Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Amino Acids ; 56(1): 16, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358574

ABSTRACT

Antimicrobial peptide (AMP) is the polypeptide, which protects the organism avoiding attack from pathogenic bacteria. Studies have shown that there were some antimicrobial peptides with molecular action mechanism involved in crossing the cell membrane without inducing severe membrane collapse, then interacting with cytoplasmic target-nucleic acid, and exerting antibacterial activity by interfacing the transmission of genetic information of pathogenic microorganisms. However, the relationship between the antibacterial activities and peptide structures was still unclear. Therefore, in the present work, a series of AMPs with a sequence of 20 amino acids was extracted from DBAASP database, then, quantitative structure-activity relationship (QSAR) methods were conducted on these peptides. In addition, novel antimicrobial peptides with Ā stronger antimicrobial activities were designed according to the information originated from the constructed models. Hence, the outcome of this study would lay a solid foundation for the in-silico design and exploration of novel antibacterial peptides with improved activityĀ activities.


Subject(s)
Peptides , Quantitative Structure-Activity Relationship , Peptides/pharmacology , Antimicrobial Peptides , Amino Acids , Anti-Bacterial Agents/pharmacology
2.
Int J Mol Sci ; 25(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-39000539

ABSTRACT

Isocitrate dehydrogenase 1 (IDH1) is a necessary enzyme for cellular respiration in the tricarboxylic acid cycle. Mutant isocitrate dehydrogenase 1 (mIDH1) has been detected overexpressed in a variety of cancers. mIDH1 inhibitor ivosidenib (AG-120) was only approved by the Food and Drug Administration (FDA) for marketing, nevertheless, a range of resistance has been frequently reported. In this study, several mIDH1 inhibitors with the common backbone pyridin-2-one were explored using the three-dimensional structure-activity relationship (3D-QSAR), scaffold hopping, absorption, distribution, metabolism, excretion (ADME) prediction, and molecular dynamics (MD) simulations. Comparative molecular field analysis (CoMFA, R2 = 0.980, Q2 = 0.765) and comparative molecular similarity index analysis (CoMSIA, R2 = 0.997, Q2 = 0.770) were used to build 3D-QSAR models, which yielded notably decent predictive ability. A series of novel structures was designed through scaffold hopping. The predicted pIC50 values of C3, C6, and C9 were higher in the model of 3D-QSAR. Additionally, MD simulations culminated in the identification of potent mIDH1 inhibitors, exhibiting strong binding interactions, while the analyzed parameters were free energy landscape (FEL), radius of gyration (Rg), solvent accessible surface area (SASA), and polar surface area (PSA). Binding free energy demonstrated that C2 exhibited the highest binding free energy with IDH1, which was -93.25 Ā± 5.20 kcal/mol. This research offers theoretical guidance for the rational design of novel mIDH1 inhibitors.


Subject(s)
Isocitrate Dehydrogenase , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship , Isocitrate Dehydrogenase/antagonists & inhibitors , Isocitrate Dehydrogenase/chemistry , Isocitrate Dehydrogenase/metabolism , Isocitrate Dehydrogenase/genetics , Humans , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Pyridones/chemistry , Pyridones/pharmacology
3.
Mol Divers ; 26(3): 1715-1730, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34636023

ABSTRACT

Epidermal growth factor receptor (EGFR) has received widespread attention because it is an important target for anticancer drug design. Mutations in the EGFR, especially the T790M/L858R double mutation, have made cancer treatment more difficult. We herein built the structure-activity relationship models of small-molecule inhibitors on wild-type and T790M/L858R double-mutant EGFR with a whole dataset of 379 compounds. For 2D classification models, we used ECFP4 fingerprints to build support vector machine and random forest models and used SMILES to build self-attention recurrent neural network models. Each of all six models resulted in an accuracy of above 0.87 and the Matthews correlation coefficient value of above 0.76 on the test set, respectively. We concluded that inhibitors containing anilinoquinoline and methoxy or fluoro phenyl are highly active against wild EGFR. Substructures such as anilinopyrimidine, acrylamide, amino phenyl, methoxy phenyl, and thienopyrimidinyl amide appeared more in highly active inhibitors against double-mutant EGFR. We also used self-organizing map to cluster the inhibitors into six subsets based on ECFP4 fingerprints and analyzed the activity characteristics of different scaffolds in each subset. Among them, three datasets, which are based on pteridin, anilinopyrimidine, and anilinoquinoline scaffold, were selected to build 3D comparative molecular similarity analysis models individually. Models with the leave-one-out coefficient of determination (q2) above 0.65 were selected, and five descriptor types (steric, electrostatic, hydrophobic, donor, and acceptor) were used to study the effects of side chains of inhibitors on the activity against wild-type and mutant-type EGFR.


Subject(s)
ErbB Receptors , Lung Neoplasms , Cell Line, Tumor , Drug Design , ErbB Receptors/genetics , Humans , Lung Neoplasms/drug therapy , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Structure-Activity Relationship
4.
Molecules ; 27(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36432075

ABSTRACT

Triple-negative breast cancer (TNBC) is defined as a kind of breast cancer that lacks estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptors (HER2). This cancer accounts for 10-15% of all breast cancers and has the features of high invasiveness and metastatic potential. The treatment regimens are still lacking and need to develop novel inhibitors for therapeutic strategies. Three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses, based on a series of forty-seven thieno-pyrimidine derivatives, were performed to identify the key structural features for the inhibitory biological activities. The established comparative molecular field analysis (CoMFA) presented a leave-one-out cross-validated correlation coefficient q2 of 0.818 and a determination coefficient r2 of 0.917. In comparative molecular similarity indices analysis (CoMSIA), a q2 of 0.801 and an r2 of 0.897 were exhibited. The predictive capability of these models was confirmed by using external validation and was further validated by the progressive scrambling stability test. From these results of validation, the models were determined to be statistically reliable and robust. This study could provide valuable information for further optimization and design of novel inhibitors against metastatic breast cancer.


Subject(s)
Quantitative Structure-Activity Relationship , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Models, Molecular
5.
Bioorg Med Chem Lett ; 44: 128116, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34015503

ABSTRACT

The anti-chronic myeloid leukemia activity of thiazole aminobenzamide derivatives in vitro was tested by a methanethiosulfonate (MTS)-based viability assay method, and the result showed that some compounds exhibited good inhibitory activities against human chronic myeloid leukemia cell line K562, imatinib-resistant strain K562/R and T135I mutant cell line BaF3-ABL-BCR-T315I. Comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) methods were used to analyze the relationship between the structure of thiazole aminobenzamide derivatives and the inhibition of K562/R cell activity. In CoMFA, Q2 was 0.899 and R2 was 0.963; in CoMSIA, Q2 and R2 were 0.840 and 0.903, respectively. These data indicated that the selected test set showed suitable external predictive ability. Combined with the contour map results, we further analyzed the three-dimensional quantitative structure (3D-QSAR) model. The results demonstrated that in the backbone of the thiazole aminobenzamide derivative, the substitution of a small group at R1 position, or the introduction of a hydrophilic group at R2 position, or the introduction of a large-volume amino acid at R3 position may be beneficial to improve the anti-CML activity of the compound.


Subject(s)
Benzamides/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Thiazoles/pharmacology , Benzamides/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship , Thiazoles/chemistry
6.
J Pept Sci ; 27(4): e3295, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33410242

ABSTRACT

The red tree frog Litoria rubella from Australia has been studied for several decades showing that their dorsal skin glands secrete a number of small peptides containing a Pro-Trp sequence, known as tryptophyllin L peptides. Although peptides from many genera of Australian frogs have been reported to possess a variety of biological activities, the bioactivities of this peptide family have remained to be discovered. In this study, we investigated the antioxidant potency of a number of tryptophyllin L peptides for the first time using a joint statistical and experimental approach in which predictions based on Gaussian three-dimensional quantitative structure-activity relationship (3D-QSAR) models were employed to guide an in vitro experimental investigation. Two tryptophyllin tripeptides P-W-L (OH) and P-W-L (NH2 ) were predicted to have the Trolox equivalent antioxidant capacity (TEAC) values of 0.80 and 0.87 ĀµM Trolox/ĀµM peptide, respectively. With those promising results, antioxidant capabilities of five tryptophyllin L peptides with the common core Pro-Trp-Leu were synthesized and subjected to 1,1-diphenyl-2-picrylhydrazyl (DPPH), ferric reducing ability of plasma (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) radical cation (ABTSƋĀ™+ ) radical scavenging assays. The tests indicated that all the tested tryptophyllin L peptides, noticeably S-P-W-L (OH) and F-P-W-L (NH2 ), are strong ABTSƋĀ™+ radical scavengers and moderate scavengers in the other two assays. The results, thus, suggested that the tryptophyllin L peptides are likely to be a part of the skin antioxidant system helping the frog to cope with drastic change in oxygen exposure and humidity, as they inhabit over a large area of Australia with a wide climate variation.


Subject(s)
Antioxidants/pharmacology , Oligopeptides/pharmacology , Quantitative Structure-Activity Relationship , Animals , Antioxidants/chemical synthesis , Antioxidants/chemistry , Anura , Benzothiazoles/antagonists & inhibitors , Biphenyl Compounds/antagonists & inhibitors , Models, Molecular , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Picrates/antagonists & inhibitors , Sulfonic Acids/antagonists & inhibitors
7.
Bioorg Chem ; 117: 105462, 2021 12.
Article in English | MEDLINE | ID: mdl-34753059

ABSTRACT

Biginelli 1,4-dihydropyrimidines are extensively screened for their potential anticancer activity in the last decade. In this context, a series of Biginelli 1,4-dihydropyrimidines were designed and synthesised using PTSA as an efficient catalyst. The synthesised 1,4-dihydropyrimidines were screened for their anticancer activity against MCF-7 breast cancer cells by measuring cytotoxicity. The compounds exhibited activity ranging from weak to significant in terms of percentage cytotoxicity which is proportional to the anticancer activity. Amongst the screened compounds, compounds 4, 6 and 8 exhibited potential anticancer activity. Furthermore, CoMSIA studies were performed to derive the structure activity relationships in a 3D grid space by plotting experimental vs predicted cytotoxic activities. We have an opinion that, this developed model helps us in future to develop more potential 1,4-dihydropyrimidines for their cytotoxicity or anticancer activity.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Pyrimidines/pharmacology , Quantitative Structure-Activity Relationship , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Pyrimidines/chemical synthesis , Pyrimidines/chemistry
8.
Int J Mol Sci ; 22(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34884548

ABSTRACT

Radiotherapy and chemotherapy are conventional cancer treatments. Around 60% of all patients who are diagnosed with cancer receive radio- or chemotherapy in combination with surgery during their disease. Only a few patients respond to the blockage of immune checkpoints alone, or in combination therapy, because their tumours might not be immunogenic. Under these circumstances, an increasing level of extracellular adenosine via the activation of ecto-5'-nucleotidase (CD73) and consequent adenosine receptor signalling is a typical mechanism that tumours use to evade immune surveillance. CD73 is responsible for the conversion of adenosine monophosphate to adenosine. CD73 is overexpressed in various tumour types. Hence, targetting CD73's signalling is important for the reversal of adenosine-facilitated immune suppression. In this study, we selected a potent series of the non-nucleotide small molecule inhibitors of CD73. Molecular docking studies were performed in order to examine the binding mode of the inhibitors inside the active site of CD73 and 3D-QSAR was used to study the structure-activity relationship. The obtained CoMFA (q2 = 0.844, ONC = 5, r2 = 0.947) and CoMSIA (q2 = 0.804, ONC = 4, r2 = 0.954) models showed reasonable statistical values. The 3D-QSAR contour map analysis revealed useful structural characteristics that were needed to modify non-nucleotide small molecule inhibitors. We used the structural information from the overall docking and 3D-QSAR results to design new, potent CD73 non-nucleotide inhibitors. The newly designed CD73 inhibitors exhibited higher activity (predicted pIC50) than the most active compound of all of the derivatives that were selected for this study. Further experimental studies are needed in order to validate the new CD73 inhibitors.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Molecular Docking Simulation , Quantitative Structure-Activity Relationship , Binding Sites , Catalytic Domain , Computer Simulation , GPI-Linked Proteins/antagonists & inhibitors , Humans , Models, Molecular , Molecular Structure , Protein Binding
9.
Int J Mol Sci ; 22(11)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204026

ABSTRACT

This work aimed to construct 3D-QSAR CoMFA and CoMSIA models for a series of 31 FAAH inhibitors, containing the 1,3,4-oxadiazol-2-one moiety. The obtained models were characterized by good statistical parameters: CoMFA Q2 = 0.61, R2 = 0.98; CoMSIA Q2 = 0.64, R2 = 0.93. The CoMFA model field contributions were 54.1% and 45.9% for steric and electrostatic fields, respectively. In the CoMSIA model, electrostatic, steric, hydrogen bond donor, and hydrogen acceptor properties were equal to 34.6%, 23.9%, 23.4%, and 18.0%, respectively. These models were validated by applying the leave-one-out technique, the seven-element test set (CoMFA r2test-set = 0.91; CoMSIA r2test-set = 0.91), a progressive scrambling test, and external validation criteria developed by Golbraikh and Tropsha (CoMFA r20 = 0.98, k = 0.95; CoMSIA r20 = 0.98, k = 0.89). As the statistical significance of the obtained model was confirmed, the results of the CoMFA and CoMSIA field calculation were mapped onto the enzyme binding site. It gave us the opportunity to discuss the structure-activity relationship based on the ligand-enzyme interactions. In particular, examination of the electrostatic properties of the established CoMFA model revealed fields that correspond to the regions where electropositive substituents are not desired, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one moiety. This highlights the importance of heterocycle, a highly electronegative moiety in this area of each ligand. Examination of hydrogen bond donor and acceptor properties contour maps revealed several spots where the implementation of another hydrogen-bond-donating moiety will positively impact molecules' binding affinity, e.g., in the neighborhood of the 1,3,4-oxadiazol-2-one ring. On the other hand, there is a large isopleth that refers to the favorable H-bond properties close to the terminal phenoxy group of a ligand, which means that, generally speaking, H-bond acceptors are desired in this area.


Subject(s)
Molecular Docking Simulation , Oxadiazoles/chemistry , Quantitative Structure-Activity Relationship , Hydrogen Bonding , Inhibitory Concentration 50 , Reproducibility of Results
10.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: mdl-34830393

ABSTRACT

Overexpression and frequent mutations in FMS-like tyrosine kinase-3 (FLT3) are considered risk factors for severe acute myeloid leukemia (AML). Hyperactive FLT3 induces premature activation of multiple intracellular signaling pathways, resulting in cell proliferation and anti-apoptosis. We conducted the computational modeling studies of 40 pyrimidine-4,6-diamine-based compounds by integrating docking, molecular dynamics, and three-dimensional structure-activity relationship (3D-QSAR). Molecular docking showed that K644, C694, F691, E692, N701, D829, and F830 are critical residues for the binding of ligands at the hydrophobic active site. Molecular dynamics (MD), together with Molecular Mechanics Poison-Boltzmann/Generalized Born Surface Area, i.e., MM-PB(GB)SA, and linear interaction energy (LIE) estimation, provided critical information on the stability and binding affinity of the selected docked compounds. The MD study suggested that the mutation in the gatekeeper residue F691 exhibited a lower binding affinity to the ligand. Although, the mutation in D835 in the activation loop did not exhibit any significant change in the binding energy to the most active compound. We developed the ligand-based comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) models. CoMFA (q2 = 0.802, r2 = 0.983, and QF32 = 0.698) and CoMSIA (q2 = 0.725, r2 = 0.965 and QF32 = 0.668) established the structure-activity relationship (SAR) and showed a reasonable external predictive power. The contour maps from the CoMFA and CoMSIA models could explain valuable information about the favorable and unfavorable positions for chemical group substitution, which can increase or decrease the inhibitory activity of the compounds. In addition, we designed 30 novel compounds, and their predicted pIC50 values were assessed with the CoMSIA model, followed by the assessment of their physicochemical properties, bioavailability, and free energy calculation. The overall outcome could provide valuable information for designing and synthesizing more potent FLT3 inhibitors.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Protein Kinase Inhibitors/chemistry , Pyrimidines/chemistry , fms-Like Tyrosine Kinase 3/chemistry , Amines/chemistry , Amines/therapeutic use , Binding Sites/drug effects , Catalytic Domain/drug effects , Computer Simulation , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Quantitative Structure-Activity Relationship , Signal Transduction/drug effects , Structure-Activity Relationship , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics
11.
J Recept Signal Transduct Res ; 40(1): 1-14, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31931654

ABSTRACT

Pim-1 is one of the isoforms of pim proteins comprising pim-1, pim-2 and pim-3. It was basically recognized as proviral integration moloney murine leukemia virus which is associated with T-cell lymphomogenesis. Pim-1 is known to play a crucial role in cell cycle progression and acts as downstream target for the JAK/STAT signaling pathway. Recently it has emerged as a hopeful therapeutic target for cancer treatment as deregulation or over expression of pim causes hematologic cancers. In present article molecular docking based three dimensional quantitative structure and activity relationship and molecular dynamics simulation studies have been carried out on indole derivatives reported as pim-1 inhibitors. Initially docking was carried out to obtain the receptor specific orientation of the molecules and later to understand the structural requirements of pim-1 inhibitors robust 3 D QSAR models were built using CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) methods. The reliability of the models was established from conventional (r2) and cross validated (q2) values of 0.982, 0.524 for CoMFA and 0.974, 0.586 for CoMSIA respectively. Further the predictive ability of the model was evaluated using a test set of 17 molecules. The docking studies revealed that interaction with Glu 121 is vital for binding of inhibitors to pim-1. Based on the outcome of the results new molecules with improved activity were designed. Furthermore, MD simulations were also performed to examine the stability of interactions and investigate the pivotal role of Glu 121.


Subject(s)
Drug Design , Indoles/chemistry , Indoles/pharmacology , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Ligands , Proto-Oncogene Proteins c-pim-1/metabolism , Quantitative Structure-Activity Relationship , Static Electricity
12.
Mol Divers ; 24(4): 957-969, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31655961

ABSTRACT

The angiotensin I-converting enzyme (ACE) has been found to exhibit inhibitory capability against blood pressure. Recently, several ACE inhibitors with different structures have been reported. In the present work, molecular modeling studies using quantitative structure-activity relationship (QSAR) and molecular docking simulations were carried out. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were firstly used to generate 3D-QSAR models. The results indicate that the best CoMFA model has [Formula: see text] = 0.504, [Formula: see text] = 0.5896, and the best CoMSIA model has [Formula: see text] = 0.525, [Formula: see text] = 0.5666. Furthermore, 2D-QSAR models developed by multiple linear regression/MLR, partial least squares regression/PLSR, and support vector machine regression/SVR methods provide highly significant squared correlation coefficient Rtr2 values of 0.8380, 0.8650, and 0.8230, external validated correlation coefficient Qte2 of 0.8279, 0.8223, and 0.7255, respectively. The statistical results show satisfactory goodness-of-fit, robustness, and perfect external predictive performance. Moreover, molecular docking studies were employed to predict the binding mode between dipeptides and ACE receptor. The combination of QSAR studies and molecular docking indicates the requirement of certain physicochemical parameters for better ACE inhibitors.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/chemistry , Dipeptides/chemistry , Peptidyl-Dipeptidase A/metabolism , Binding Sites , Drug Design , Models, Molecular , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Quantitative Structure-Activity Relationship
13.
Int J Mol Sci ; 21(21)2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33153146

ABSTRACT

Gastrointestinal stromal tumors (GISTs) are the most common Mesenchymal Neoplasm of the gastrointestinal tract. The tumorigenesis of GISTs has been associated with the gain-of-function mutation and abnormal activation of the stem cell factor receptor (c-KIT) and platelet-derived growth factor receptor alpha (PDGFRα) kinases. Hence, inhibitors that target c-KIT and PDGFRα could be a therapeutic option for the treatment of GISTs. The available approved c-KIT/PDGFRα inhibitors possessed low efficacy with off-target effects, which necessitated the development of potent inhibitors. We performed computational studies of 48 pyrazolopyridine derivatives that showed inhibitory activity against c-KIT and PDGFRα to study the structural properties important for inhibition of both the kinases. The derivative of phenylurea, which has high activities for both c-KIT (pIC50 = 8.6) and PDGFRα (pIC50 = 8.1), was used as the representative compound for the dataset. Molecular docking and molecular dynamics simulation (100 ns) of compound 14 was performed. Compound 14 showed the formation of hydrogen bonding with Cys673, Glu640, and Asp810 in c-KIT, and Cys677, Glu644, and Asp836 in PDGFRα. The results also suggested that Thr670/T674 substitution in c-KIT/PDGFRα induced conformational changes at the binding site of the receptors. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were developed based on the inhibitors. Contour map analysis showed that electropositive and bulky substituents at the para-position and the meta-position of the benzyl ring of compound 14 was favorable and may increase the inhibitory activity against both c-KIT and PDGFRα. Analysis of the results suggested that having bulky and hydrophobic substituents that extend into the hydrophobic pocket of the binding site increases the activity for both c-KIT and PDGFRα. Based on the contour map analysis, 50 compounds were designed, and the activities were predicted. An evaluation of binding free energy showed that eight of the designed compounds have potential binding affinity with c-KIT/PDGFRα. Absorption, distribution, metabolism, excretion and toxicity (ADMET) and synthetic feasibility tests showed that the designed compounds have reasonable pharmaceutical properties and synthetic feasibility. Further experimental study of the designed compounds is recommended. The structural information from this study could provide useful insight into the future development of c-KIT and PDGFRα inhibitors.


Subject(s)
Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Stromal Tumors/drug therapy , Models, Molecular , Protein Kinase Inhibitors/isolation & purification , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Receptor, Platelet-Derived Growth Factor alpha/antagonists & inhibitors , Amino Acid Substitution , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Binding Sites , Drug Screening Assays, Antitumor/methods , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-kit/chemistry , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Pyrazoles/chemistry , Pyridines/chemistry , Quantitative Structure-Activity Relationship , Receptor, Platelet-Derived Growth Factor alpha/chemistry , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism
14.
J Mol Recognit ; 32(6): e2776, 2019 06.
Article in English | MEDLINE | ID: mdl-30663161

ABSTRACT

The antigen-antibody interaction determines the sensitivity and specificity of competitive immunoassay for hapten detection. In this paper, the specificity of a monoclonal antibody against alternariol-like compounds was evaluated through indirect competitive ELISA. The results showed that the antibody had cross-reactivity with 33 compounds with the binding affinity (expressed by IC50 ) ranging from 9.4Ā ng/mL to 12.0Ā Āµg/mL. All the 33 compounds contained a common moiety and similar substituents. To understand how this common moiety and substituents affected the recognition ability of the antibody, a three-dimensional quantitative structure-activity relationship (3D-QSAR) between the antibody and the 33 alternariol-like compounds was constructed using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. The q2 values of the CoMFA and CoMSIA models were 0.785 and 0.782, respectively, and the r2 values were 0.911 and 0.988, respectively, indicating that the models had good predictive ability. The results of 3D-QSAR showed that the most important factor affecting antibody recognition was the hydrogen bond mainly formed by the hydroxyl group of alternariol, followed by the hydrophobic force mainly formed by the methyl group. This study provides a reference for the design of new hapten and the mechanisms for antibody recognition.


Subject(s)
Antibodies, Monoclonal/metabolism , Lactones/pharmacology , Antibodies, Monoclonal/chemistry , Drug Design , Enzyme-Linked Immunosorbent Assay , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Lactones/chemistry , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship
15.
Bioorg Chem ; 83: 438-449, 2019 03.
Article in English | MEDLINE | ID: mdl-30448722

ABSTRACT

A moderate elevation in reactive oxygen species (ROS) levels can generally be controlled in normal cells, but may lead to death of cancer cells as the ROS level in cancer cells is already elevated. Therefore, a ROS-generating compound can act as a selective chemotherapeutic agent for cancer cells that does not affect normal cells. In our previous study, a compound containing a Michael acceptor was selectively cytotoxic to cancer cells without affecting normal cells; therefore, we designed and synthesized 26 compounds containing a Michael acceptor. Their cytotoxicities against HCT116 human colon cancer cell lines were measured by using a clonogenic long-term survival assay. To derive the structural conditions required to obtain stronger cytotoxicity against cancer cells, the relationships between the half-maximal cell growth inhibitory concentration values of the synthesized compounds and their physicochemical properties were evaluated by Comparative Molecular Field Analysis and Comparative Molecular Similarity Indices Analysis. It was confirmed that the compound with the best half-maximal cell growth inhibitory concentration triggered apoptosis through ROS generation, which then led to stimulation of the caspase pathway.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Styrenes/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Caspases/metabolism , Cell Survival/drug effects , Chalcones/chemical synthesis , Chalcones/chemistry , HCT116 Cells , Humans , Models, Molecular , Molecular Structure , Quantitative Structure-Activity Relationship , Reactive Oxygen Species/metabolism , Styrenes/chemical synthesis , Styrenes/chemistry
16.
Mol Divers ; 23(4): 845-874, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30617940

ABSTRACT

JAK2 plays a critical role in JAK/STAT signaling pathway and in patho-mechanism of myeloproliferative disorders and autoimmune diseases. Thus, effective JAK2 inhibitors provide a promising opportunity for the pharmaceutical intervention of many diseases. In this work, 3D-QSAR study was performed on a series of 1-amino-5H-pyrido-indole-4-carboxamide derivatives as JAK2 inhibitors to obtain reliable comparative molecular field analysis (CoMFA) and comparative molecular similarity analysis (CoMSIA) models with three different alignment methods. Among the different alignment methods, ligand-based (CoMFA: q2 = 0.676, r2 = 0.979; CoMSIA: q2 = 0.700, r2 = 0.953) and pharmacophore-based alignment (CoMFA: q2 = 0.710, r2 = 0.982; CoMSIA: q2 = 0.686, r2 = 0.960) has produced better statistical results when compared to receptor-based alignment (CoMFA: q2 = 0.507, r2 = 0.979; CoMSIA: q2 = 0.544, r2 = 0.917). Statistical parameters indicated that data are well fitted and have high predictive ability. The presence of electrostatic and hydrophobic field is highly desirable for potent inhibitory activity, and the steric field plays a minor role in modulating the activity. The contour analysis indicates ARG980, ASN981, ASP939 and LEU937 have more possibility of interacting with bulky, hydrophobic groups in pyrido and positive and negative groups in pyrazole ring. Based on our findings, we have designed sixteen molecules and predicted its activity and drug-like properties. Subsequently, molecular docking, molecular dynamics and DFT calculations were performed to evaluate its potency.


Subject(s)
Amides/chemistry , Indoles/chemistry , Janus Kinase 2/antagonists & inhibitors , Protein Kinase Inhibitors/chemistry , Molecular Dynamics Simulation , Quantitative Structure-Activity Relationship
17.
Mol Divers ; 23(4): 965-984, 2019 Nov.
Article in English | MEDLINE | ID: mdl-30730017

ABSTRACT

Aminopeptidase M1 (PfAM1) is one of the key enzymes involved in the development of new antimalarials. To accelerate the discovery of inhibitors with selective activity against PfAM1 and microsomal neutral aminopeptidase (pAPN), in the present work, the optimum comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models were built based on PfAM1 and pAPN inhibitors. The results of the developed 3D-QSAR models were as follows: PfAM1/CoMFA: [Formula: see text] = 0.740, [Formula: see text] = 0.7781; PfAM1/CoMSIA: [Formula: see text] = 0.740, [Formula: see text] = 0.7354; pAPN/CoMFA: [Formula: see text] = 0.612, [Formula: see text] = 0.7318; pAPN/CoMSIA: [Formula: see text] = 0.609, [Formula: see text] = 0.7480, and the models derived from MLR, PLSR and SVR methods provided high R2 values of 0.6960, 0.6965, 0.7971 for PfAM1, 0.7700, 0.7697, 0.8228 for pAPN and Q2 of 0.7004, 0.7004, 0.5632 for PfAM1, 0.7551, 0.7566 and 0.8394 for pAPN, respectively, indicating that the developed 3D-QSAR and 2D-QSAR models possess good ability for prediction of the relative compound activities. Furthermore, all inhibitors were docked into the active site of the PfAM1 and pAPN receptors, the hydrogen-bond interactions between the compound 33 with Glu497, Glu463 and Arg489 of the PfAM1, and the compound 4 with Ala348, Glu384 and Phe467 of the receptor pAPN are able to help to stabilize the conformation. The above results would provide helpful clues to predicting the binding activity of novel inhibitors and the foundation for understanding the interaction mechanism between the inhibitors and the receptors.


Subject(s)
Aminopeptidases/antagonists & inhibitors , Aminopeptidases/chemistry , Enzyme Inhibitors/chemistry , Plasmodium , Protozoan Proteins/chemistry , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
18.
Int J Mol Sci ; 20(10)2019 May 21.
Article in English | MEDLINE | ID: mdl-31117309

ABSTRACT

Fatty Acid Amide Hydrolase (FAAH) is one of the main enzymes responsible for endocannabinoid metabolism. Inhibition of FAAH increases endogenous levels of fatty acid ethanolamides such as anandamide (AEA) and thus consitutes an indirect strategy that can be used to modulate endocannabinoid tone. In the present work, we present a three-dimensional quantitative structure-activity relationships/comparative molecular similarity indices analysis (3D-QSAR/CoMSIA) study on a series of 90 reported irreversible inhibitors of FAAH sharing a piperazine-carboxamide scaffold. The model obtained was extensively validated (q2 = 0.734; r2 = 0.966; r2m = 0.723). Finally, based on the information derived from the contour maps we designed a series of 10 new compounds with high predicted FAAH inhibition (predicted pIC50 of the best-proposed compounds = 12.196; 12.416).


Subject(s)
Amidohydrolases/antagonists & inhibitors , Cannabinoids/pharmacology , Quantitative Structure-Activity Relationship , Enzyme Inhibitors/pharmacology , Humans , Ligands
19.
Molecules ; 24(24)2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31817231

ABSTRACT

A series of (R)-2-phenyl-4,5-dihydrothiazole-4-carboxamide derivatives containing a diacylhydrazine moiety were designed and synthesized. Their structures were confirmed by melting points, 1H NMR, 13C NMR, and elemental analysis (EA). Their antifungal and insecticidal activities were evaluated. The antifungal activity result indicated that most title compounds against Cercospora arachidicola, Alternaria solani, Phytophthora capsici, and Physalospora piricola exhibited apparent antifungal activities at 50 mg/L, and better than chlorothalonil or carbendazim. The EC50 values of (R)-N'-benzoyl-2-(4-chlorophenyl)-4,5-dihydrothiazole-4-carbohydrazide (I-5) against six tested phytopathogenic fungi were comparable to those of chlorothalonil. The CoMSIA model showed that a proper hydrophilic group in the R1 position, as well as a proper hydrophilic and electron-donating group in the R2 position, could improve the antifungal activity against Physalospora piricola, which contributed to the further optimization of the structures. Meanwhile, most title compounds displayed good insecticidal activities, especially compound (R)-N'-(4-nitrobenzoyl)-2-(4-nitrophenyl)-4,5-dihydrothiazole-4-carbohydrazide (III-3). The insecticidal mechanism results indicated that compound III-3 can serve as effective insect Ca2+ level modulators by disrupting the cellular calcium homeostasis in Mythimna separata.


Subject(s)
Hydrazines/chemistry , Thiazoles/chemistry , Thiazoles/chemical synthesis , Animals , Antifungal Agents/pharmacology , Calcium/metabolism , Hydrophobic and Hydrophilic Interactions , Insecticides/toxicity , Microbial Sensitivity Tests , Mitosporic Fungi/drug effects , Moths/drug effects , Static Electricity , Structure-Activity Relationship , Thiazoles/pharmacology
20.
Molecules ; 24(8)2019 Apr 24.
Article in English | MEDLINE | ID: mdl-31022888

ABSTRACT

Cytochrome P450 enzymes (CYPs) are important phase I enzymes involved in the metabolism of endogenous and xenobiotic compounds mainly through mono-oxygenation reactions into more polar and easier to excrete species. In addition to their role in detoxification, they play important roles in the biosynthesis of endogenous compounds and the bioactivation of xenobiotics. Coumarins, phytochemicals abundant in food and commonly used in fragrances and cosmetics, have been shown to interact with P450 enzymes as substrates and/or inhibitors. In this review, these interactions and their significance in pharmacology and toxicology are discussed in detail.


Subject(s)
Coumarins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Metabolic Detoxication, Phase I , Xenobiotics/chemistry , Coumarins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Humans , Models, Molecular , Quantitative Structure-Activity Relationship , Xenobiotics/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL