Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 471
Filter
Add more filters

Publication year range
1.
Electrophoresis ; 45(15-16): 1316-1324, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38456383

ABSTRACT

When hospitalized, infants, particularly preterm, are often subjected to multiple painful needle procedures to collect sufficient blood for metabolic screening or diagnostic purposes using standard clinical tests. For example, at least 100 µL of whole blood is required to perform one creatinine plasma measurement with enzymatic colorimetric assays. As capillary electrophoresis-mass spectrometry (CE-MS) utilizing a sheathless porous tip interface only requires limited amounts of sample for in-depth metabolic profiling studies, the aim of this work was to assess the utility of this method for the determination of creatinine in low amounts of plasma using residual blood samples from adults and infants. By using a starting amount of 5 µL of plasma and an injection volume of only 6.7 nL, a detection limit (S/N = 3) of 30 nM could be obtained for creatinine, and intra- and interday precisions (for peak area ratios) were below 3.2%. To shorten the electrophoretic separation time, a multi-segment injection (MSI) strategy was employed to analyze up to seven samples in one electrophoretic run. The findings obtained by CE-MS for creatinine in pretreated plasma were compared with the values acquired by an enzymatic colorimetric assay typically used in clinical laboratories for this purpose. The comparison revealed that CE-MS could be used in a reliable way for the determination of creatinine in residual plasma samples from infants and adults. Nevertheless, to underscore the clinical efficacy of this method, a subsequent investigation employing an expanded pool of plasma samples is imperative. This will not only enhance the method's diagnostic utility but also contribute to minimizing both the amount and frequency of blood collection required for diagnostic purposes.


Subject(s)
Creatinine , Electrophoresis, Capillary , Mass Spectrometry , Humans , Electrophoresis, Capillary/methods , Creatinine/blood , Mass Spectrometry/methods , Reproducibility of Results , Adult , Limit of Detection , Infant , Infant, Newborn
2.
Arch Biochem Biophys ; 757: 110038, 2024 07.
Article in English | MEDLINE | ID: mdl-38750920

ABSTRACT

Oxidized albumin is considered a short-term biomarker of oxidative stress and its measurement in blood contributes to evaluate the impact of diseases, drugs, dialytic treatments, physical activity, environmental contaminants etc. on the red-ox balance of humans as well as of other mammalians. Nevertheless, the most common methods for quantifying the oxidized and reduced albumins are costly and time-consuming. Furthermore, there is a dearth of information regarding the proper ways to store human serum or plasma samples in order to prevent inaccurate quantification of these various albumin forms. This paper explores these aspects and proposes a few spectrophotometric assay procedures which make the quantitation of oxidized and reduced albumin very fast, precise and un-expensive in various mammals.


Subject(s)
Oxidation-Reduction , Serum Albumin , Animals , Humans , Biomarkers/blood , Mammals/blood , Oxidative Stress , Serum Albumin/analysis , Spectrophotometry
3.
Anal Bioanal Chem ; 416(27): 6113-6124, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38704473

ABSTRACT

Nanoceria have demonstrated a wide array of catalytic activity similar to natural enzymes, holding considerable significance in the colorimetric detection of alkaline phosphatase (ALP), which is a biomarker of various biological disorders. However, the issues of physiological stability and formation of protein corona, which are strongly related to their surface chemistry, limit their practical application. In this work, CeO2 nanoparticles characterized by enhanced dimensional uniformity and specific surface area were synthesized, followed by encapsulation with various polymers to further increase catalytic activity and physiological stability. Notably, the CeO2 nanoparticles encapsulated within each polymer exhibited improved catalytic characteristics, with PAA-capped CeO2 exhibiting the highest performance. We further demonstrated that the PAA-CeO2 obtained with enhanced catalytic activity was attributed to an increase in surface negative charge. PAA-CeO2 enabled the quantitative assessment of AA activity within a wide concentration range of 10 to 60 µM, with a detection limit of 0.111 µM. Similarly, it allowed for the evaluation of alkaline phosphatase activity throughout a broad range of 10 to 80 U/L, with a detection limit of 0.12 U/L. These detection limits provided adequate sensitivity for the practical detection of ALP in human serum.


Subject(s)
Alkaline Phosphatase , Cerium , Colorimetry , Limit of Detection , Alkaline Phosphatase/blood , Alkaline Phosphatase/chemistry , Alkaline Phosphatase/metabolism , Alkaline Phosphatase/analysis , Cerium/chemistry , Humans , Colorimetry/methods , Polymers/chemistry , Nanoparticles/chemistry , Peroxidase/chemistry , Peroxidase/metabolism , Catalysis , Metal Nanoparticles/chemistry
4.
Anal Bioanal Chem ; 416(18): 4131-4141, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38780654

ABSTRACT

Wax printing is the most widely used method for fabricating microfluidic paper-based analytical devices (µPADs), but it still suffers from disadvantages like discontinuation of wax printers and need for additional equipment for heating treatment. To address these issues, this work initially describes a new class of wax printing approach for high-precision, batch fabrication of µPADs using a household 3D printer. It only involves a one patterning step of printing polyethylene wax into rice paper body. Under optimized parameters, a fabrication resolution, namely the minimum hydrophilic channel width, down to ~189 ± 30 µm could be achieved. In addition, the analytical applicability of such polyethylene wax-patterned µPADs was demonstrated well with enhanced colorimetric detection of dopamine as a model analyte by combining metal-organic framework (MOF) based nanoenzymes (ZIF-67) with a smartphone (for portable quantitative readout). The developed nanosensor could linearly detect dopamine over a concentration range from 10 to 1000 µM, with a detection limit of ca. 2.75 µM (3σ). The recovery results for analyzing several real samples (i.e., pig feed, chicken feed, pork and human serum) were between 91.82 and 102.79%, further validating its good detection accuracy for potential practical applications in food safety and medical diagnosis.


Subject(s)
Dopamine , Limit of Detection , Paper , Printing, Three-Dimensional , Dopamine/analysis , Dopamine/blood , Animals , Humans , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Colorimetry/instrumentation , Swine , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Lab-On-A-Chip Devices , Chickens , Animal Feed/analysis , Equipment Design
5.
Anal Bioanal Chem ; 416(8): 1821-1832, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38363308

ABSTRACT

This paper describes initially the application of the Tyndall effect (TE) of metal-organic framework (MOF) materials as a colorimetric signaling strategy for the sensitive detection of pyrophosphate ion (PPi). The used MOF NH2-MIL-101(Fe) was prepared with Fe3+ ions and fluorescent ligands of 2-amino terephthalic acid (NH2-BDC). The fluorescence of NH2-BDC in MOF is quenched due to the ligand-to-metal charge transfer effect, while the NH2-MIL-101(Fe) suspension shows a strong TE. In the presence of PPi analyte, the MOFs will undergo decomposition because of the competitive binding of Fe3+ by PPi over NH2-BDC, resulting in a significant decrease in the TE signal and fluorescence restoration from the released ligands. The results demonstrate that the new method only requires a laser pointer pen (for TE creation) and a smartphone (for portable quantitative readout) to detect PPi in a linear concentration range of 1.25-800 µM, with a detection limit of ~210 nM (3σ) which is ~38 times lower than that obtained from traditional fluorescence with a spectrophotometer (linear concentration range, 50-800 µM; detection limit, 8.15 µM). Moreover, the acceptable recovery of PPi in several real samples (i.e., pond water, black tea, and human serum and urine) ranges from 97.66 to 119.15%.


Subject(s)
Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Colorimetry/methods , Diphosphates/chemistry , Amino Acids
6.
Biotechnol Appl Biochem ; 71(4): 940-947, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38606832

ABSTRACT

Osteoarthritis occurs in any joints, and identification in its earlier stages helps to treat the disease and increase the recovery rate. The radiography method and imaging techniques are traditionally used to identify osteoarthritis. But these methods are expensive, and with the complicated steps. Researchers are working toward developing a highly sensitive biosensor in identifying the osteoarthritis biomarker. This research was focused on developing a C-terminal telopeptide of type II collagen (CTX-II) colorimetric sensor with gold nanoparticle (AuNP) for diagnosing osteoarthritis. Anti-CTX-II was conjugated with AuNP and then added with CTX-II and sodium chloride for the color change. In the presence of CTX-II, antibody releases from AuNP then binds with CTX-II, and the color of AuNP changed to purple. Without the CTX-II, AuNP remains its red color (dispersed). This easier colorimetric assay detected the CTX-II as low as 2 ng/mL on linear regression [y = 0.0131x - 0.0051; R2 = 0.9205]. Furthermore, control performances with the relevant proteins osteopontin, IL-6, and nonimmune antibody failed to change the color confirming the specific identification of CTX-II.


Subject(s)
Colorimetry , Gold , Metal Nanoparticles , Osteoarthritis , Gold/chemistry , Metal Nanoparticles/chemistry , Osteoarthritis/metabolism , Humans , Collagen Type II , Sodium Chloride/chemistry , Biosensing Techniques
7.
Acta Microbiol Immunol Hung ; 71(2): 140-147, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38573768

ABSTRACT

Bloodstream infections (BSIs) caused by multidrug-resistant bacteria are a critical life-threatening challenge which necessitates the urgency to trigger life-saving treatment in a timely manner. This study aimed to evaluate the time required for rapid detection of carbapenemase-producing Enterobacterales (CPE) directly from blood culture bottles to optimize empirical treatment of BSI, especially in pediatric and infant patients, using a cost-effective method. This study included 419 Gram-negative bacteria, of which Klebsiella pneumoniae and Escherichia coli were the most common CPE causing BSI in pediatric and neonatal patients. Phenotypic and genotypic resistance of the selected isolates (45 K. pneumoniae and 9 E. coli) were determined by VITEK-2 Compact system and PCR, respectively. BACT/ALERT bottles were spiked with isolates. Finally, colorimetric RESIST-BC assay and Vitek-2 compact system were evaluated for the rapid detection of carbapenem-resistant bacteria directly from positive blood culture bottles. All selected isolates were phenotypically resistant to carbapenems. PCR showed that blaNDM and blaOXA-48 were present in all isolates, blaVIM was present in 44.4%, while blaKPC and blaIMP were entirely absent. The RESIST-BC kit showed good agreement with PCR for blaNDM and blaOXA-48, demonstrating high sensitivity and specificity, but not with blaVIM. These findings point out that RESIST-BC assay demonstrated an exceptionally short detection time for CPE, completing all cases within the first hour after the blood culture bottles flagged positive. It is also superior in providing a clue for clinicians on antibiotic combinations that can be administered, depending on the type of ß-lactamases detected, promptly and efficiently, with low expenses.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Blood Culture , beta-Lactamases , Humans , beta-Lactamases/genetics , Bacterial Proteins/genetics , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/enzymology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/genetics , Infant , Child , Bacteremia/microbiology , Bacteremia/diagnosis , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/blood , Polymerase Chain Reaction/methods , Infant, Newborn
8.
Mikrochim Acta ; 191(6): 307, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38713296

ABSTRACT

An assay that integrates histidine-rich peptides (HisRPs) with high-affinity aptamers was developed enabling the specific and sensitive determination of the target lysozyme. The enzyme-like activity of HisRP is inhibited by its interaction with a target recognized by an aptamer. In the presence of the target, lysozyme molecules progressively assemble on the surface of HisRP in a concentration-dependent manner, resulting in the gradual suppression of enzyme-like activity. This inhibition of HisRP's enzyme-like activity can be visually observed through color changes in the reaction product or quantified using UV-visible absorption spectroscopy. Under optimal conditions, the proposed colorimetric assay for lysozyme had a detection limit as low as 1 nM and exhibited excellent selectivity against other nonspecific interferents. Furthermore, subsequent research validated the practical applicability of the developed colorimetric approach to saliva samples, indicating that the assay holds significant potential for the detection of lysozymes in samples derived from humans.


Subject(s)
Colorimetry , Muramidase , Saliva , Muramidase/analysis , Muramidase/chemistry , Muramidase/metabolism , Colorimetry/methods , Humans , Saliva/chemistry , Saliva/enzymology , Limit of Detection , Peptides/chemistry , Aptamers, Nucleotide/chemistry , Proteins/analysis , Biosensing Techniques/methods , Histidine/analysis , Histidine/chemistry
9.
Mikrochim Acta ; 191(2): 99, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228947

ABSTRACT

Xanthine-functionalized molybdenum oxide nanodots (X-MoO3-x NDs) with peroxidase (POD)-like activity were developed for selective, sensitive, and facile colorimetric quantification of xanthine oxidase (XO). Xanthine functionalization can not only be favorable for the successful nanozyme preparation, but also for the specific recognition of XO as well as the simultaneous generation of hydrogen peroxide, which was subsequently transformed into hydroxyl radical to oxidize the chromogenic reagent based on the POD-like catalysis. Under the optimized conditions, the colorimetric biosensing platform was established for XO assay without addition of further substrates, showing good linearity relationship between absorbance difference (ΔA) and XO concentrations in the range 0.05-0.5 U/mL (R2 = 0.998) with a limit of detection (LOD) of 0.019 U/mL. The quantification of XO occurs in 25 min, which is superior to the previously reported and commercial XO assays. The proposed method has been successfully used in the assay of human serum samples, showing its high potential in the field of clinical monitoring.


Subject(s)
Colorimetry , Xanthine Oxidase , Humans , Molybdenum , Antioxidants , Xanthine
10.
Mikrochim Acta ; 191(7): 402, 2024 06 18.
Article in English | MEDLINE | ID: mdl-38886225

ABSTRACT

A microscale colorimetric assay was designed and implemented for the simultaneous determination of clinical chemistry tests measuring six parameters, including glucose (GLU), total protein (TP), human serum albumin (HSA), uric acid (UA), total cholesterol (TC), and triglycerides (TGs) in plasma samples. The test kit was fabricated using chromogenic reagents, comprising specific enzymes and binding dyes. Multiple colors that appeared on the reaction well when it was exposed to each analyte were captured by a smartphone and processed by the homemade Check6 application, which was designed as a colorimetric analyzer and simultaneously generated a report that assessed test results against gender-dependent reference ranges. Six blood checkup parameters for four plasma samples were conducted within 12 min on one capture picture. The assay achieved wide working concentration ranges of 10.45-600 mg dL-1 GLU, 1.39-10.0 g dL-1 TP, 1.85-8.0 g dL-1 HSA, 0.86-40.0 mg dL-1 UA, 11.28-600 mg dL-1 TC, and 11.93-400 mg dL-1 TGs. The smartphone-based assay was accurate with recoveries of 93-108% GLU, 93-107% TP, 92-107% HSA, 93-107% UA, 92-107% TC, and 99-113% TGs. The coefficient of variation for intra-assay and inter-assay precision ranged from 3.2-5.2% GLU, 4.6-5.3% TP, 4.3-5.3% HSA, 2.8-6.6% UA, 2.7-6.5% TC, and 1.1-3.9% TGs. This assay demonstrated remarkable accuracy in quantifying the concentration-dependent color intensity of the plasma, even in the presence of other suspected interferences commonly present in serum. The results of the proposed method correlated well with results determined by the microplate spectrophotometer (R2 > 0.95). Measurement of these six clinical chemistry parameters in plasma using a microscale colorimetric test kit coupled with the Check6 smartphone application showed potential for real-time point-of-care analysis, providing cost-effective and rapid assays for health checkup testing.


Subject(s)
Colorimetry , Hematologic Tests , Smartphone , Point-of-Care Testing , Colorimetry/instrumentation , Colorimetry/methods , Hematologic Tests/instrumentation , Humans , Reagent Kits, Diagnostic
11.
Mikrochim Acta ; 191(10): 623, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39322852

ABSTRACT

A bimetallic plasmonic nanoparticles-based approach for the untargeted evaluation of phenolic compounds (PC)-pattern and antioxidant capacity (AoC) is proposed. The rationale relies on the PC's ability to drive the formation of bimetallic silver/gold nanocolloidal 'probes' with different conformations. Ag/Au bimetallic nanostructures, according to the PCs' amount and class, return characteristic plasmonic and colorimetric tags. Plasmonic indexes are proposed to assess the dominant PC classes, while the colorimetric response, analyzed simply by a smartphone, is employed to obtain an AoC score, without calibration. The methods were tested with PCs belonging to different chemical classes, and challenged to classify different food samples. The proposed approach allows PC-dominant class identification and AoC-evaluation consistent with HPLC-MS/MS and conventional photometric assays.

12.
Mikrochim Acta ; 191(7): 368, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38833176

ABSTRACT

A colorimetric analysis platform has been successfully developed based on FeCo-NC dual-atom nanozyme (FeCo-NC DAzyme) for the detection of organophosphorus pesticides (OPPs). The FeCo-NC DAzyme exhibited exceptional oxidase-like activity (OXD), enabling the catalysis of colorless TMB to form blue oxidized TMB (oxTMB) without the need for H2O2 involvement. By combining acid phosphatase (ACP) hydrolase with FeCo-NC DAzyme, a "FeCo-NC DAzyme + TMB + ACP + SAP" colorimetric system was constructed, which facilitated the rapid detection of malathion. The chromogenic system was applied to detect malathion using a smartphone-based app and an auxiliary imaging interferogram device for colorimetric measurements, which have a linear range of 0.05-4.0 µM and a limit of detection (LOD) as low as 15 nM in real samples, comparable to UV-Vis and HPLC-DAD detection methods. Overall, these findings present a novel approach for convenient, rapid, and on-site monitoring of OPPs.


Subject(s)
Colorimetry , Limit of Detection , Pesticides , Smartphone , Colorimetry/methods , Pesticides/analysis , Organophosphorus Compounds/analysis , Organophosphorus Compounds/chemistry , Malathion/analysis , Malathion/chemistry , Oxidoreductases/chemistry , Iron/chemistry , Acid Phosphatase/analysis , Acid Phosphatase/chemistry , Benzidines
13.
Mikrochim Acta ; 191(6): 312, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38717599

ABSTRACT

Phytosterols (PSs), a class of naturally occurring bioactive lipid compounds, have been found to possess a significant cholesterol-lowering effect. In developing countries, the consumption of rapeseed oil is the primary pathway of PS intake for the general population. However, developing low-cost, real-time, and high-throughput screening techniques for PSs remains a challenge. Here, a Cu-based nanocomposite CuOx@C was synthesized via a simple method of the calcination of HKUST-1 and systematically characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The CuOx@C demonstrated excellent peroxidase-like (POD-like) activity, functioning as a peroxidase mimic to facilitate the catalysis of 3,3',5,5'-tetramethylbenzidine (TMB) into its oxidized form (oxTMB), thereby initiating a discernible color response. On the basis of this discovery, a CuOx@C-based colorimetric method for detecting total sterols in rapeseed was successfully constructed via cascade reactions. After optimizing the conditions, the high-throughput screening of total sterols in rapeseed could be completed in only 21 min, which significantly facilitated the sensing of PSs. A linear range of 0.6-6 mg/g was achieved for the detection of total sterols in rapeseed samples, thereby satisfying the requirements for detection. In addition, due to the high stability of CuOx@C and the specificity of cholesterol oxidase, the developed method had excellent stability and selectivity toward PSs, indicating that this work has huge prospects for commercial application. This innovative work overcomes the limitation of the instrumental method and provides a portable and reliable tool for total sterols detection. It can also facilitate the development of oilseeds with a high content of PSs.


Subject(s)
Benzidines , Colorimetry , Copper , Phytosterols , Colorimetry/methods , Phytosterols/analysis , Phytosterols/chemistry , Copper/chemistry , Benzidines/chemistry , Metal-Organic Frameworks/chemistry , Limit of Detection , Catalysis , Nanocomposites/chemistry , Oxidation-Reduction
14.
Mikrochim Acta ; 191(8): 488, 2024 07 27.
Article in English | MEDLINE | ID: mdl-39066796

ABSTRACT

Hydroxyl radical (·OH) scavenging capacity (HOSC) estimation is essential for evaluating antioxidants, natural extracts, or drugs against clinical diseases. While nanozymes offer advantages in related applications, they still face limitations in activity and selectivity. In response, this work showcases the fabrication of laminarin-modulated osmium (laminarin-Os) nanoclusters (1.45 ± 0.05 nm), functioning as peroxidase-like nanozymes within a colorimetric assay tailored for rational HOSC estimation. This study validates both the characterization and remarkable stability of laminarin-Os. By leveraging the abundant surface negative charges of laminarin-Os and the surface hydroxyls of laminarin, oxidation reactions are facilitated, augmenting laminarin-Os's affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (KM = 0.04 mM). This enables the laminarin-Os-based colorimetric assay to respond to ·OH more effectively than citrate-, albumin-, or other polysaccharides-based Os. In addition, experimental results also validate the selective peroxidase-like behavior of laminarin-Os under acidic conditions. Antioxidants like ascorbic acid, glutathione, tannic acid, and cysteine inhibit absorbance at 652 nm in the colorimetric platform using laminarin-Os's peroxidase-like activity. Compared with commercial kits, this assay demonstrates superior sensitivity (e.g., responds to ascorbic acid 0.01-0.075 mM, glutathione 1-15 µg/mL, tannic acid 0.5-5 µM, and monoammonium glycyrrhizinate cysteine 1.06-10.63 µM) and HOSC testing for glutathione, tannic acid, and monoammonium glycyrrhizinate cysteine. Overall, this study introduces a novel Os nanozyme with exceptional TMB affinity and ·OH selectivity, paving the way for HOSC estimation in biomedical research, pharmaceutical analysis, drug quality control, and beyond.


Subject(s)
Benzidines , Free Radical Scavengers , Glucans , Hydroxyl Radical , Osmium , Benzidines/chemistry , Colorimetry/methods , Free Radical Scavengers/chemistry , Free Radical Scavengers/pharmacology , Glucans/chemistry , Hydroxyl Radical/chemistry , Hydroxyl Radical/analysis , Osmium/chemistry , Oxidation-Reduction , Peroxidase/chemistry , Peroxidase/metabolism
15.
Mikrochim Acta ; 191(8): 465, 2024 07 16.
Article in English | MEDLINE | ID: mdl-39012354

ABSTRACT

A novel Fe-MoOx nanozyme, engineered with enhanced peroxidase (POD)-like activity through strategic doping and the creation of oxygen vacancies, is introduced to catalyze the oxidation of TMB with high efficiency. Furthermore, Fe-MoOx is responsive to single electron transfer (SET) and hydrogen atom transfer (HAT) mechanisms related to antioxidants and can serve as a desirable nanozyme for total antioxidant capacity (TAC) determination. The TAC colorimetric platform can reach a low LOD of 0.512 µM in solution and 24.316 µM in the smartphone-mediated RGB hydrogel (AA as the standard). As proof of concept, the practical application in real samples was explored. The work paves a promising avenue to design diverse nanozymes for visual on-site inspection of food quality.


Subject(s)
Antioxidants , Colorimetry , Oxidation-Reduction , Antioxidants/chemistry , Antioxidants/analysis , Antioxidants/metabolism , Colorimetry/methods , Catalysis , Molybdenum/chemistry , Limit of Detection , Iron/chemistry , Benzidines/chemistry , Smartphone , Hydrogels/chemistry , Electron Transport , Biosensing Techniques/methods , Oxides/chemistry
16.
Mikrochim Acta ; 191(8): 504, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39096325

ABSTRACT

A novel colorimetric aptasensor assay based on the excellent magnetic responsiveness and oxidase-like activity of Fe3O4@MIL-100(Fe) was developed. Fe3O4@MIL-100(Fe) absorbed with aptamer and blocked by BSA served as capture probe for selective isolation and enrichment of Listeria monocytogenes one of the most common and dangerous foodborne pathogenic bacteria. The aptamer absorbed on Fe3O4@MIL-100(Fe) was further used as signal probe that specifically binds with target bacteria conjugation of capture probe for colorimetric detection of Listeria monocytogenes, taking advantages of its oxidase-like activity. The linear range of the detection of Listeria monocytogenes was from 102 to 107 CFU mL-1, with the limit of detection as low as 14 CFU mL-1. The approach also showed good feasibility for detection of Listeria monocytogenes in milk and meat samples. The spiked recoveries were in the range 81-114% with relative standard deviations ranging from 1.28 to 5.19%. Thus, this work provides an efficient, convenient, and practical tool for selective isolation and colorimetric detection of Listeria monocytogenes in food.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Colorimetry , Food Microbiology , Limit of Detection , Listeria monocytogenes , Milk , Listeria monocytogenes/isolation & purification , Colorimetry/methods , Aptamers, Nucleotide/chemistry , Milk/microbiology , Milk/chemistry , Biosensing Techniques/methods , Animals , Food Contamination/analysis , Oxidoreductases/chemistry , Meat/microbiology , Magnetite Nanoparticles/chemistry
17.
Mikrochim Acta ; 191(3): 168, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38418635

ABSTRACT

The interaction of Cu-tannic acid nanosheets (Cu-TA NShs) as nanozyme in a surfactant solution of CTAB under relatively acidic conditions is shown to exhibit a catalytic effect on quercetin (Qur). This catalytic property of Cu-TA NShs, which mimics laccase enzyme with many advantages, has been applied to developing a selective colorimetric sensor for the determination of trace amounts of Qur in vegetable samples. This strategy presents a desirable linear relationship between the absorbance signal intensity and the concentrations of Qur from 0.350 to 32.09 µM with a detection limit (LOD) of 0.064 µM (S/N = 3). The feasibility of the proposed portable colorimetric sensor for in situ analysis of the real samples has been validated with the high-performance liquid chromatography (HPLC) method as reference method, and two-tailed test (t test) statistical analysis certifies good agreement between the results. This enzyme-free and sensitive naked-eye sensor with the smartphone-based color map is promising to provide technical support for the rapid and visual detection of Qur in vegetables.


Subject(s)
Colorimetry , Polyphenols , Quercetin , Laccase , Smartphone , Vegetables
18.
Mikrochim Acta ; 191(7): 416, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38913162

ABSTRACT

To realize the reutilization of waste Myrica rubra in the analytical field, we synthesized Myrica rubra-based N-doped carbon dots (MN-CDs) and further anchored them onto the surface of Fe3S4 to fabricate Fe3S4@MN-CD nanocomposites. The as-fabricated nanocomposites possessed higher peroxidase-mimetic activity than its two precursors, resulting from the synergistic effect between them, and could catalyze colorless 3,3',5,5'-tetramethylbenzidine (TMB) into deep blue oxTMB with a strong 652-nm absorption. Under optimized conditions (initial solution pH, 3.5; incubation temperature, 35 ℃; Fe3S4@MN-CD concentration, 50 µg mL-1, and 652-nm absorption), Fe3S4@MN-CDs were employed for colorimetric assay of p-aminophenol (p-AP) with wide linear range (LR, 2.9-100 µM), low detection limit (LOD, 0.87 µM), and satisfactory recoveries (86.3-105%) in environmental waters. Encouragingly, this colorimetric assay provided the relative accuracy of 97.0-99.4% as compared with  conventional HPLC-UV detection. A portable smartphone-based colorimetric application was developed by combining the Fe3S4@MN-CD-based visually chromogenic reaction with a "Thing Identify" APP software. Besides, we engineered an image-capturing device feasible for field use, in which the internal-compact sealing prevented external light source from entering photography chamber, thereby reducing light interference, and also the bottom light source enhanced the intensity of blue imaging. This colorimetric platform exhibited satisfactory LR (1-500 µM), low LOD (0.3 µM), and fortification recoveries (86.6-99.6%). In the chromogenic reaction catalyzed by Fe3S4@MN-CDs, ·O2- played a key role in concomitant with the participation of •OH and h+. Both the colorimetric assay and smartphone-based intelligent sensing show great promising in on-site monitoring of p-AP under field conditions.


Subject(s)
Aminophenols , Carbon , Colorimetry , Limit of Detection , Quantum Dots , Smartphone , Water Pollutants, Chemical , Colorimetry/methods , Aminophenols/chemistry , Aminophenols/analysis , Carbon/chemistry , Water Pollutants, Chemical/analysis , Quantum Dots/chemistry , Biomimetic Materials/chemistry , Benzidines/chemistry , Peroxidase/chemistry
19.
Small ; 19(32): e2208142, 2023 08.
Article in English | MEDLINE | ID: mdl-37066711

ABSTRACT

Sensitive and specific analysis of extracellular vesicles (EVs) offers a promising minimally invasive way to identify malignant pulmonary nodules from benign lesions. However, accurate analysis of EVs is subject to free target proteins in blood samples, which compromises the clinical diagnosis value of EVs. Here a DNA-guided extracellular-vesicle metallization (DEVM) strategy is described for ultrasensitive and specific analysis of EV protein biomarkers and classification of pulmonary nodules. The facile DEVM process mainly includes the incorporation of DNA labeled with cholesterol and thiol groups into EV membranes and subsequent deposition of Au3+ and Pt4+ to allow the DNA-functionalized EVs to be encapsulated with AuPt nanoshells. It is found that the synthesized AuPt-metallized EVs possess extrinsic peroxidase-like activity. Utilizing the feature of the catalytic metal nanoshells just growth on the EV membranes, the DEVM method enables multiparametric recognition of target proteins and EV membranes and can produce an amplified colorimetric signal, avoiding the interference of free proteins. By profiling four surface proteins of EVs from 48 patients with pulmonary nodules, the highest area under the receiver operating characteristic curve (0.9983) is obtained. Therefore, this work provides a feasible EVs analysis tool for accurate pulmonary nodules management.


Subject(s)
Extracellular Vesicles , Membrane Proteins , Humans , Biomarkers/metabolism , Membrane Proteins/metabolism , DNA/metabolism , Extracellular Vesicles/metabolism
20.
Chembiochem ; 24(1): e202200451, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36156837

ABSTRACT

A colorimetric assay of DNA cleavage by bleomycin (BLM) derivatives was developed utilizing high colloidal stability on double-stranded (ds) DNA-modified gold nanoparticles (dsDNA-AuNPs) possessing a cleavage site. The assay was performed using dsDNA-AuNPs treated with inactive BLM or activated BLM (Fe(II)⋅BLM). A 10-min exposure in dsDNA-AuNPs with inactive BLM treatment resulted in a rapid color change from red to purple because of salt-induced non-crosslinking aggregation of dsDNA-AuNPs. In contrast, the addition of active Fe(II)⋅BLM retained the red color, probably because of the formation of protruding structures at the outermost phase of dsDNA-AuNPs caused by BLM-mediated DNA cleavage. Furthermore, the results of our model experiments indicate that oxidative base release and DNA-cleavage pathways could be visually distinguished with color change. The present methodology was also applicable to model screening assays using several drugs with different mechanisms related to antitumor activity. These results strongly suggest that this assay with a rapid color change could lead to simple and efficient screening of potent antitumor agents.


Subject(s)
Bleomycin , Metal Nanoparticles , Bleomycin/pharmacology , Bleomycin/chemistry , Gold/chemistry , Colorimetry/methods , DNA Cleavage , Metal Nanoparticles/chemistry , DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL