Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 387
Filter
Add more filters

Publication year range
1.
Annu Rev Biochem ; 88: 515-549, 2019 06 20.
Article in English | MEDLINE | ID: mdl-30901262

ABSTRACT

F1Fo ATP synthases produce most of the ATP in the cell. F-type ATP synthases have been investigated for more than 50 years, but a full understanding of their molecular mechanisms has become possible only with the recent structures of complete, functionally competent complexes determined by electron cryo-microscopy (cryo-EM). High-resolution cryo-EM structures offer a wealth of unexpected new insights. The catalytic F1 head rotates with the central γ-subunit for the first part of each ATP-generating power stroke. Joint rotation is enabled by subunit δ/OSCP acting as a flexible hinge between F1 and the peripheral stalk. Subunit a conducts protons to and from the c-ring rotor through two conserved aqueous channels. The channels are separated by ∼6 Šin the hydrophobic core of Fo, resulting in a strong local field that generates torque to drive rotary catalysis in F1. The structure of the chloroplast F1Fo complex explains how ATPase activity is turned off at night by a redox switch. Structures of mitochondrial ATP synthase dimers indicate how they shape the inner membrane cristae. The new cryo-EM structures complete our picture of the ATP synthases and reveal the unique mechanism by which they transform an electrochemical membrane potential into biologically useful chemical energy.


Subject(s)
Adenosine Triphosphate/metabolism , Proton-Translocating ATPases/metabolism , Adenosine Triphosphate/biosynthesis , Animals , Bacteria/enzymology , Bacteria/metabolism , Chloroplast Proton-Translocating ATPases/chemistry , Chloroplast Proton-Translocating ATPases/metabolism , Chloroplast Proton-Translocating ATPases/ultrastructure , Chloroplasts/enzymology , Cryoelectron Microscopy , Eukaryota/enzymology , Eukaryota/metabolism , Humans , Mitochondria/enzymology , Mitochondrial Proton-Translocating ATPases/chemistry , Mitochondrial Proton-Translocating ATPases/metabolism , Mitochondrial Proton-Translocating ATPases/ultrastructure , Protein Conformation , Protein Subunits , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/ultrastructure
2.
Annu Rev Biochem ; 84: 631-57, 2015.
Article in English | MEDLINE | ID: mdl-25839341

ABSTRACT

Oxygenic photosynthesis is the principal converter of sunlight into chemical energy. Cyanobacteria and plants provide aerobic life with oxygen, food, fuel, fibers, and platform chemicals. Four multisubunit membrane proteins are involved: photosystem I (PSI), photosystem II (PSII), cytochrome b6f (cyt b6f), and ATP synthase (FOF1). ATP synthase is likewise a key enzyme of cell respiration. Over three billion years, the basic machinery of oxygenic photosynthesis and respiration has been perfected to minimize wasteful reactions. The proton-driven ATP synthase is embedded in a proton tight-coupling membrane. It is composed of two rotary motors/generators, FO and F1, which do not slip against each other. The proton-driven FO and the ATP-synthesizing F1 are coupled via elastic torque transmission. Elastic transmission decouples the two motors in kinetic detail but keeps them perfectly coupled in thermodynamic equilibrium and (time-averaged) under steady turnover. Elastic transmission enables operation with different gear ratios in different organisms.


Subject(s)
Plant Cells/enzymology , Proton-Translocating ATPases/chemistry , Proton-Translocating ATPases/metabolism , Bacteria/classification , Bacteria/cytology , Bacteria/enzymology , Cell Respiration , Chloroplasts/chemistry , Chloroplasts/enzymology , Cyanobacteria/cytology , Cyanobacteria/enzymology , Mitochondria/chemistry , Mitochondria/enzymology , Photosynthesis
3.
Annu Rev Biochem ; 84: 659-83, 2015.
Article in English | MEDLINE | ID: mdl-25747397

ABSTRACT

Oxygenic photosynthesis is the principal converter of sunlight into chemical energy on Earth. Cyanobacteria and plants provide the oxygen, food, fuel, fibers, and platform chemicals for life on Earth. The conversion of solar energy into chemical energy is catalyzed by two multisubunit membrane protein complexes, photosystem I (PSI) and photosystem II (PSII). Light is absorbed by the pigment cofactors, and excitation energy is transferred among the antennae pigments and converted into chemical energy at very high efficiency. Oxygenic photosynthesis has existed for more than three billion years, during which its molecular machinery was perfected to minimize wasteful reactions. Light excitation transfer and singlet trapping won over fluorescence, radiation-less decay, and triplet formation. Photosynthetic reaction centers operate in organisms ranging from bacteria to higher plants. They are all evolutionarily linked. The crystal structure determination of photosynthetic protein complexes sheds light on the various partial reactions and explains how they are protected against wasteful pathways and why their function is robust. This review discusses the efficiency of photosynthetic solar energy conversion.


Subject(s)
Oxygen/metabolism , Photosynthetic Reaction Center Complex Proteins/chemistry , Bacterial Proteins/metabolism , Cyanobacteria/metabolism , Electron Microscope Tomography , Photosynthetic Reaction Center Complex Proteins/ultrastructure , Plant Proteins/metabolism , Plants/metabolism
4.
Mol Cell Proteomics ; : 100850, 2024 Sep 28.
Article in English | MEDLINE | ID: mdl-39349166

ABSTRACT

Protein N-acetylation is one of the most abundant co- and post-translational modifications in eukaryotes, extending its occurrence to chloroplasts within vascular plants. Recently, a novel plastidial enzyme family comprising eight acetyltransferases that exhibit dual lysine and N-terminus acetylation activities was unveiled in Arabidopsis. Among these, GNAT1, GNAT2, and GNAT3 reveal notable phylogenetic proximity, forming a subgroup termed NAA90. Our study focused on characterizing GNAT1, closely related to the state transition acetyltransferase GNAT2. In contrast to GNAT2, GNAT1 did not prove essential for state transitions and displayed no discernible phenotypic difference compared to the wild type under high light conditions, while gnat2 mutants were severely affected. However, gnat1 mutants exhibited a tighter packing of the thylakoid membranes akin to gnat2 mutants. In vitro studies with recombinant GNAT1 demonstrated robust N-terminus acetylation activity on synthetic substrate peptides. This activity was confirmed in vivo through N-terminal acetylome profiling in two independent gnat1 knockout lines. This attributed several acetylation sites on plastidial proteins to GNAT1, reflecting a subset of GNAT2's substrate spectrum. Moreover, co-immunoprecipitation coupled to mass spectrometry revealed a robust interaction between GNAT1 and GNAT2, as well as a significant association of GNAT2 with GNAT3 - the third acetyltransferase within the NAA90 subfamily. This study unveils the existence of at least two acetyltransferase complexes within chloroplasts, whereby complex formation might have a critical effect on the fine-tuning of the overall acetyltransferase activities. These findings introduce a novel layer of regulation in acetylation-dependent adjustments in plastidial metabolism.

5.
Plant J ; 117(2): 416-431, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882077

ABSTRACT

Chloroplasts are the site of photosynthesis. In land plants, chloroplast biogenesis is regulated by a family of transcription factors named GOLDEN2-like (GLK). In C4 grasses, it has been hypothesized that genome duplication events led to the sub-functionalization of GLK paralogs (GLK1 and GLK2) to control chloroplast biogenesis in two distinct cell types: mesophyll and bundle sheath cells. Although previous characterization of golden2 (g2) mutants in maize has demonstrated a role for GLK2 paralogs in regulating chloroplast biogenesis in bundle sheath cells, the function of GLK1 has remained elusive. Here we show that, contrary to expectations, GLK1 is not required for chloroplast biogenesis in mesophyll cells of maize. Comparisons between maize and Setaria viridis, which represent two independent C4 origins within the Poales, further show that the role of GLK paralogs in controlling chloroplast biogenesis in mesophyll and bundle sheath cells differs between species. Despite these differences, complementation analysis revealed that GLK1 and GLK2 genes from maize are both sufficient to restore functional chloroplast development in mesophyll and bundle sheath cells of S. viridis mutants. Collectively our results suggest an evolutionary trajectory in C4 grasses whereby both orthologs retained the ability to induce chloroplast biogenesis but GLK2 adopted a more prominent developmental role, particularly in relation to chloroplast activation in bundle sheath cells.


Subject(s)
Mesophyll Cells , Setaria Plant , Chloroplasts/metabolism , Zea mays/genetics , Photosynthesis
6.
Plant J ; 119(1): 445-459, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38652016

ABSTRACT

The lycophyte Phylloglossum drummondii is the sole inhabitant of its genus in the Huperzioideae group and one of a small minority of plants which perform uridine to cytidine RNA editing. We assembled the P. drummondii chloroplast and mitochondrial genomes and used RNA sequence data to build a comprehensive profile of organellar RNA editing events. In addition to many C-to-U editing events in both organelles, we found just four U-to-C editing events in the mitochondrial transcripts cob, nad1, nad5 and rpl2. These events are conserved in related lycophytes in the genera Huperzia and Phlegmariurus. De novo transcriptomes for three of these lycophytes were assembled to search for putative U-to-C RNA editing enzymes. Four putative U-to-C editing factors could be matched to the four mitochondrial U-to-C editing sites. Due to the unusually few numbers of U-to-C RNA editing sites, P. drummondii and related lycophytes are useful models for studying this poorly understood mechanism.


Subject(s)
RNA Editing , RNA, Plant , RNA Editing/genetics , RNA, Plant/genetics , Genome, Mitochondrial/genetics , Transcriptome , Uridine/metabolism , Uridine/genetics , Genome, Chloroplast , Phylogeny , Mitochondria/genetics , Mitochondria/metabolism
7.
Plant J ; 117(5): 1528-1542, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38088241

ABSTRACT

C-to-U RNA editing in angiosperm chloroplasts requires a large suite of proteins bound together in the editosome. The editosome is comprised of PPR proteins, RIP/MORFs, OZ proteins, and ORRM proteins that physically interact in high molecular weight complexes. The specific functions of non-PPR editing factors in the editosome are unclear, however, specific subsets of editing sites are affected by absence of non-PPR editing factors. Unlike the PPR components of editosomes that have predictable nucleotide specificities, domains present in non-PPR editing factors make RNA associations difficult to predict. In this study, chloroplast extracts were isolated from juvenile maize seedlings. RNAs were immunoprecipitated using polyclonal antibodies targeting non-PPR editing factors RIP9, OZ1, and ORRM1. RNA libraries from duplicate experiments were compared. RIP9 was associated with most of the non-ribosomal RNA content of chloroplasts, consistent with a general binding function to PPR L-motifs and tethering of large ribonucleoprotein complexes. The breadth of RNA associations was greater than predicted and include mRNAs without predicted editing sites, tRNA sequences, and introns. OZ1 and ORRM1 were associated with a highly similar pool of RNAs that have a bias toward lower translational efficiency values in mature chloroplasts. Lower translational efficiency was also associated with the pool of edited RNAs compared to RNAs without editing sites. The unexpected breadth of interactions by non-PPR editing factors suggests the editosome is large, diverse, and associated with RNAs with lower relative translational efficiency in mature chloroplasts.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Chloroplasts/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Messenger/metabolism , Plant Proteins/chemistry
8.
Plant J ; 120(1): 91-108, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39145415

ABSTRACT

Over-expression (OE) lines for the ER-tethered NAC transcription factor ANAC017 displayed de-repression of gun marker genes when grown on lincomycin (lin). RNA-seq revealed that ANAC017OE2 plants constitutively expressed greater than 40% of the genes induced in wild-type with lin treatment, including plastid encoded genes ycf1.2 and the gene cluster ndhH-ndhA-ndhI-ndhG-ndhE-psaC-ndhD, documented as direct RNA targets of GUN1. Genes encoding components involved in organelle translation were enriched in constitutively expressed genes in ANAC017OE2. ANAC017OE resulted in constitutive location in the nucleus and significant constitutive binding of ANAC017 was detected by ChIP-Seq to target genes. ANAC017OE2 lines maintained the ability to green on lin, were more ABA sensitive, did not show photo-oxidative damage after exposure of de-etiolated seedlings to continuous light and the transcriptome response to lin were as much as 80% unique compared to gun1-1. Both double mutants, gun1-1:ANAC017OE and bzip60:ANAC017OE (but not single bzip60), have a gun molecular gene expression pattern and result in variegated and green plants, suggesting that ANAC017OE may act through an independent pathway compared to gun1. Over-expression of ANAC013 or rcd1 did not produce a GUN phenotype or green plants on lin. Thus, constitutive ANAC017OE2 establishes an alternative transcriptional program that likely acts through a number of pathways, that is, maintains plastid gene expression, and induction of a variety of transcription factors involved in reactive oxygen species metabolism, priming plants for lin tolerance to give a gun phenotype.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Lincomycin , Phenotype , Transcription Factors , Lincomycin/pharmacology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Plants, Genetically Modified , Genome, Plant/genetics , DNA-Binding Proteins
9.
Mol Biol Evol ; 41(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38758976

ABSTRACT

Mitochondria and plastids have both dramatically reduced their genomes since the endosymbiotic events that created them. The similarities and differences in the evolution of the two organelle genome types have been the target of discussion and investigation for decades. Ongoing work has suggested that similar mechanisms may modulate the reductive evolution of the two organelles in a given species, but quantitative data and statistical analyses exploring this picture remain limited outside of some specific cases like parasitism. Here, we use cross-eukaryote organelle genome data to explore evidence for coevolution of mitochondrial and plastid genome reduction. Controlling for differences between clades and pseudoreplication due to relatedness, we find that extents of mtDNA and ptDNA gene retention are related to each other across taxa, in a generally positive correlation that appears to differ quantitatively across eukaryotes, for example, between algal and nonalgal species. We find limited evidence for coevolution of specific mtDNA and ptDNA gene pairs, suggesting that the similarities between the two organelle types may be due mainly to independent responses to consistent evolutionary drivers.


Subject(s)
Genome, Mitochondrial , Genome, Plastid , Plastids , Plastids/genetics , DNA, Mitochondrial/genetics , Evolution, Molecular , Mitochondria/genetics , Species Specificity , Biological Evolution , Eukaryota/genetics
10.
Plant Physiol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162474

ABSTRACT

Geminiviruses infect numerous crops and cause extensive agricultural losses worldwide. During viral infection, geminiviral C4/AC4 proteins relocate from the plasma membrane to chloroplasts, where they inhibit the production of host defense signaling molecules. However, mechanisms whereby C4/AC4 proteins are transported to chloroplasts are unknown. We report here that tomato (Solanum lycopersicum) COAT PROTEIN COMPLEX I (COPI) components play a critical role in redistributing Tomato yellow leaf curl virus C4 protein to chloroplasts via an interaction between the C4 and ß subunits of COPI. Coexpression of both proteins promotes the enrichment of C4 in chloroplasts that is blocked by a COPI inhibitor. Overexpressing or downregulating gene expression of COPI components promotes or inhibits the viral infection, respectively, suggesting a proviral role of COPI components. COPI components play similar roles in C4/AC4 transport and infections of two other geminiviruses: Beet curly top virus and East African cassava mosaic virus. Our results reveal an unconventional role of COPI components in protein trafficking to chloroplasts during geminivirus infection and suggest a broad-spectrum antiviral strategy in controlling geminivirus infections in plants.

11.
Plant Cell Physiol ; 65(4): 477-483, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38113380

ABSTRACT

Plastids (including chloroplasts) and mitochondria are remnants of endosymbiotic bacteria, yet they maintain their own genomes, which encode vital components for photosynthesis and respiration, respectively. Organellar genomes have distinctive features, such as being present as multicopies, being mostly inherited maternally, having characteristic genomic structures and undergoing frequent homologous recombination. To date, it has proven to be challenging to modify these genomes. For example, while CRISPR/Cas9 is a widely used system for editing nuclear genes, it has not yet been successfully applied to organellar genomes. Recently, however, precise gene-editing technologies have been successfully applied to organellar genomes. Protein-based enzymes, especially transcription activator-like effector nucleases (TALENs) and artificial enzymes utilizing DNA-binding domains of TALENs (TALEs), have been successfully used to modify these genomes by harnessing organellar-targeting signals. This short review introduces and discusses the use of targeted nucleases and base editors in organellar genomes, their effects and their potential applications in plant science and breeding.


Subject(s)
Gene Editing , Genome, Chloroplast , Genome, Mitochondrial , Genome, Plant , Gene Editing/methods , Genome, Chloroplast/genetics , Genome, Plant/genetics , Genome, Mitochondrial/genetics , CRISPR-Cas Systems , Plants/genetics , Transcription Activator-Like Effector Nucleases/genetics , Transcription Activator-Like Effector Nucleases/metabolism , Chloroplasts/genetics
12.
New Phytol ; 241(2): 896-910, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37925790

ABSTRACT

Organelle DNA (oDNA) in mitochondria and plastids is vital for plant (and eukaryotic) life. Selection against damaged oDNA is mediated in part by segregation - sorting different oDNA types into different cells in the germline. Plants segregate oDNA very rapidly, with oDNA recombination protein MSH1 a key driver of this segregation, but we have limited knowledge of the dynamics of this segregation within plants and between generations. Here, we reveal how oDNA evolves through Arabidopsis thaliana development and reproduction. We combine stochastic modelling, Bayesian inference, and model selection with new and existing tissue-specific oDNA measurements from heteroplasmic Arabidopsis plant lines through development and between generations. Segregation proceeds gradually but continually during plant development, with a more rapid increase between inflorescence formation and the next generation. When MSH1 is compromised, the majority of observed segregation can be achieved through partitioning at cell divisions. When MSH1 is functional, mtDNA segregation is far more rapid; we show that increased oDNA gene conversion is a plausible mechanism quantitatively explaining this acceleration. These findings reveal the quantitative, time-dependent details of oDNA segregation in Arabidopsis. We also discuss the support for different models of the plant germline provided by these observations.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Bayes Theorem , Mitochondria/metabolism , Plastids/genetics , Plants/metabolism , Reproduction , DNA, Mitochondrial/genetics , Arabidopsis Proteins/metabolism , MutS DNA Mismatch-Binding Protein/genetics , MutS DNA Mismatch-Binding Protein/metabolism
13.
New Phytol ; 243(4): 1347-1360, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38402560

ABSTRACT

Resting cells represent a survival strategy employed by diatoms to endure prolonged periods of unfavourable conditions. In the oceans, many diatoms sink at the end of their blooming season and therefore need to endure cold and dark conditions in the deeper layers of the water column. How they survive these conditions is largely unknown. We conducted an integrative analysis encompassing methods from histology, physiology, biochemistry, and genetics to reveal the biological mechanism of resting-cell formation in the model diatom Thalassiosira pseudonana. Resting-cell formation was triggered by a decrease in light and temperature with subsequent catabolism of storage compounds. Resting cells were characterised by an acidic and viscous cytoplasm and altered morphology of the chloroplast ultrastructure. The formation of resting cells in T. pseudonana is an energy demanding process required for a biophysical alteration of the cytosol and chloroplasts to endure the unfavourable conditions of the deeper ocean as photosynthetic organisms. However, most resting cells (> 90%) germinate upon return to favorable growth conditions.


Subject(s)
Chloroplasts , Diatoms , Light , Diatoms/ultrastructure , Diatoms/physiology , Diatoms/growth & development , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Temperature , Aquatic Organisms , Photosynthesis
14.
New Phytol ; 242(6): 2817-2831, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38587065

ABSTRACT

RNA editing is a crucial modification in plants' organellar transcripts that converts cytidine to uridine (C-to-U; and sometimes uridine to cytidine) in RNA molecules. This post-transcriptional process is controlled by the PLS-class protein with a DYW domain, which belongs to the pentatricopeptide repeat (PPR) protein family. RNA editing is widespread in land plants; however, complex thalloid liverworts (Marchantiopsida) are the only group reported to lack both RNA editing and DYW-PPR protein. The liverwort Cyathodium cavernarum (Marchantiopsida, Cyathodiaceae), typically found in cave habitats, was newly found to have 129 C-to-U RNA editing sites in its chloroplast and 172 sites in its mitochondria. The Cyathodium genus, specifically C. cavernarum, has a large number of PPR editing factor genes, including 251 DYW-type PPR proteins. These DYW-type PPR proteins may be responsible for C-to-U RNA editing in C. cavernarum. Cyathodium cavernarum possesses both PPR DYW proteins and RNA editing. Our analysis suggests that the remarkable RNA editing capability of C. cavernarum may have been acquired alongside the emergence of DYW-type PPR editing factors. These findings provide insight into the evolutionary pattern of RNA editing in land plants.


Subject(s)
Hepatophyta , Phylogeny , RNA Editing , RNA Editing/genetics , Hepatophyta/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Chloroplasts/genetics , Chloroplasts/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Genes, Plant , Amino Acid Sequence
15.
Plant Cell Environ ; 47(7): 2597-2613, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38549236

ABSTRACT

Plant leaves contain multiple cell types which achieve distinct characteristics whilst still coordinating development within the leaf. The bundle sheath possesses larger individual cells and lower chloroplast content than the adjacent mesophyll, but how this morphology is achieved remains unknown. To identify regulatory mechanisms determining bundle sheath cell morphology we tested the effects of perturbing environmental (light) and endogenous signals (hormones) during leaf development of Oryza sativa (rice). Total chloroplast area in bundle sheath cells was found to increase with cell size as in the mesophyll but did not maintain a 'set-point' relationship, with the longest bundle sheath cells demonstrating the lowest chloroplast content. Application of exogenous cytokinin and gibberellin significantly altered the relationship between cell size and chloroplast biosynthesis in the bundle sheath, increasing chloroplast content of the longest cells. Delayed exposure to light reduced the mean length of bundle sheath cells but increased corresponding leaf length, whereas premature light reduced final leaf length but did not affect bundle sheath cells. This suggests that the plant hormones cytokinin and gibberellin are regulators of the bundle sheath cell-chloroplast relationship and that final bundle sheath length may potentially be affected by light-mediated control of exit from the cell cycle.


Subject(s)
Chloroplasts , Cytokinins , Gibberellins , Light , Oryza , Plant Growth Regulators , Plant Leaves , Oryza/growth & development , Oryza/radiation effects , Oryza/cytology , Plant Leaves/growth & development , Plant Leaves/radiation effects , Cytokinins/metabolism , Cytokinins/pharmacology , Gibberellins/metabolism , Plant Growth Regulators/metabolism , Chloroplasts/metabolism , Cell Shape/radiation effects , Time Factors , Cell Size/radiation effects
16.
Plant Cell Environ ; 47(9): 3541-3560, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39132738

ABSTRACT

C2 photosynthesis is a photosynthetic pathway in which photorespiratory CO2 release and refixation are enhanced in leaf bundle sheath (BS) tissues. The evolution of C2 photosynthesis has been hypothesized to be a major step in the origin of C4 photosynthesis, highlighting the importance of studying C2 evolution. In this study, physiological, anatomical, ultrastructural, and immunohistochemical properties of leaf photosynthetic tissues were investigated in six non-C4 Tribulus species and four C4 Tribulus species. At 42°C, T. cristatus exhibited a photosynthetic CO2 compensation point in the absence of respiration (C*) of 21 µmol mol-1, below the C3 mean C* of 73 µmol mol-1. Tribulus astrocarpus had a C* value at 42°C of 55 µmol mol-1, intermediate between the C3 species and the C2 T. cristatus. Glycine decarboxylase (GDC) allocation to BS tissues was associated with lower C*. Tribulus cristatus and T. astrocarpus allocated 86% and 30% of their GDC to the BS tissues, respectively, well above the C3 mean of 11%. Tribulus astrocarpus thus exhibits a weaker C2 (termed sub-C2) phenotype. Increased allocation of mitochondria to the BS and decreased length-to-width ratios of BS cells, were present in non-C4 species, indicating a potential role in C2 and C4 evolution.


Subject(s)
Biological Evolution , Photosynthesis , Plant Leaves , Photosynthesis/physiology , Plant Leaves/physiology , Plant Leaves/metabolism , Carbon Dioxide/metabolism , Glycine Dehydrogenase (Decarboxylating)/metabolism
17.
J Exp Bot ; 75(15): 4655-4670, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38812358

ABSTRACT

Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as second messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and a target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of ß-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located-in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled a dual role of ANAC102 in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Oxidative Stress , Paraquat , Transcription Factors , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/physiology , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Paraquat/pharmacology , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Gene Expression Regulation, Plant , Chloroplasts/metabolism
18.
J Exp Bot ; 75(15): 4599-4610, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-38460122

ABSTRACT

The superoxide anion radical (O2·-) is a one-electron reduction product of molecular oxygen. Compared with other forms of reactive oxygen species (ROS), superoxide has limited reactivity. Nevertheless, superoxide reacts with nitric oxide, ascorbate, and the iron moieties of [Fe-S] cluster-containing proteins. Superoxide has largely been neglected as a signalling molecule in the plant literature in favour of the most stable ROS form, hydrogen peroxide. However, superoxide can accumulate in plant cells, particularly in meristems, where superoxide dismutase activity and ascorbate accumulation are limited (or absent), or when superoxide is generated within the lipid environment of membranes. Moreover, oxidation of the nucleus in response to environmental stresses is a widespread phenomenon. Superoxide is generated in many intracellular compartments including mitochondria, chloroplasts, and on the apoplastic/cell wall face of the plasma membrane. However, nuclear superoxide production and functions remain poorly documented in plants. Accumulating evidence suggests that the nuclear pools of antioxidants such as glutathione are discrete and separate from the cytosolic pools, allowing compartment-specific signalling in the nucleus. We consider the potential mechanisms of superoxide generation and targets in the nucleus, together with the importance of antioxidant processing in regulating superoxide signalling.


Subject(s)
Antioxidants , Cell Nucleus , Signal Transduction , Superoxides , Superoxides/metabolism , Antioxidants/metabolism , Cell Nucleus/metabolism , Plants/metabolism
19.
Mol Biol Rep ; 51(1): 810, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39001942

ABSTRACT

Carotenoids, natural tetraterpenoids found abundantly in plants, contribute to the diverse colors of plant non-photosynthetic tissues and provide fragrance through their cleavage products, which also play crucial roles in plant growth and development. Understanding the synthesis, degradation, and storage pathways of carotenoids and identifying regulatory factors represents a significant strategy for enhancing plant quality. Chromoplasts serve as the primary plastids responsible for carotenoid accumulation, and their differentiation is linked to the levels of carotenoids, rendering them a subject of substantial research interest. The differentiation of chromoplasts involves alterations in plastid structure and protein import machinery. Additionally, this process is influenced by factors such as the ORANGE (OR) gene, Clp proteases, xanthophyll esterification, and environmental factors. This review shows the relationship between chromoplast and carotenoid accumulation by presenting recent advances in chromoplast structure, the differentiation process, and key regulatory factors, which can also provide a reference for rational exploitation of chromoplasts to enhance plant quality.


Subject(s)
Carotenoids , Gene Expression Regulation, Plant , Plastids , Plastids/metabolism , Carotenoids/metabolism , Plants/metabolism , Plants/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Development/genetics , Cell Differentiation
20.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Article in English | MEDLINE | ID: mdl-34580211

ABSTRACT

Iron (Fe) is an essential micronutrient whose availability is limiting in many soils. During Fe deficiency, plants alter the expression of many genes to increase Fe uptake, distribution, and utilization. In a genetic screen for suppressors of Fe sensitivity in the E3 ligase mutant bts-3, we isolated an allele of the bHLH transcription factor (TF) ILR3, ilr3-4 We identified a striking leaf bleaching phenotype in ilr3 mutants that was suppressed by limiting light intensity, indicating that ILR3 is required for phototolerance during Fe deficiency. Among its paralogs that are thought to be partially redundant, only ILR3 was required for phototolerance as well as repression of genes under Fe deficiency. A mutation in the gene-encoding PYE, a known transcriptional repressor under Fe deficiency, also caused leaf bleaching. We identified singlet oxygen as the accumulating reactive oxygen species (ROS) in ilr3-4 and pye, suggesting photosensitivity is due to a PSII defect resulting in ROS production. During Fe deficiency, ilr3-4 and pye chloroplasts retain normal ultrastructure and, unlike wild type (WT), contain stacked grana similar to Fe-sufficient plants. Additionally, we found that the D1 subunit of PSII is destabilized in WT during Fe deficiency but not in ilr3-4 and pye, suggesting that PSII repair is accelerated during Fe deficiency in an ILR3- and PYE-dependent manner. Collectively, our results indicate that ILR3 and PYE confer photoprotection during Fe deficiency to prevent the accumulation of singlet oxygen, potentially by promoting reduction of grana stacking to limit excitation and facilitate repair of the photosynthetic machinery.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/radiation effects , Basic Helix-Loop-Helix Transcription Factors/physiology , Iron/metabolism , Light , Adaptation, Physiological/radiation effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis/physiology , Biological Availability , Photosynthesis , Plant Shoots/metabolism , Singlet Oxygen/metabolism , Soil
SELECTION OF CITATIONS
SEARCH DETAIL