Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.539
Filter
Add more filters

Publication year range
1.
Cell ; 172(5): 1122-1131.e9, 2018 02 22.
Article in English | MEDLINE | ID: mdl-29474911

ABSTRACT

The implementation of clinical-decision support algorithms for medical imaging faces challenges with reliability and interpretability. Here, we establish a diagnostic tool based on a deep-learning framework for the screening of patients with common treatable blinding retinal diseases. Our framework utilizes transfer learning, which trains a neural network with a fraction of the data of conventional approaches. Applying this approach to a dataset of optical coherence tomography images, we demonstrate performance comparable to that of human experts in classifying age-related macular degeneration and diabetic macular edema. We also provide a more transparent and interpretable diagnosis by highlighting the regions recognized by the neural network. We further demonstrate the general applicability of our AI system for diagnosis of pediatric pneumonia using chest X-ray images. This tool may ultimately aid in expediting the diagnosis and referral of these treatable conditions, thereby facilitating earlier treatment, resulting in improved clinical outcomes. VIDEO ABSTRACT.


Subject(s)
Deep Learning , Diagnostic Imaging , Pneumonia/diagnosis , Child , Humans , Neural Networks, Computer , Pneumonia/diagnostic imaging , ROC Curve , Reproducibility of Results , Tomography, Optical Coherence
2.
Immunity ; 53(2): 429-441.e8, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32814029

ABSTRACT

A minor haplotype of the 10q26 locus conveys the strongest genetic risk for age-related macular degeneration (AMD). Here, we examined the mechanisms underlying this susceptibility. We found that monocytes from homozygous carriers of the 10q26 AMD-risk haplotype expressed high amounts of the serine peptidase HTRA1, and HTRA1 located to mononuclear phagocytes (MPs) in eyes of non-carriers with AMD. HTRA1 induced the persistence of monocytes in the subretinal space and exacerbated pathogenic inflammation by hydrolyzing thrombospondin 1 (TSP1), which separated the two CD47-binding sites within TSP1 that are necessary for efficient CD47 activation. This HTRA1-induced inhibition of CD47 signaling induced the expression of pro-inflammatory osteopontin (OPN). OPN expression increased in early monocyte-derived macrophages in 10q26 risk carriers. In models of subretinal inflammation and AMD, OPN deletion or pharmacological inhibition reversed HTRA1-induced pathogenic MP persistence. Our findings argue for the therapeutic potential of CD47 agonists and OPN inhibitors for the treatment of AMD.


Subject(s)
CD47 Antigen/metabolism , Chromosomes, Human, Pair 10/genetics , High-Temperature Requirement A Serine Peptidase 1/metabolism , Macular Degeneration/genetics , Osteopontin/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Binding Sites/physiology , COS Cells , Cell Line , Chlorocebus aethiops , Eye/pathology , Genetic Predisposition to Disease/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Humans , Macrophages/immunology , Macrophages/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/metabolism , Signal Transduction/genetics
3.
Proc Natl Acad Sci U S A ; 120(50): e2302845120, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38055741

ABSTRACT

It has previously been reported that antioxidant vitamins can help reduce the risk of vision loss associated with progression to advanced age-related macular degeneration (AMD), a leading cause of visual impairment among the elderly. Nonetheless, how oxidative stress contributes to the development of choroidal neovascularization (CNV) in some AMD patients and geographic atrophy (GA) in others is poorly understood. Here, we provide evidence demonstrating that oxidative stress cooperates with hypoxia to synergistically stimulate the accumulation of hypoxia-inducible factor (HIF)-1α in the retinal pigment epithelium (RPE), resulting in increased expression of the HIF-1-dependent angiogenic mediators that promote CNV. HIF-1 inhibition blocked the expression of these angiogenic mediators and prevented CNV development in an animal model of ocular oxidative stress, demonstrating the pathological role of HIF-1 in response to oxidative stress stimulation in neovascular AMD. While human-induced pluripotent stem cell (hiPSC)-derived RPE monolayers exposed to chemical oxidants resulted in disorganization and disruption of their normal architecture, RPE cells proved remarkably resistant to oxidative stress. Conversely, equivalent doses of chemical oxidants resulted in apoptosis of hiPSC-derived retinal photoreceptors. Pharmacologic inhibition of HIF-1 in the mouse retina enhanced-while HIF-1 augmentation reduced-photoreceptor apoptosis in two mouse models for oxidative stress, consistent with a protective role for HIF-1 in photoreceptors in patients with advanced dry AMD. Collectively, these results suggest that in patients with AMD, increased expression of HIF-1α in RPE exposed to oxidative stress promotes the development of CNV, but inadequate HIF-1α expression in photoreceptors contributes to the development of GA.


Subject(s)
Choroidal Neovascularization , Geographic Atrophy , Wet Macular Degeneration , Mice , Animals , Humans , Aged , Retinal Pigment Epithelium/metabolism , Hypoxia-Inducible Factor 1/metabolism , Angiogenesis Inhibitors , Wet Macular Degeneration/metabolism , Vascular Endothelial Growth Factor A/metabolism , Visual Acuity , Choroidal Neovascularization/genetics , Choroidal Neovascularization/prevention & control , Choroidal Neovascularization/metabolism , Oxidants/metabolism , Hypoxia/metabolism
4.
FASEB J ; 38(13): e23792, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38953555

ABSTRACT

Age-related macular degeneration (AMD) is a common cause of vision loss. The aggressive form of AMD is associated with ocular neovascularization and subretinal fibrosis, representing a responsive outcome against neovascularization mediated by epithelial-mesenchymal transition of retinal pigment epithelium (RPE) cells. A failure of the current treatment (anti-vascular endothelial growth factor therapy) has also been attributed to the progression of subretinal fibrosis. Hypoxia-inducible factors (HIFs) increase gene expressions to promote fibrosis and neovascularization. HIFs act as a central pathway in the pathogenesis of AMD. HIF inhibitors may suppress ocular neovascularization. Nonetheless, further investigation is required to unravel the aspects of subretinal fibrosis. In this study, we used RPE-specific HIFs or von Hippel-Lindau (VHL, a regulator of HIFs) conditional knockout (cKO) mice, along with pharmacological HIF inhibitors, to demonstrate the suppression of subretinal fibrosis. Fibrosis was suppressed by treatments of HIF inhibitors, and similar suppressive effects were detected in RPE-specific Hif1a/Hif2a- and Hif1a-cKO mice. Promotive effects were observed in RPE-specific Vhl-cKO mice, where fibrosis-mediated pathologic processes were evident. Marine products' extracts and their component taurine suppressed fibrosis as HIF inhibitors. Our study shows critical roles of HIFs in the progression of fibrosis, linking them to the potential development of therapeutics for AMD.


Subject(s)
Fibrosis , Mice, Knockout , Retinal Pigment Epithelium , Von Hippel-Lindau Tumor Suppressor Protein , Animals , Mice , Fibrosis/metabolism , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/antagonists & inhibitors , Macular Degeneration/metabolism , Macular Degeneration/pathology , Macular Degeneration/drug therapy , Retina/metabolism , Retina/pathology , Epithelial-Mesenchymal Transition/drug effects , Mice, Inbred C57BL
5.
Angiogenesis ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316206

ABSTRACT

Inflammasome activation is implicated in diseases of aberrant angiogenesis such as age-related macular degeneration (AMD), though its precise role in choroidal neovascularization (CNV), a characteristic pathology of advanced AMD, is ill-defined. Reports on inhibition of inflammasome constituents on CNV are variable and the precise role of inflammasome in mediating pathological angiogenesis is unclear. Historically, subretinal injection of inflammasome agonists alone has been used to investigate retinal pigmented epithelium (RPE) degeneration, while the laser photocoagulation model has been used to study pathological angiogenesis in a model of CNV. Here, we report that the simultaneous introduction of any of several disease-relevant inflammasome agonists (Alu or B2 RNA, Alu cDNA, or oligomerized amyloid ß (1-40)) exacerbates laser-induced CNV. These activities were diminished or abrogated by genetic or pharmacological targeting of inflammasome signaling constituents including P2rx7, Nlrp3, caspase-1, caspase-11, and Myd88, as well as in myeloid-specific caspase-1 knockout mice. Alu RNA treatment induced inflammasome activation in macrophages within the CNV lesion, and increased accumulation of macrophages in an inflammasome-dependent manner. Finally, IL-1ß neutralization prevented inflammasome agonist-induced chemotaxis, macrophage trafficking, and angiogenesis. Collectively, these observations support a model wherein inflammasome stimulation promotes and exacerbates CNV and may be a therapeutic target for diseases of angiogenesis such as neovascular AMD.

6.
Angiogenesis ; 27(3): 351-373, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38498232

ABSTRACT

Age-related macular degeneration (AMD) is a common retinal neurodegenerative disease among the elderly. Neovascular AMD (nAMD), a leading cause of AMD-related blindness, involves choroidal neovascularization (CNV), which can be suppressed by anti-angiogenic treatments. However, current CNV treatments do not work in all nAMD patients. Here we investigate a novel target for AMD. Granzyme B (GzmB) is a serine protease that promotes aging, chronic inflammation and vascular permeability through the degradation of the extracellular matrix (ECM) and tight junctions. Extracellular GzmB is increased in retina pigment epithelium (RPE) and mast cells in the choroid of the healthy aging outer retina. It is further increased in donor eyes exhibiting features of nAMD and CNV. Here, we show in RPE-choroidal explant cultures that exogenous GzmB degrades the RPE-choroid ECM, promotes retinal/choroidal inflammation and angiogenesis while diminishing anti-angiogenic factor, thrombospondin-1 (TSP-1). The pharmacological inhibition of either GzmB or mast-cell degranulation significantly reduces choroidal angiogenesis. In line with our in vitro data, GzmB-deficiency reduces the extent of laser-induced CNV lesions and the age-related deterioration of electroretinogram (ERG) responses in mice. These findings suggest that targeting GzmB, a serine protease with no known endogenous inhibitors, may be a potential novel therapeutic approach to suppress CNV in nAMD.


Subject(s)
Choroidal Neovascularization , Extracellular Matrix , Granzymes , Inflammation , Mast Cells , Retinal Pigment Epithelium , Granzymes/metabolism , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Animals , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Inflammation/pathology , Inflammation/metabolism , Mice , Mast Cells/metabolism , Mast Cells/pathology , Mast Cells/enzymology , Thrombospondin 1/metabolism , Thrombospondin 1/genetics , Mice, Inbred C57BL , Choroid/pathology , Choroid/metabolism , Choroid/blood supply , Macular Degeneration/pathology , Macular Degeneration/metabolism , Mice, Knockout
7.
Angiogenesis ; 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922557

ABSTRACT

BACKGROUND: Pathological angiogenesis causes significant vision loss in neovascular age-related macular degeneration and other retinopathies with neovascularization (NV). Neuronal/glial-vascular interactions influence the release of angiogenic and neurotrophic factors. We hypothesized that botulinum neurotoxin serotype A (BoNT/A) modulates pathological endothelial cell proliferation through glial cell activation and growth factor release. METHODS: A laser-induced choroidal NV (CNV) was employed to investigate the anti-angiogenic effects of BoNT/A. Fundus fluorescence angiography, immunohistochemistry, and real-time PCR were used to assess BoNT/A efficacy in inhibiting CNV and the molecular mechanisms underlying this inhibition. Neuronal and glial suppressor of cytokine signaling 3 (SOCS3) deficient mice were used to investigate the molecular mechanisms of BoNT/A in inhibiting CNV via SOCS3. FINDINGS: In laser-induced CNV mice with intravitreal BoNT/A treatment, CNV lesions decreased > 30%; vascular leakage and retinal glial activation were suppressed; and Socs3 mRNA expression was induced while vascular endothelial growth factor A (Vegfa) mRNA expression was suppressed. The protective effects of BoNT/A on CNV development were diminished in mice lacking neuronal/glial SOCS3. CONCLUSION: BoNT/A suppressed laser-induced CNV and glial cell activation, in part through SOCS3 induction in neuronal/glial cells. BoNT/A treatment led to a decrease of pro-angiogenic factors, including VEGFA, highlighting the potential of BoNT/A as a therapeutic intervention for pathological angiogenesis in retinopathies.

8.
J Neuroinflammation ; 21(1): 247, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354493

ABSTRACT

'Wet' age-related macular degeneration (AMD) is characterized by pathologic choroidal neovascularization (CNV) that destroys central vision. Abundant evidence points to inflammation and immune cell dysfunction in the progression of CNV in AMD. Mast cells are resident immune cells that control the inflammatory response. Mast cells accumulate and degranulate in the choroid of patients with AMD, suggesting they play a role in CNV. Activated mast cells secrete various biologically active mediators, including inflammatory cytokines and proteolytic enzymes such as tryptase. We investigated the role of mast cells in AMD using a model of CNV. Conditioned media from activated mast cells exerts proangiogenic effects on choroidal endothelial cells and choroidal explants. Laser-induced CNV in vivo was markedly attenuated in mice genetically depleted of mast cells (KitW-sh/W-sh) and in wild-type mice treated with mast cell stabilizer, ketotifen fumarate. Tryptase was found to elicit pronounced choroidal endothelial cell sprouting, migration and tubulogenesis; while tryptase inhibition diminished CNV. Transcriptomic analysis of laser-treated RPE/choroid complex revealed collagen catabolism and extracellular matrix (ECM) reorganization as significant events correlated in clusters of mast cell activation. Consistent with these analyses, compared to wildtype mice choroids of laser-treated mast cell-deficient mice displayed less ECM remodelling evaluated using collagen hybridizing peptide tissue binding. Findings herein provide strong support for mast cells as key players in the progression of pathologic choroidal angiogenesis and as potential therapeutic targets to prevent pathological neovascularization in 'wet' AMD.


Subject(s)
Choroidal Neovascularization , Disease Models, Animal , Macular Degeneration , Mast Cells , Mice, Inbred C57BL , Animals , Mast Cells/metabolism , Mast Cells/pathology , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Mice , Macular Degeneration/pathology , Macular Degeneration/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Choroid/pathology , Choroid/metabolism , Tryptases/metabolism , Mice, Transgenic , Ketotifen/pharmacology
9.
J Med Virol ; 96(2): e29478, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38377063

ABSTRACT

Choroidal neovascularization (CNV) is a serious condition that affects the retina, causing partial or complete blindness in people of different ages. While CNV is a common occurrence in various chorioretinopathies, research on its occurrence in neonates is limited. Human cytomegalovirus (HCMV) is a significant health threat to neonates, with a strong association with retinal angiogenesis. However, there has been limited investigation into HCMV-associated CNV progression. In this article, we extensively studied the expression of different inflammatory cytokines and chemokines during latent HCMV-associated retinal neovascularization. Our research found that HCMV-induced CNV progression was significantly prominent in the presence of AT2R-dependent angiogenesis (p < 0.001), whereas in the absence of HCMV, AT1R-dependent CCL-5-mediated angiogenesis was documented. We also observed significant increases in CCL-19, CCL-21 chemokine responses, followed by CCR-7 chemokine receptor activation (p < 0.001) in HCMV-induced CNV patients compared to HCMV non-induced CNV groups. Furthermore, significant changes in predictive chemokine markers of HCMV-induced CNV were positively correlated with HCMV viremia. These immunological alterations ultimately lead to the switching of NFκB canonical and noncanonical pathways, respectively, in HCMV-induced neonatal CNV and HCMV non-induced CNV. This clinical observation presents a novel hypothesis that ocular HCMV latency poses a noteworthy risk factor for the progression of retinal neovascularization through a distinctive immunological signaling pathway. The current study represents the first of its kind to report on this association, which may have significant implications for the clinical management of patients with ocular HCMV.


Subject(s)
Choroidal Neovascularization , Cytomegalovirus Infections , Retinal Neovascularization , Infant, Newborn , Humans , Retinal Neovascularization/metabolism , Tertiary Care Centers , Choroidal Neovascularization/metabolism , Retina , Cytomegalovirus Infections/complications , Cytomegalovirus , Signal Transduction , Chemokines/metabolism
10.
Cytokine ; 179: 156640, 2024 07.
Article in English | MEDLINE | ID: mdl-38735245

ABSTRACT

INTRODUCTION: To investigate the levels of angiogenesis and inflammatory cytokines in individuals with myopic choroidal neovascularization (mCNV) and the changes in these factors following intravitreal anti-VEGF injection. METHODS: Aqueous humor samples were gathered from eyes with mCNV, those with single macular bleeding (SMB) without mCNV in highly myopic eyes, and those with age-related cataracts. Using a multiplex bead immunoassay, we analyzed 28 angiogenesis and inflammatory factors in the aqueous humor. Furthermore, clinical data were documented for correlation analysis. RESULTS: In this study, the levels of vascular endothelial growth factor A (VEGF-A), interleukin 8 (IL-8), and fibroblast growth factors 1 (FGF-1) were significantly elevated in mCNV compared to SMB eyes (p < 0.05). Their odds ratios for mCNV occurrence were 1.05, 3.45, and 2.64, respectively. Hepatocyte growth factor (HGF) and VEGF-C were notably higher in mCNV than in cataract patients (p < 0.05), and VEGF-C correlated to the degree of myopic atrophic maculopathy (p = 0.024). Axial length exhibited a negative correlation with VEGF-A and positive correlations with VEGF-C, HGF, and MCP-1 (p < 0.01). Following anti-VEGF treatment, a reduction in VEGF-A, endothelin-1, and FGF-2 was noted in mCNV patients (p < 0.05), but MCP-1 levels increased. CONCLUSION: Our findings highlight the predominant role of angiogenesis and inflammation factors in mCNV pathogenesis. VEGF-C's correlation with axial length and atrophy suggests its involvement in the process of myopic atrophic maculopathy.


Subject(s)
Choroidal Neovascularization , Myopia , Vascular Endothelial Growth Factor A , Humans , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Male , Female , Middle Aged , Aged , Vascular Endothelial Growth Factor A/metabolism , Myopia/drug therapy , Myopia/pathology , Myopia/metabolism , Myopia/complications , Intravitreal Injections , Inflammation/metabolism , Inflammation/pathology , Aqueous Humor/metabolism , Angiogenesis Inhibitors/therapeutic use , Angiogenesis Inhibitors/administration & dosage , Cytokines/metabolism , Adult , Angiogenesis
11.
Exp Eye Res ; 248: 110111, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326776

ABSTRACT

Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.

12.
Exp Eye Res ; 242: 109877, 2024 May.
Article in English | MEDLINE | ID: mdl-38537669

ABSTRACT

Choroidal neovascularization (CNV) is a hallmark of neovascular age-related macular degeneration (nAMD) and a major contributor to vision loss in nAMD cases. However, the identification of specific cell types associated with nAMD remains challenging. Herein, we performed single-cell sequencing to comprehensively explore the cellular diversity and understand the foundational components of the retinal pigment epithelium (RPE)/choroid complex. We unveiled 10 distinct cell types within the RPE/choroid complex. Notably, we observed significant heterogeneity within endothelial cells (ECs), fibroblasts, and macrophages, underscoring the intricate nature of the cellular composition in the RPE/choroid complex. Within the EC category, four distinct clusters were identified and EC cluster 0 was tightly associated with choroidal neovascularization. We identified five clusters of fibroblasts actively involved in the pathogenesis of nAMD, influencing fibrotic responses, angiogenic effects, and photoreceptor function. Additionally, three clusters of macrophages were identified, suggesting their potential roles in regulating the progression of nAMD through immunomodulation and inflammation regulation. Through CellChat analysis, we constructed a complex cell-cell communication network, revealing the role of EC clusters in interacting with fibroblasts and macrophages in the context of nAMD. These interactions were found to govern angiogenic effects, fibrotic responses, and inflammatory processes. In summary, this study reveals noteworthy cellular heterogeneity in the RPE/choroid complex and provides valuable insights into the pathogenesis of CNV. These findings will open up potential avenues for deep understanding and targeted therapeutic interventions in nAMD.


Subject(s)
Choroid , Choroidal Neovascularization , Disease Models, Animal , Macrophages , Retinal Pigment Epithelium , Single-Cell Analysis , Animals , Mice , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/genetics , Choroid/pathology , Choroid/metabolism , Macrophages/metabolism , Macrophages/pathology , Transcriptome , Mice, Inbred C57BL , Fibroblasts/metabolism , Fibroblasts/pathology , Endothelial Cells/metabolism , Endothelial Cells/pathology , Cell Communication/physiology , Wet Macular Degeneration/genetics , Wet Macular Degeneration/metabolism , Gene Expression Profiling
13.
Exp Eye Res ; 244: 109909, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38710357

ABSTRACT

Neovascular age-related macular degeneration, also known as exudative or wet age-related macular degeneration, is the leading cause of blindness in the developed world. Photobiomodulation has the potential to target the up-stream hypoxic and pro-inflammatory drivers of choroidal neovascularization. This study investigated whether photobiomodulation attenuates characteristic pathological features of choroidal neovascularization in a rodent model. Experimental choroidal neovascularization was induced in Brown Norway rats with laser photocoagulation. A custom-designed, slit-lamp-mounted, 670 nm laser was used to administer retinal photobiomodulation every 3 days, beginning 6 days prior to choroidal neovascularization induction and continuing until the animals were killed 14 days later. The effect of photobiomodulation on the size of choroidal neovascular membranes was determined using isolectin-B4 immunohistochemistry and spectral domain-optical coherence tomography. Vascular leakage was determined with fluorescein angiography. The effect of treatment on levels of vascular endothelial growth factor expression was quantified with enzyme-linked immunosorbent assay. Treatment with photobiomodulation was associated with choroidal neovascular membranes that were smaller, had less fluorescein leakage, and a diminished presence of inflammatory cells as compared to sham eyes. These effects were not associated with a statistically significant difference in the level of vascular endothelial growth factor when compared to sham eyes. The data shown herein indicate that photobiomodulation attenuates pathological features of choroidal neovascularization in a rodent model by mechanisms that may be independent of vascular endothelial growth factor.


Subject(s)
Choroidal Neovascularization , Disease Models, Animal , Fluorescein Angiography , Laser Coagulation , Low-Level Light Therapy , Rats, Inbred BN , Tomography, Optical Coherence , Vascular Endothelial Growth Factor A , Animals , Rats , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/etiology , Laser Coagulation/methods , Low-Level Light Therapy/methods , Vascular Endothelial Growth Factor A/metabolism , Enzyme-Linked Immunosorbent Assay , Male , Slit Lamp Microscopy , Immunohistochemistry
14.
Exp Eye Res ; 238: 109751, 2024 01.
Article in English | MEDLINE | ID: mdl-38097101

ABSTRACT

Choroidal neovascularization (CNV) is the primary pathogenic process underlying wet age-related macular degeneration, leading to severe vision loss. Despite current anti-vascular endothelial growth factor (VEGF) therapies, several limitations persist. Crocetin, a major bioactive constituent of saffron, exhibits multiple pharmacological activities, yet its role and mechanism in CNV remain unclear. Here, we investigated the potential effects of crocetin on CNV using in vitro and in vivo models. In human umbilical vein endothelial cells, crocetin demonstrated inhibition of VEGF-induced cell proliferation, migration, and tube formation in vitro, as assessed by CCK-8 and EdU assays, transwell and scratch assays, and tube formation analysis. Additionally, crocetin suppressed choroidal sprouting in ex vivo experiments. In the human retinal pigment epithelium (RPE) cell line ARPE-19, crocetin attenuated cobalt chloride-induced hypoxic cell injury, as evidenced by CCK-8 assay. As evaluated by quantitative PCR and Western blot assay, it also reduced hypoxia-induced expression of VEGF and hypoxia-inducible factor 1α (HIF-1α), while enhancing zonula occludens-1 expression. In a laser-induced CNV mouse model, intravitreal administration of crocetin significantly reduced CNV size and suppressed elevated expressions of VEGF, HIF-1α, TNFα, IL-1ß, and IL-6. Moreover, crocetin treatment attenuated the elevation of phospho-S6 in laser-induced CNV and hypoxia-induced RPE cells, suggesting its potential anti-angiogenic effects through antagonizing the mechanistic target of rapamycin complex 1 (mTORC1) signaling. Our findings indicate that crocetin may hold promise as an effective drug for the prevention and treatment of CNV.


Subject(s)
Choroidal Neovascularization , Endothelial Cells , Mice , Animals , Humans , Endothelial Cells/metabolism , Vascular Endothelial Growth Factor A/metabolism , Sincalide/metabolism , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/prevention & control , Choroidal Neovascularization/metabolism , Hypoxia/metabolism , Disease Models, Animal , Retinal Pigment Epithelium/metabolism
15.
Exp Eye Res ; 247: 110057, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39179168

ABSTRACT

Vascular endothelial growth factor (VEGF) signaling is crucial for choroidal neovascularization (CNV), a major pathological feature of neovascular age-related macular degeneration (nAMD). Gene transcription of VEGF is mainly regulated by hypoxia-inducible factor 1-alpha (HIF-1α). The chromobox (CBX) family polycomb protein (Pc) subgroup includes CBX2, CBX4, CBX6, CBX7, and CBX8. CBX4 enhances hypoxia-induced VEGF expression and angiogenesis in hepatocellular carcinoma (HCC) cells by increasing HIF-1α's transcriptional activity. The objective of the study was to examine the functions of members of the CBX family Pc subgroup in choroidal vascular endothelial cells (CVECs) during CNV. CBX4 and CBX7 expression was up-regulated in hypoxic human choroidal vascular endothelial cells (HCVECs). In HCVECs, CBX7 facilitated HIF-1α transcription and expression, while CBX4 did not. In HCVECs, CBX7 stimulated HIF-1α's nuclear translocation and transcriptional activity, which in turn stimulated VEGF transcription and expression. The CBX7/HIF-1α/VEGF pathway promoted the migration, proliferation, and tube formation of HCVECs. The CBX7/HIF-1α/VEGF pathway was up-regulated in CVECs and in the mouse model with laser-induced CNV. Mouse CNV was lessened by the blockade of CBX7 through the down-regulation of HIF-1α/VEGF. In conclusion, CBX7 enhanced pro-angiogenic behaviors of hypoxic CVECs by up-regulating the HIF-1α/VEGF pathway, which contributing to the formation of mouse laser-induced CNV.


Subject(s)
Choroid , Choroidal Neovascularization , Disease Models, Animal , Hypoxia-Inducible Factor 1, alpha Subunit , Mice, Inbred C57BL , Polycomb Repressive Complex 1 , Vascular Endothelial Growth Factor A , Choroidal Neovascularization/metabolism , Choroidal Neovascularization/pathology , Choroidal Neovascularization/genetics , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 1/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor A/genetics , Humans , Choroid/blood supply , Choroid/metabolism , Signal Transduction/physiology , Cells, Cultured , Blotting, Western , Cell Proliferation/physiology , Endothelial Cells/metabolism , Gene Expression Regulation , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Cell Movement , Real-Time Polymerase Chain Reaction
16.
BMC Infect Dis ; 24(1): 165, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326787

ABSTRACT

PURPOSE: To report two cases of syphilis masquerading as chronic refractory macular diseases. CASE DESCRIPTIONS: Two patients had been diagnosed with neovascular age-related macular degeneration (neovascular AMD) and diabetic macular edema (DME), respectively. The disease worsened despite repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) and also surgical treatment (in suspected case of DME). Systemic evaluations were positive for syphilis. Intravenous penicillin was started, and the macular diseases improved. The lesions were well controlled afterward. CONCLUSIONS: The current two cases demonstrated that ocular syphilis can masquerade as refractory chronic retinal diseases such as DME and neovascular AMD. Laboratory evaluations for syphilis may be needed, not only for uveitis but also for refractory retinal diseases. Indocyanine green angiography may be helpful to reveal occult syphilis.


Subject(s)
Choroidal Neovascularization , Diabetic Retinopathy , Endophthalmitis , Macular Edema , Syphilis , Wet Macular Degeneration , Humans , Angiogenesis Inhibitors/therapeutic use , Diabetic Retinopathy/drug therapy , Vascular Endothelial Growth Factor A , Syphilis/diagnosis , Syphilis/drug therapy , Choroidal Neovascularization/diagnosis , Choroidal Neovascularization/drug therapy , Visual Acuity , Wet Macular Degeneration/drug therapy , Endophthalmitis/drug therapy , Intravitreal Injections
17.
Article in English | MEDLINE | ID: mdl-39162805

ABSTRACT

PURPOSE: Predicting the progression of intermediate AMD (iAMD) to neovascular AMD (nAMD) will help to identify high-risk patients and improve treatment outcomes. The present study assessed whether choroidal OCT biomarkers could predict conversion to nAMD. METHODS: This retrospective study included patients with clinically stable iAMD who either converted to nAMD (C group) or did not convert (NC group) during one year of follow-up. OCT parameters included subfoveal choroidal thickness (SFCT), central macular thickness (CMT), Haller vascular thickness (HVT), inner choroidal thickness (ICT), and double-layer sign (DLS). RESULTS: Of 116 total eyes, there were 37 in the NC group and 79 in the C group. Baseline SFCT was significantly lower in the C group compared to the NC group (169.0 ± 63.2 µm vs. 218.0 ± 97.8 µm, p = 0.01). Baseline HVT and ICT were lower in the C group (105.2 ± 40.6 µm vs. 121.0 ± 56.6 µm, p = 0.17 and 61.9 ± 35.5 µm vs. 77.5 ± 41.7 µm, p = 0.09). HVT was decreased at all time points in the C group vs NC (p > 0.05). The ICT was reduced in the C group at each time point except at conversion time (p > 0.05). Of all eight eyes who presented DLS at baseline, 100% converted to nAMD (p < 0.001). CONCLUSION: Lower SFCT at baseline may signal conversion to nAMD within 12 months.

18.
Article in English | MEDLINE | ID: mdl-38761206

ABSTRACT

PURPOSE: P2X7 receptor (P2X7R) is a purinergic cation channel whose activation has been linked with age-related macular degeneration (ARMD). Several nucleoside reverse transcriptase inhibitors, zidovudine (AZT), lamivudine (3TC) and abacavir (ABC), have been shown to inhibit P2X7R and improve outcomes in animal models of ARMD. Our aim is to investigate the association between chronic AZT, 3TC, and ABC therapy and ARMD in a clinical setting. METHODS: This is a retrospective cohort study comparing 445 patients with HIV and confirmed usage of AZT, 3TC, and ABC against 200 patients with HIV without usage of AZT, 3TC, and ABC and 445 non-HIV infected patients. Fundus examination and spectral domain optical coherence tomography (SD-ODT) were used to measure prevalence of early-intermediate stage ARMD, geographic atrophy, and exudative ARMD. RESULTS: There was no statistically significant difference in the prevalence of early-intermediate stage ARMD between the HIV infected patients with a history of AZT, 3TC, and ABC use and the HIV infected patients without AZT, 3TC, and ABC use (p = 0.887). There was also no statistically significant difference in the prevalence of geographical atrophy (p = 0.062) and exudative AMD (p > 0.999) between the HIV infected patients with a history of AZT, 3TC, and ABC use and non-HIV infected patients. CONCLUSION: We did not find an effect of P2X7R inhibiting antiretrovirals usage on early-intermediate stage ARMD, geographical atrophy, or exudative ARMD. Studies with larger cohort and more rigorous medication history are needed to assess the effects on geographical atrophy or exudative ARMD.

19.
BMC Ophthalmol ; 24(1): 75, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38373901

ABSTRACT

BACKGROUND: To determine the efficacy and safety of intravitreally injected conbercept, a vascular endothelial growth factor receptor fusion protein, for the treatment of idiopathic choroidal neovascularization (ICNV). METHODS: This retrospective study analyzed outcomes in 40 patients (40 eyes) with ICNV who received intravitreal injections of conbercept 0.5 mg (0.05 ml) and were followed up for at least 12 months. All patients underwent full ophthalmic examinations, including best-corrected vision acuity (BCVA), intraocular pressure (IOP), slit-lamp examination, color fundus photography, optical coherence tomography angiography, multifocal electroretinogram, and fundus fluorescence angiography, if necessary, at baseline and after 1, 3, 6, and 12 months. BCVA, macular central retinal thickness (CRT), IOP, CNV blood flow area, thickness of the CNV-pigment epithelial detachment complex, thickness of the retinal nerve fiber layer (RNFL), and the first positive peak (P1) amplitude density in ring 1 before and after treatment were compared. RESULTS: Mean baseline BCVA (logMAR), CRT, CNV blood flow area, and CNV-pigment epithelial detachment complex thickness were significantly lower 1, 3, 6, and 12 months after than before conbercept treatment (P < 0.05 each). IOP and baseline RNFL thickness were unaffected by conbercept treatment. P1 amplitude density was significantly higher 1, 3, 6, and 12 months after than before conbercept treatment (P < 0.05 each). None of the 40 eyes showed obvious ocular adverse reactions, such as endophthalmitis, glaucoma, cataract progression, and retinal detachment, and none of the patients experienced systemic adverse events, such as cardiovascular and cerebrovascular accidents. CONCLUSIONS: Intravitreal injection of conbercept is beneficial to eyes with ICNV, inducing the recovery of macular structure and function and improving BCVA, while not damaging the neuroretina. Intravitreal conbercept is safe and effective for the treatment of ICNV.


Subject(s)
Choroidal Neovascularization , Recombinant Fusion Proteins , Retinal Detachment , Humans , Intravitreal Injections , Vascular Endothelial Growth Factor A , Retrospective Studies , Choroidal Neovascularization/diagnosis , Retina , Tomography, Optical Coherence , Retinal Detachment/drug therapy , Angiogenesis Inhibitors/therapeutic use , Treatment Outcome , Fluorescein Angiography
20.
BMC Ophthalmol ; 24(1): 118, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481176

ABSTRACT

BACKGROUND: Anti-vascular endothelial growth factor (anti-VEGF) therapy is used for myopic choroidal neovascularization (mCNV). Patchy chorioretinal atrophy (pCRA) enlargement has been reported in mCNV cases associated with vision loss. Our aim was to compare the long-term effectiveness of anti-VEGF therapy alone versus anti-VEGF followed by posterior scleral reinforcement (PSR) in controlling myopic maculopathy in mCNV eyes. METHODS: We performed a retrospective review of the medical records of 95 high myopia patients (refractive error ≥ 6.00 diopters, axial length ≥ 26.0 mm) with mCNV. Patients were treated with anti-VEGF alone (group A) or anti-VEGF followed by PSR (group B). The following data were collected: refractive error, best corrected visual acuity (BCVA), ophthalmic fundus examination, ocular coherence tomography and ocular biometry at 12 and 24 months pre- and postoperatively. The primary outcomes were changes in pCRA and BCVA. RESULTS: In 26 eyes of 24 patients, the mean pCRA size significantly increased from baseline (0.88 ± 1.69 mm2) to 12 months (1.57 ± 2.32 mm2, t = 3.249, P = 0.003) and 24 months (2.17 ± 2.79 mm2, t = 3.965, P = 0.001) postoperatively. The increase in perilesional pCRA in group B (n = 12) was 98.2% and 94.2% smaller than that in group A (n = 14) at 12 and 24 months (Beta 0.57 [95% CI 0.01, 191 1.13], P = 0.048). In group B, 7 eyes (58.3%) gained more than 2 lines of BCVA compared with only 4 eyes (28.6%) in group A at 24 months. CONCLUSION: Anti-VEGF therapy followed by PSR achieved better outcomes than anti-VEGF therapy alone in controlling the development of myopic maculopathy in mCNV and may constitute a better treatment option by securing a better long-term VA outcome.


Subject(s)
Choroidal Neovascularization , Macular Degeneration , Myopia, Degenerative , Retinal Diseases , Humans , Angiogenesis Inhibitors/therapeutic use , Endothelial Growth Factors/therapeutic use , Myopia, Degenerative/complications , Myopia, Degenerative/diagnosis , Visual Acuity , Choroidal Neovascularization/diagnosis , Choroidal Neovascularization/drug therapy , Choroidal Neovascularization/etiology , Retinal Diseases/diagnosis , Macular Degeneration/drug therapy , Sclera , Retrospective Studies , Tomography, Optical Coherence , Fluorescein Angiography , Intravitreal Injections
SELECTION OF CITATIONS
SEARCH DETAIL