysis , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Gene Expression Regulation, Neoplastic/genetics , Genes, MHC Class II , Humans , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Programmed Cell Death 1 Receptor/genetics , Receptors, Antigen, T-Cell/genetics , Single-Cell Analysis/methods , T-Lymphocytes, Regulatory , Urinary Bladder Neoplasms/immunology
19.
Cell ; 183(5): 1264-1281.e20, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33091337

ABSTRACT

The HLA-DR15 haplotype is the strongest genetic risk factor for multiple sclerosis (MS), but our understanding of how it contributes to MS is limited. Because autoreactive CD4+ T cells and B cells as antigen-presenting cells are involved in MS pathogenesis, we characterized the immunopeptidomes of the two HLA-DR15 allomorphs DR2a and DR2b of human primary B cells and monocytes, thymus, and MS brain tissue. Self-peptides from HLA-DR molecules, particularly from DR2a and DR2b themselves, are abundant on B cells and thymic antigen-presenting cells. Furthermore, we identified autoreactive CD4+ T cell clones that can cross-react with HLA-DR-derived self-peptides (HLA-DR-SPs), peptides from MS-associated foreign agents (Epstein-Barr virus and Akkermansia muciniphila), and autoantigens presented by DR2a and DR2b. Thus, both HLA-DR15 allomorphs jointly shape an autoreactive T cell repertoire by serving as antigen-presenting structures and epitope sources and by presenting the same foreign peptides and autoantigens to autoreactive CD4+ T cells in MS.


Subject(s)
HLA-DR Serological Subtypes/immunology , Multiple Sclerosis/immunology , T-Lymphocytes/immunology , Adult , Aged , Alleles , Antigens/immunology , B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Cells, Cultured , Cross Reactions/immunology , Female , Humans , Immunologic Memory , Male , Middle Aged , Monocytes/immunology , Peptides/immunology , Proteome/metabolism , Young Adult
20.
Cell ; 178(5): 1176-1188.e15, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442406

ABSTRACT

Adaptive immunity provides life-long protection by generating central and effector memory T cells and the most recently described tissue resident memory T (TRM) cells. However, the cellular origin of CD4 TRM cells and their contribution to host defense remain elusive. Using IL-17A tracking-fate mouse models, we found that a significant fraction of lung CD4 TRM cells derive from IL-17A-producing effector (TH17) cells following immunization with heat-killed Klebsiella pneumonia (Kp). These exTH17 TRM cells are maintained in the lung by IL-7, produced by lymphatic endothelial cells. During a memory response, neither antibodies, γδ T cells, nor circulatory T cells are sufficient for the rapid host defense required to eliminate Kp. Conversely, using parabiosis and depletion studies, we demonstrated that exTH17 TRM cells play an important role in bacterial clearance. Thus, we delineate the origin and function of airway CD4 TRM cells during bacterial infection, offering novel strategies for targeted vaccine design.


Subject(s)
Klebsiella Infections/immunology , Th17 Cells/immunology , Animals , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Diphtheria Toxin/pharmacology , Disease Models, Animal , Female , Immunologic Memory , Interleukin-17/genetics , Interleukin-17/metabolism , Klebsiella Infections/pathology , Klebsiella pneumoniae/immunology , Klebsiella pneumoniae/pathogenicity , Lung/drug effects , Lung/metabolism , Lung/microbiology , Mice , Mice, Inbred C57BL , Th17 Cells/cytology , Th17 Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL