ABSTRACT
Recent regenerative studies using human pluripotent stem cells (hPSCs) have developed multiple kidney-lineage cells and organoids. However, to further form functional segments of the kidney, interactions of epithelial and interstitial cells are required. Here we describe a selective differentiation of renal interstitial progenitor-like cells (IPLCs) from human induced pluripotent stem cells (hiPSCs) by modifying our previous induction method for nephron progenitor cells (NPCs) and analyzing mouse embryonic interstitial progenitor cell (IPC) development. Our IPLCs combined with hiPSC-derived NPCs and nephric duct cells form nephrogenic niche- and mesangium-like structures in vitro. Furthermore, we successfully induce hiPSC-derived IPLCs to differentiate into mesangial and erythropoietin-producing cell lineages in vitro by screening differentiation-inducing factors and confirm that p38 MAPK, hypoxia, and VEGF signaling pathways are involved in the differentiation of mesangial-lineage cells. These findings indicate that our IPC-lineage induction method contributes to kidney regeneration and developmental research.
Subject(s)
Erythropoietin , Induced Pluripotent Stem Cells , Humans , Animals , Mice , Kidney , Cell Lineage , RegenerationABSTRACT
Granulocyte colony-stimulating factor (G-CSF) is widely used to enhance myeloid recovery after chemotherapy and to mobilize hematopoietic stem cells (HSCs) for transplantation. Unfortunately, through the course of chemotherapy, cancer patients can acquire leukemogenic mutations that cause therapy-related myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML). This raises the question of whether therapeutic G-CSF might potentiate therapy-related MDS/AML by disproportionately stimulating mutant HSCs and other myeloid progenitors. A common mutation in therapy-related MDS/AML involves chromosome 7 deletions that inactivate many tumor suppressor genes, including KMT2C. Here, we show that Kmt2c deletions hypersensitize murine HSCs and myeloid progenitors to G-CSF, as evidenced by increased HSC mobilization and enhanced granulocyte production from granulocyte-monocyte progenitors (GMPs). Furthermore, Kmt2c attenuates the G-CSF response independently from its SET methyltransferase function. Altogether, the data raise concerns that monosomy 7 can hypersensitize progenitors to G-CSF, such that clinical use of G-CSF may amplify the risk of therapy-related MDS/AML.
Subject(s)
Granulocyte Colony-Stimulating Factor , Granulocytes , Hematopoietic Stem Cell Mobilization , Hematopoietic Stem Cells , Granulocyte Colony-Stimulating Factor/metabolism , Animals , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/drug effects , Mice , Granulocytes/metabolism , Granulocytes/drug effects , Mice, Inbred C57BL , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/drug therapy , Humans , Methyltransferases/metabolism , Methyltransferases/geneticsABSTRACT
Stem cells play pivotal roles in maintaining intestinal homeostasis, orchestrating regeneration, and in key steps of colorectal cancer (CRC) initiation and progression. Intriguingly, adult stem cells are reduced during many of these processes. On the contrary, primitive fetal programs, commonly detected in development, emerge during tissue repair, CRC metastasis, and therapy resistance. Recent findings indicate a dynamic continuum between adult and fetal stem cell programs. We discuss critical mechanisms facilitating the plasticity between stem cell states and highlight the heterogeneity observed upon the appearance of fetal-like states. We focus on therapeutic opportunities that arise by targeting fetal-like CRC cells and how those concepts can be translated into the clinic.
Subject(s)
Colorectal Neoplasms , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/therapy , Humans , Animals , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Fetal Stem Cells/metabolismABSTRACT
Emerging evidence highlights the regulatory role of paired-like (PRD-like) homeobox transcription factors (TFs) in embryonic genome activation (EGA). However, the majority of PRD-like genes are lost in rodents, thus prompting an investigation into PRD-like TFs in other mammals. Here, we showed that PRD-like TFs were transiently expressed during EGA in human, monkey, and porcine fertilized embryos, yet they exhibited inadequate expression in their cloned embryos. This study, using pig as the research model, identified LEUTX as a key PRD-like activator of porcine EGA through genomic profiling and found that LEUTX overexpression restored EGA failure and improved preimplantation development and cloning efficiency in porcine cloned embryos. Mechanistically, LEUTX opened EGA-related genomic regions and established histone acetylation via recruiting acetyltransferases p300 and KAT2A. These findings reveal the regulatory mechanism of LEUTX to govern EGA in pigs, which may provide valuable insights into the study of early embryo development for other non-rodent mammals.
Subject(s)
Genome , Nuclear Transfer Techniques , Animals , Swine , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Homeodomain Proteins/genetics , Embryonic Development/genetics , Embryo, Mammalian/metabolism , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , Acetylation , Cloning, Organism/methods , Histones/metabolism , Blastocyst/metabolismABSTRACT
The continuous regeneration of spermatogonial stem cells (SSCs) underpins spermatogenesis and lifelong male fertility, but the developmental origins of the SSC pool remain unclear. Here, we document that hnRNPU is essential for establishing the SSC pool. In male mice, conditional loss of hnRNPU in prospermatogonia (ProSG) arrests spermatogenesis and results in sterility. hnRNPU-deficient ProSG fails to differentiate and migrate to the basement membrane to establish SSC pool in infancy. Moreover, hnRNPU deletion leads to the accumulation of ProSG and disrupts the process of T1-ProSG to T2-ProSG transition. Single-cell transcriptional analyses reveal that germ cells are in a mitotically quiescent state and lose their unique identity upon hnRNPU depletion. We further show that hnRNPU could bind to Vrk1, Slx4, and Dazl transcripts that have been identified to suffer aberrant alternative splicing in hnRNPU-deficient testes. These observations offer important insights into SSC pool establishment and may have translational implications for male fertility.
Subject(s)
Spermatogenesis , Spermatogonia , Animals , Male , Mice , Adult Germline Stem Cells/metabolism , Alternative Splicing/genetics , Cell Differentiation , Spermatogenesis/genetics , Spermatogonia/metabolism , Spermatogonia/cytology , Stem Cells/metabolism , Stem Cells/cytology , Testis/metabolism , Testis/cytology , Heterogeneous-Nuclear Ribonucleoprotein U/metabolismABSTRACT
Live imaging of regenerative processes can reveal how animals restore their bodies after injury through a cascade of dynamic cellular events. Here, we present a comprehensive toolkit for live imaging of tissue regeneration in the flatworm Macrostomum lignano, including a high-throughput cloning pipeline, targeted cellular ablation, and advanced microscopy solutions. Using tissue-specific reporter expression, we examine how various structures regenerate. Enabled by a custom luminescence/fluorescence microscope, we overcome intense stress-induced autofluorescence to demonstrate genetic cellular ablation and reveal the limited regenerative capacity of neurons and their essential role during wound healing, contrasting muscle cells' rapid regeneration after ablation. Finally, we build an open-source tracking microscope to continuously image freely moving animals throughout the week-long process of regeneration, quantifying kinetics of wound healing, nerve cord repair, body regeneration, growth, and behavioral recovery. Our findings suggest that nerve cord reconnection is highly robust and proceeds independently of regeneration.
ABSTRACT
Enhancer-derived RNAs (eRNAs) play critical roles in diverse biological processes by facilitating their target gene expression. However, the abundance and function of eRNAs in early embryos are not clear. Here, we present a comprehensive eRNA atlas by systematically integrating publicly available datasets of mouse early embryos. We characterize the transcriptional and regulatory network of eRNAs and show that different embryo developmental stages have distinct eRNA expression and regulatory profiles. Paternal eRNAs are activated asymmetrically during zygotic genome activation (ZGA). Moreover, we identify an eRNA, MZGAe1, which plays an important function in regulating mouse ZGA and early embryo development. MZGAe1 knockdown leads to a developmental block from 2-cell embryo to blastocyst. We create an online data portal, M2ED2, to query and visualize eRNA expression and regulation. Our study thus provides a systematic landscape of eRNA and reveals the important role of eRNAs in regulating mouse early embryo development.
Subject(s)
Embryonic Development , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental , Animals , Embryonic Development/genetics , Mice , Enhancer Elements, Genetic/genetics , RNA/metabolism , RNA/genetics , Female , Embryo, Mammalian/metabolism , Zygote/metabolism , Gene Regulatory Networks , MaleABSTRACT
Myeloablative pre-conditioning facilitates the differentiation of transplanted hematopoietic stem and progenitor cells (HSPCs). However, the factors in the stress environment that regulate HSPC behavior remain elusive. Here, we investigated the mechanisms that shaped the cell fates of transplanted murine multipotent progenitors (MPPs) expressing the Fms-related receptor tyrosine kinase 3 gene (Flt3). Using lineage tracing, clonal analysis, and single-cell RNA sequencing (RNA-seq), we showed that the myeloablative environment increased lymphoid priming of Flt3+ MPPs and that their efficient B cell output required intact interleukin 1 (IL-1) signaling. The Flt3+ MPPs with short-term exposure to IL-1ß underwent a myeloid-biased to lymphoid-biased cell fate switch and produced more lymphoid-biased progeny with a stronger B lymphopoiesis capacity in vitro. Correspondingly, a brief exposure to IL-1ß facilitated the B cell output of transplanted Flt3+ MPPs in vivo. Together, our study demonstrated an unrecognized function of IL-1ß in promoting B lymphopoiesis and highlighted a latent effect of IL-1ß in regulating MPP cell fate dynamics.
ABSTRACT
Stem cells are the foundation for cell therapy due to their ability to self-renew, differentiate into other cell types, and persist throughout the life of an organism. Stem cell isolation and transplantation have not yet been established in Hexacorallia, a cnidarian subclass containing stony corals and sea anemones. Here, we demonstrate that candidate stem cells in the hexacorallian Nematostella vectensis can be transplanted into adult animals. These cells exhibited the hallmarks of stem cell functional properties; they integrated into recipients' tissues and rescued them from lethal doses of chemotherapy. Additionally, these cells proliferated and survived serial transplantations. Notably, we showed that this cellular subpopulation can be enriched by sorting using species-non-specific cell markers and that similar subpopulations of cells can be isolated from other hexacorallians, including stony corals. This research establishes the basis for studying stem cell biology on a functional level in Hexacorallia.
ABSTRACT
Human neural organoid models have become an important tool for studying neurobiology. However, improving the representativeness of neural cell populations in such organoids remains a major effort. In this work, we compared Matrigel, a commercially available matrix, to a neural cadherin (N-cadherin) peptide-functionalized gelatin methacryloyl hydrogel (termed GelMA-Cad) for culturing cortical neural organoids. We determined that peptide presentation can tune cell fate and diversity in gelatin-based matrices during differentiation. Of particular note, cortical organoids cultured in GelMA-Cad hydrogels mapped more closely to human fetal populations and produced neurons with more spontaneous excitatory postsynaptic currents relative to Matrigel. These results provide compelling evidence that matrix-tethered signaling peptides can influence neural organoid differentiation, opening an avenue to control stem cell fate. Moreover, outcomes from this work showcase the technical utility of GelMA-Cad as a simple and defined hydrogel alternative to Matrigel for neural organoid culture.
ABSTRACT
Macrophages conduct critical roles in heart repair, but the niche required to nurture and anchor them is poorly studied. Here, we investigated the macrophage niche in the regenerating heart. We analyzed cell-cell interactions through published single-cell RNA sequencing datasets and identified a strong interaction between fibroblast/epicardial (Fb/Epi) cells and macrophages. We further visualized the association of macrophages with Fb/Epi cells and the blockage of macrophage response without Fb/Epi cells in the regenerating zebrafish heart. Moreover, we found that ptx3a+ epicardial cells associate with reparative macrophages, and their depletion resulted in fewer reparative macrophages. Further, we identified csf1a expression in ptx3a+ cells and determined that pharmacological inhibition of the csf1a pathway or csf1a knockout blocked the reparative macrophage response. Moreover, we found that genetic overexpression of csf1a enhanced the reparative macrophage response with or without heart injury. Altogether, our studies illuminate a cardiac Fb/Epi niche, which mediates a beneficial macrophage response after heart injury.
Subject(s)
Fibroblasts , Heart , Macrophages , Regeneration , Zebrafish , Animals , C-Reactive Protein/metabolism , C-Reactive Protein/genetics , Fibroblasts/metabolism , Heart/physiology , Heart Injuries/metabolism , Heart Injuries/pathology , Macrophages/metabolism , Pericardium/metabolism , Pericardium/cytology , Regeneration/physiology , Serum Amyloid P-Component/metabolism , Serum Amyloid P-Component/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism , Zebrafish Proteins/geneticsABSTRACT
Whole-body regeneration requires the ability to produce the full repertoire of adult cell types. The planarian Schmidtea mediterranea contains over 125 cell types, which can be regenerated from a stem cell population called neoblasts. Neoblast fate choice can be regulated by the expression of fate-specific transcription factors (FSTFs). How fate choices are made and distributed across neoblasts versus their post-mitotic progeny remains unclear. We used single-cell RNA sequencing to systematically map fate choices made in S/G2/M neoblasts and, separately, in their post-mitotic progeny that serve as progenitors for all adult cell types. We defined transcription factor expression signatures associated with all detected fates, identifying numerous new progenitor classes and FSTFs that regulate them. Our work generates an atlas of stem cell fates with associated transcription factor signatures for most cell types in a complete adult organism.
Subject(s)
Planarians , Transcription Factors , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Planarians/metabolism , Stem Cells/metabolism , Cell Differentiation , Gene Expression RegulationABSTRACT
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) recapitulate numerous disease and drug response phenotypes, but cell immaturity may limit their accuracy and fidelity as a model system. Cell culture medium modification is a common method for enhancing maturation, yet prior studies have used complex media with little understanding of individual component contribution, which may compromise long-term hiPSC-CM viability. Here, we developed high-throughput methods to measure hiPSC-CM maturation, determined factors that enhanced viability, and then systematically assessed the contribution of individual maturation medium components. We developed a medium that is compatible with extended culture. We discovered that hiPSC-CM maturation can be sub-specified into electrophysiological/EC coupling, metabolism, and gene expression and that induction of these attributes is largely independent. In this work, we establish a defined baseline for future studies of cardiomyocyte maturation. Furthermore, we provide a selection of medium formulae, optimized for distinct applications and priorities, that promote measurable attributes of maturation.
Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Myocytes, Cardiac , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/cytology , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Culture Media , Cells, Cultured , Transcription, Genetic , Cell Culture Techniques/methodsABSTRACT
Wound healing in response to acute injury is mediated by the coordinated and transient activation of parenchymal, stromal, and immune cells that resolves to homeostasis. Environmental, genetic, and epigenetic factors associated with inflammation and aging can lead to persistent activation of the microenvironment and fibrosis. Here, we identify opposing roles of interleukin-4 (IL-4) cytokine signaling in interstitial macrophages and type II alveolar epithelial cells (ATIIs). We show that IL4Ra signaling in macrophages promotes regeneration of the alveolar epithelium after bleomycin-induced lung injury. Using organoids and mouse models, we show that IL-4 directly acts on a subset of ATIIs to induce the expression of the transcription factor SOX9 and reprograms them toward a progenitor-like state with both airway and alveolar lineage potential. In the contexts of aging and bleomycin-induced lung injury, this leads to aberrant epithelial cell differentiation and bronchiolization, consistent with cellular and histological changes observed in interstitial lung disease.
Subject(s)
Bleomycin , Cell Lineage , Interleukin-4 , Lung , SOX9 Transcription Factor , Animals , Interleukin-4/metabolism , SOX9 Transcription Factor/metabolism , SOX9 Transcription Factor/genetics , Mice , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Adult Stem Cells/metabolism , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/drug effects , Aging/metabolism , Cell Differentiation , Signal Transduction , Humans , Macrophages/metabolismABSTRACT
The advent of novel 2D and 3D models for human development, including trophoblast stem cells and blastoids, has expanded opportunities for investigating early developmental events, gradually illuminating the enigmatic realm of human development. While these innovations have ushered in new prospects, it has become essential to establish well-defined benchmarks for the cell sources of these models. We aimed to propose a comprehensive characterization of pluripotent and trophoblastic stem cell models by employing a combination of transcriptomic, proteomic, epigenetic, and metabolic approaches. Our findings reveal that extended pluripotent stem cells share many characteristics with primed pluripotent stem cells, with the exception of metabolic activity. Furthermore, our research demonstrates that DNA hypomethylation and high metabolic activity define trophoblast stem cells. These results underscore the necessity of considering multiple hallmarks of pluripotency rather than relying on a single criterion. Multiplying hallmarks alleviate stage-matching bias.
Subject(s)
Trophoblasts , Humans , Trophoblasts/metabolism , Trophoblasts/cytology , DNA Methylation , Pluripotent Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Models, Biological , Embryo Implantation , Cell Differentiation , Epigenesis, Genetic , Transcriptome/genetics , Proteomics/methodsABSTRACT
Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.
Subject(s)
Cell Differentiation , Hypertrophy , Macrophages , Mesenchymal Stem Cells , Mice, Knockout , Satellite Cells, Skeletal Muscle , Animals , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Macrophages/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Granulins , Cell Communication , Mice, Inbred C57BL , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , RegenerationABSTRACT
LMNA gene mutation can cause muscular dystrophy, and post-translational modification plays a critical role in regulating its function. Here, we identify that lamin A is palmitoylated at cysteine 522, 588, and 591 residues, which are reversely catalyzed by palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) and depalmitoylase α/ß hydrolase domain 7 (ABHD7). Furthermore, the metabolite lactate promotes palmitoylation of lamin A by inhibiting the interaction between it and ABHD7. Interestingly, low-level palmitoylation of lamin A promotes, whereas high-level palmitoylation of lamin A inhibits, murine myoblast differentiation. Together, these observations suggest that ABHD7-mediated depalmitoylation of lamin A controls myoblast differentiation.
Subject(s)
Lamin Type A , Muscular Dystrophies , Animals , Mice , Cell Differentiation , Lamin Type A/metabolism , Muscular Dystrophies/genetics , Myoblasts/metabolism , Protein Processing, Post-TranslationalABSTRACT
T cell infiltration into white adipose tissue (WAT) drives obesity-induced adipose inflammation, but the mechanisms of obesity-induced T cell infiltration into WAT remain unclear. Our single-cell RNA sequencing reveals a significant impact of adipose stem cells (ASCs) on T cells. Transplanting ASCs from obese mice into WAT enhances T cell accumulation. C-C motif chemokine ligand 5 (CCL5) is upregulated in ASCs as early as 4 weeks of high-fat diet feeding, coinciding with the onset of T cell infiltration into WAT during obesity. ASCs and bone marrow transplantation experiments demonstrate that CCL5 from ASCs plays a crucial role in T cell accumulation during obesity. The production of CCL5 in ASCs is induced by tumor necrosis factor alpha via the nuclear factor κB pathway. Overall, our findings underscore the pivotal role of ASCs in regulating T cell accumulation in WAT during the early phases of obesity, emphasizing their importance in modulating adaptive immunity in obesity-induced adipose inflammation.
Subject(s)
Adipose Tissue , T-Lymphocytes , Mice , Animals , T-Lymphocytes/metabolism , Adipose Tissue/metabolism , Obesity/metabolism , Inflammation/pathology , Stem Cells/metabolismABSTRACT
Environmental factors influence an organism's reproductive ability by regulating germline development and physiology. While the reproductive adaptations in response to extrinsic stress cues offer fitness and survival advantages to individuals, the mechanistic understanding of these modifications remains unclear. Here, we find that parasitoid wasps' stress signaling regulates Drosophila melanogaster oogenesis. We show that fruit flies dwelling in the wasp-infested area elevate their fecundity, and the observed reproductive response is specific to Pachycrepoideus sp., a pupal parasitoid wasp. Pachycrepoideus-specific olfactory and visual cues recruit the signaling pathways that promote germline stem cell proliferation and accelerate follicle development, increasing egg production in Drosophila females. Downregulation of signaling engaged in oocyte development by shifting flies to a non-wasp-infested environment increases apoptosis of the developing follicles. Thus, this study establishes host germline responsiveness to parasitoid-specific signals and supports a predator strategy to increase hosts for infection.
Subject(s)
Parasites , Wasps , Humans , Animals , Female , Drosophila , Drosophila melanogaster/metabolism , Cues , Wasps/physiology , Cell Proliferation , Germ Cells , Host-Parasite InteractionsABSTRACT
During periods of nutrient scarcity, many animals undergo germline quiescence to preserve reproductive capacity, and neurons are often necessary for this adaptation. We show here that starvation causes the release of neuronal microRNA (miRNA)/Argonaute-loaded exosomes following AMP kinase-regulated trafficking changes within serotonergic neurons. This neuron-to-germline communication is independent of classical neurotransmission but instead relies on endosome-derived vesicles that carry a pro-quiescent small RNA cargo to modify germline gene expression. Using an miRNA activity sensor, we show that neuronally expressed miRNAs can extinguish the expression of germline mRNA targets in an exosome-dependent manner. Our findings demonstrate how an adaptive neuronal response can change gene expression at a distance by redirecting intracellular trafficking to release neuronal exosomes with specific miRNA cargoes capable of tracking to their appropriate destinations.