Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
J Environ Manage ; 297: 113358, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34311248

ABSTRACT

The alkali treated subglebal tissue of the mosaic puffball (Handkea utriformis) (Sa) and Sa modified with hydroxyapatite (Sa-HAp), obtained by successive ionic layer adsorption and reaction (SILAR) method, were used for the removal of Pb2+, Cd2+ and Ni2+ from aqueous solution. The materials were characterized by FT-IR, Raman, SEM and EDS analysis and by determination of pHPZC. The adsorption performances of Sa and Sa-HAp were assessed in batch experiments at different pH, contact times, temperatures and mass of the adsorbent. Different models of adsorption isotherms were used, and the best fit was obtained with the Langmuir model. Maximum adsorption capacities of Sa towards Pb2+, Cd2+ and Ni2+ were 44.82, 15.54 and 17.21 mg g-1, while for Sa-HAp were 79.55, 52.59 and 45.01 mg g-1, respectively. Kinetic data were well fitted by a pseudo second-order model, while thermodynamic studies disclose spontaneous and endothermic adsorption process. The Sa-Hap was successfully regenerated with 1 M NaCl and after the fifth desorption cycle and 10 h achieved 82.9, 69.7 and 60.4 %, while for 0.5 M NaCl + 0.5 M NaOH and 1 h was 78.3, 64.1, 57.5 % of desorbed Pb2+, Cd2+ and Ni2+, respectively. The competitive study and results from a column system confirmed good applicability of Sa-HAp adsorbent.


Subject(s)
Agaricales , Metals, Heavy , Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Solutions , Spectroscopy, Fourier Transform Infrared , Thermodynamics , Water Pollutants, Chemical/analysis
2.
Int J Biol Macromol ; 275(Pt 2): 133762, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38986974

ABSTRACT

Water pollution has remained a pressing concern in recent years, presenting multifaceted challenges in search of effective mitigation strategies. Our study, which targets mitigating pollution caused by 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), a significant aquatic pollutant, is innovative in its approach. We have identified adsorption as a promising, cost-effective method for its removal. Our research strategy involves dynamic adsorption utilizing a peristaltic pump and composite beads containing activated carbon and sodium alginate (CA/Alg), a novel combination that mimics industrial processes. To optimize column adsorption, we examine bead stability under varied pH conditions and optimize parameters such as concentration, adsorption time, and pH through batch adsorption experiments, employing experimental design techniques. Additionally, we optimize column adsorption factors, including bead height, circulation time, and flow rate, crucial for process efficiency, and under these optimum conditions (C2,4,5-T = 80 ppm. pH = 2, t = 27h30min, H = 30 cm and D = 0.5 mL/min) the capacity of adsorption equal to 748.25 mg/g. Characterization techniques like SEM, EDX, BET analysis, XRD, and FTIR provide insights into the morphology, composition, surface area (331 m2/g), pore volume (0.11 cm3/g), crystal structure, and functional groups of the CA-P/Alg adsorbent. Theoretical analysis elucidates the adsorption mechanism and interaction with pollutants. Economic analysis, encompassing CAPEX and OPEX estimation, evaluates the feasibility of implementing this cleanup method at an industrial scale, considering initial investment and ongoing operational costs, indicating potential savings of 64 % compared with the activated carbon normally used on the Moroccan market. This comprehensive and innovative approach addresses water pollution challenges effectively while ensuring economic viability for industry-scale implementation.


Subject(s)
Alginates , Hydrogels , Pesticides , Water Pollutants, Chemical , Alginates/chemistry , Adsorption , Hydrogels/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Pesticides/chemistry , Water Purification/methods , Water Purification/economics , Hydrogen-Ion Concentration , Biomass , Capsules , Kinetics
3.
Int J Biol Macromol ; 255: 128234, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37981287

ABSTRACT

In this work, we developed five solid adsorbents such as calcium alginate beads (CG), Araucaria gum (AR) extracted from Araucaria heterophylla tree by chemical precipitation procedures, and Araucaria gum/calcium alginate composite beads (CR21, CR12, and CR11) prepared with different calcium alginate: Araucaria gum ratios (2:1, 1:2, and 1:1, respectively). The synthesized solid adsorbents were characterized utilizing TGA, XRD, nitrogen adsorption/desorption analysis, ATR-FTIR, pHPZC, swelling ratio, SEM, and TEM. Through the batch and column adsorption strategies, we evaluated the effect of adsorbent dose, pH, initial Pb (II) concentration, shaking time, bed height, and flow rate. The data of batch technique indicated that CR11 demonstrated a maximum batch adsorption capacity of 149.95 mg/g at 25 °C. Lead ions adsorption was well fitted by pseudo-second order and Elovich according to kinetic studies, in addition to Langmuir and Temkin models based on adsorption isotherm studies onto all the samples. Thermodynamic investigation showed that Pb (II) adsorption process is an endothermic, physical, and spontaneous process. The highest column adsorption capacity (161.1 mg/g) was achieved by CR11 at a bed height of 3 cm, flow rate of 10 mL/min, and initial Pb+2 concentration of 225 mg/L with 68 min as breakthrough time and 180 min as exhaustion time. Yoon-Nelson and Thomas models applied well the breakthrough curves of Pb (II) column adsorption. The maximum column adsorption capacity was decreased by 11.4 % after four column adsorption/desorption processes. Our results revealed that CR11 had an excellent adsorption capacity, fast kinetics, and good selectivity, emphasizing its potential for its applications in water treatment.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Alginates/chemistry , Kinetics , Lead , Water Pollutants, Chemical/chemistry , Ions , Water Purification/methods , Hydrogen-Ion Concentration
4.
Article in English | MEDLINE | ID: mdl-38528220

ABSTRACT

Emerging contaminants are diverse ecotoxic materials requiring unique treatment for removal. Asphaltenes are environmentally hazardous carbon-rich solid waste product of the petroleum industry. In the current work, asphaltene-derived activated carbon (AC) was loaded with silver (Ag/AC) and used to remove amoxicillin (AMX) and tetracycline (TC) from aqueous phase. The prepared Ag/AC was characterised using FESEM, FTIR, XRD and surface area analysis. The FESEM micrographs confirmed the spherical silver nanoparticle-laden porous AC, and the BET surface area was found to be 213 m2/g. Batch adsorption studies were performed, and the equilibrium data were fit into adsorption isotherm and kinetic models. The Ag/AC exhibited superior monolayer adsorption capacity of 1012 mg/g and 770 mg/g for AMX and TC, respectively. The continuous column studies were also performed to evaluate the breakthrough parameters. Furthermore, the antimicrobial activity of the adsorbent was evaluated using zone of inhibition studies. Ag/AC was found to have an 8-mm-diameter zone of microbial inhibition. The obtained results showed that Ag/AC was a promising material for the removal of antibiotics and inhibition of resistance-developed mutated microbes in effluent water.

5.
Environ Sci Pollut Res Int ; 31(6): 8736-8750, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180650

ABSTRACT

A single-step dye removal strategy from wastewater is inadequate for concentrations above 100 mg/L. In order to address this limitation, the adsorption of high dye concentrations followed by phytoremediation is a potential approach for the treatment of dye-contaminated wastewater. This combined method utilizes physical adsorption and biological processes to remove dyes from wastewater. Herein, we investigated a pilot-scale multi-step cascaded process where batch adsorption and fixed-bed column adsorption were combined with phytoremediation to remove cellulose-reactive blue dye at 200 to 500 mg/L concentrations. The batch adsorption utilized low-cost water hyacinth root powder (WHRP) bioadsorbent having 670 m2/g surface area, whereas the fixed-bed column adsorption used sand having a surface area of 75 m2/g. The phytoremediation process utilized water hyacinth plants in a series of ponds. The effluent from one unit is fed to the next until the dye is removed to more than 98% for all concentrations considered in this study. Pilot-scale experimental data fitting to adsorption isotherms and kinetics were performed to gain insight into the pilot-scale adsorption mechanism. The fixed-bed sand column adsorption was conducted at different inlet dye concentrations, flow rates, and bed heights. The breakthrough curves were fit to the Thomas, Yoon-Nelson, and Bohart-Adams models. The effluent from the fixed-bed column was transferred to phytoremediation ponds, where complete dye removal was achieved. Overall, data collectively presented in this study demonstrated that the combined adsorption and phytoremediation approach offers a potential solution for the remediation of high dye concentration in wastewater, providing an effective and sustainable treatment option.


Subject(s)
Water Pollutants, Chemical , Water Purification , Wastewater , Cellulose , Adsorption , Coloring Agents , Biodegradation, Environmental , Sand , Water Purification/methods , Water Pollutants, Chemical/analysis , Kinetics
6.
Water Environ Res ; 96(1): e10973, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38229448

ABSTRACT

This research introduces an enhanced limonite-based composite fiber adsorbent for arsenic (As) removal. The modification involves creating polyethersulfone (PES)-limonite composite fibers loaded with 60 wt% limonite powders, designed to be applicable in water flow environments. The fibers were prepared using a wet-spinning process based on phase inversion, with varying concentrations (10, 20, and 30 wt%) of PES in NMP solution. The composite fiber with 10 wt% NMP exhibited a porous structure and demonstrated efficient absorption of both As(III) and As(V). Adsorption followed the Langmuir model, with qm values of 1.5 mg/g for As(III) and 3.2 mg/g for As(V) at pH 6. In column experiments, As removal rates increased with contact time, attributed to decreased flow rates (1 mL/min). Moreover, increasing fiber column height led to enhanced removal rates, as indicated by the Adams-Bohart model. The mechanism for As(V) removal involved the formation of an inner-sphere complex through ion exchange between α-FeOOH and HAsO4 - and H2 AsO4 2- in an aqueous solution at pH 6.8. PRACTITIONER POINTS: Changing the polyethersulfone ratio in the composite leads to variations in the appearance of limonite within each composite fiber. Limonite composite fibers effectively remove As(III) and As(V) at neutral pH. The adsorption behavior follows Langmuir kinetic model, the qm of 1.5 mg/g for As(III) and 3.2 mg/g for As(V). Longer columns and contact times enhance arsenic (As) removal in practical water treatment systems. Adam-Bohart model aids in predicting breakthrough and saturation time in As adsorption column design.


Subject(s)
Arsenic , Sulfones , Water Pollutants, Chemical , Water Purification , Arsenic/chemistry , Ferric Compounds/chemistry , Polymers/chemistry , Adsorption , Hydrogen-Ion Concentration , Water Pollutants, Chemical/chemistry , Kinetics
7.
Int J Biol Macromol ; 268(Pt 1): 131652, 2024 May.
Article in English | MEDLINE | ID: mdl-38649075

ABSTRACT

Vinylsulfonic acid (VSA), acrylamide (AM) and N, N methylene bis acrylamide(MBA) were copolymerized by radical polymerization in the presence of gum ghatti (GG) and treated water hyacianth (WH) in water. Several composite copolymers were prepared by varying the i) AM: VSA molar ratios ii) wt% of GG and iii) wt% of treated WH based on a Box-Behnken Design(BBD) of a response surface methodology (RSM) model with three input variables and the batch adsorption capacity (mg/g) of 100 mg/L Cd (II) from water as response. The composite polymer was characterized by Fourier transform Infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis(TGA), X- ray photo electron spectroscopy (XPS), compressive strength, pH reversibility, pH at point zero charge (pHPZC), Brunauer-Emmett-Teller (BET) surface area and scanning electron microscopy (SEM). The network parameters of the composites were determined. The copolymer composite prepared with AM: VSA of 5:1 containing 10 wt% GG and 4 wt% treated WH showed an optimum batch adsorption capacity of 399.15 mg/g Cd (II) from water containing 100 mg/L Cd (II). The same composite showed an adsorption capacity of 170.1 mg/g and a removal% of 31.5 at a feed concentration/feed flow rate/bed height of 150 mgL-1/30mLmin-1/30 mm in a fixed bed column.


Subject(s)
Cellulose , Plant Gums , Adsorption , Plant Gums/chemistry , Cellulose/chemistry , Cellulose/analogs & derivatives , Sulfonic Acids/chemistry , Water Purification/methods , Water/chemistry , Hydrogen-Ion Concentration , Acrylamide/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Polymerization , X-Ray Diffraction , Acrylamides/chemistry , Acrylic Resins/chemistry , Spectroscopy, Fourier Transform Infrared , Cadmium/chemistry , Polyvinyls/chemistry
8.
Environ Sci Pollut Res Int ; 31(22): 32320-32338, 2024 May.
Article in English | MEDLINE | ID: mdl-38653892

ABSTRACT

Adsorption column blockage due to solid adsorbent material is prevalent in laboratory-scale applications. Creating composite materials with stable geometries offers a viable solution. By crafting hydrogel beads using sodium alginate (Alg) and a bio-source like activated carbon (RMCA-P), it becomes possible to effectively eliminate agricultural pollutants, including the pesticide 2,4-D, from aqueous solutions. To evaluate the performance of these beads, a range of structural and textural analyses such as DRX, FTIR, SEM/EDX, BET, Zeta potential, Boehm titration, and iodine number were employed. Moreover, the study found that optimizing certain parameters greatly enhanced adsorption column efficiency. Specifically, increasing the bed height while reducing the flow rate of the adsorbate and the initial concentration in the inlet proved beneficial. The column demonstrated peak performance at a flow rate of 0.5 mL/min, a bed height of 35 cm, and an inlet adsorbate concentration of 50 mg/L. Under these conditions, the highest recorded removal rate for 2,4-D was 95.49%, which was subsequently confirmed experimentally at 95.05%. Both the Thomas and Yoon-Nelson models exhibited a good fit with the breakthrough curves. After undergoing three cycles of reuse, the RMCA-P/Alg hydrogel composite maintained a 2,4-D removal percentage of 74.21%. Notably, the RMCA-P/Alg beads exhibited effective removal of 2,4-D from herbicidal field waters in a continuous operational mode.


Subject(s)
Agriculture , Hydrogels , Pesticides , Water Pollutants, Chemical , Adsorption , Hydrogels/chemistry , Water Pollutants, Chemical/chemistry , Pesticides/chemistry , Alginates/chemistry , Charcoal/chemistry
9.
Environ Sci Pollut Res Int ; 30(2): 4653-4668, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35974266

ABSTRACT

The ability of clinoptilolite zeolite as a filter in water wells to remove lead from polluted groundwater was tested in batch and fixed-bed column experiments. XRF, XRD, SEM, and BET were used to characterize the zeolite. Because of the pH variation in groundwater, batch experiments were performed at pH = 6, 7, and 8, with the highest removal efficiency (84.2%) at pH = 6 and 298 K within 90 min. The Freundlich model accurately predicted metal ion adsorption behavior and indicated a multilayer adsorption of Pb(II) molecules on the inhomogeneous surface of clinoptilolite. The best-fitting kinetic model for clinoptilolite is the pseudo-second order equation, highlighting that the rate of adsorption is dependent on absorbent capacity. Next, the effect of flow rate, bed depth, and grain size of clinoptilolite on lead removal was investigated in column experiments at an initial concentration of 450 mg pb/L. The highest removal efficiency was achieved in column experiments with a flow rate of 1 mL/min, a bed height of 10 cm, and a grain size of 0.6 to 0.8 mm. Breakthrough curves were predicted by the Thomas and Yoon-Nelson models, with excellent agreement with the corresponding experimental data. This research will be used to develop a new in situ remedial approach for removing lead from polluted groundwater.


Subject(s)
Groundwater , Water Pollutants, Chemical , Water Purification , Zeolites , Zeolites/chemistry , Lead , Water Wells , Feasibility Studies , Water Pollutants, Chemical/chemistry , Adsorption
10.
Environ Sci Pollut Res Int ; 30(38): 88450-88462, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37436617

ABSTRACT

This research focused on the application of a fixed bed column filled with immobilized titanium oxide-loaded almond shell carbon (TiO2@ASC) for the treatment of leachate. The adsorption performance of synthesized TiO2@ASC in fixed bed column is analyzed using adsorption experiments and modeling study. The characteristics of synthesized materials are determined by several instrumental techniques like BET, XRD, FTIR, and FESEM-EDX. The flow rate, initial concentration of COD and NH3-N, and bed height were optimized to determine the effectiveness of leachate treatment. The linear bed depth service time (BDST) plots equations with a correlation coefficient of greater than 0.98 confirmed the model's accuracy for COD and NH3-N adsorption in column structure. The adsorption process was found to be well predicted by an artificial neural network (ANN) model with a root mean square error of 0.0172 and 0.0167 for COD and NH3-N reduction, respectively. The immobilized adsorbent was regenerated using HCl and was found to be reusable for up to three cycles, promoting material sustainability. This study is aimed to contribute towards SDG 6 and SDG11 by United Nations Sustainable Development Goals.


Subject(s)
Water Pollutants, Chemical , Water Purification , Water Pollutants, Chemical/analysis , Charcoal , Titanium , Adsorption , Water Purification/methods
11.
Heliyon ; 9(3): e14310, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36950633

ABSTRACT

Large amounts of bauxite-liquid residue are generated during the production of aluminium, which has detrimental effects on human and environmental health. Currently, the primary goal of every alumina industry is to improve the wet disposal of bauxite-liquid residues into the environment using eco-friendly and cost-effective methods. Therefore, this study investigated the possibility of treating bauxite-liquid residue with natural clays (NCs) and acid-activated clays (AACs) using a fixed-bed column adsorption study. The chemical compositions and functional groups of clays and bauxite were studied using X-ray diffractometry (XRD), X-ray fluorescence (XRF), and Fourier transform infrared spectroscopy (FTIR) techniques. For iron adsorption, breakthrough curves were plotted by varying the adsorbent type in the fixed-bed column. The Bohart-Adams, Thomas, and Yoon-Nelson models were successfully fitted with the breakthrough curves. Two regeneration cycles revealed high regeneration efficiencies for both natural and acid-activated clays. Overall, the study found that AACs were the best candidates for treating bauxite-liquid residue when compared to NCs. For instance, the pH, temperature, electrical conductivity, total suspended solids, total dissolved solids, biochemical oxygen demand, turbidity, and total alkalinity of the bauxite-liquid residue were all significantly decreased below tolerance levels by using AACs. The AACs removed 92% of the iron in the bauxite-liquid residue. Lastly, our research shows that AACs can be used as an adsorbent to treat bauxite-liquid residue, making it less hazardous when it is disposed of into the environment.

12.
ACS Appl Mater Interfaces ; 15(4): 5577-5589, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36651633

ABSTRACT

Through molecule self-assembly and subsequent surface functionalization, novel uranium adsorbent AO-OB hierarchical self-assembled polyimide microspheres (AO-OBHSPIMs) were obtained by introducing the amidoxime groups into hierarchical self-assembled polyimide microspheres for the efficient and selective recovery of uranium from wastewater. The results of Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption isotherm showed that AO-OBHSPIMs were a semicrystalline polymer material with self-supporting hierarchical structure and low pore volume, and they were equipped with abundant amidoxime groups. Given the recognized selectivity of amidoxime groups and their hierarchical structure, AO-OBHSPIMs exhibited excellent selectivity to uranyl ions. Moreover, AO-OBHSPIMs exhibited good stability and recyclability and remarkable removal percentage within low-concentration solution (99.4%) and simulated uranium-containing wastewater (97.3%). AO-OBHSPIMs could be applied to fixed-bed column adsorption due to their large particle size and self-supporting hierarchical structure that can facilitate water flow. The in-depth discussion of the adsorption mechanism showed that the adsorption mainly depended on the combined action of electrostatic interactions and complexation, and the adsorption process was a spontaneous endothermic monolayer adsorption. In summary, AO-OBHSPIMs exhibited good application prospects in uranium-containing wastewater remediation.

13.
Toxics ; 11(10)2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37888699

ABSTRACT

The remediation of arsenic contamination in potable water is an important and urgent concern, necessitating immediate attention. With this objective in mind, the present study investigated arsenic removal from water using batch adsorption and fixed-bed column techniques. The material employed in this study was a waste product derived from the treatment of groundwater water for potable purposes, having a substantial iron composition. The material's properties were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier-transformed infrared spectroscopy (FT-IR). The point of zero charge (pHPZC) was measured, and the pore size and specific surface area were determined using the BET method. Under static conditions, kinetic, thermodynamic, and equilibrium studies were carried out to explore the influencing factors on the adsorption process, namely the pH, contact time, temperature, and initial arsenic concentration in the solution. It was found that the adsorption process is spontaneous, endothermic, and of a physical nature. In the batch adsorption studies, the maximum removal percentage was 80.4% after 90 min, and in a dynamic regime in the fixed-bed column, the efficiency was 99.99% at a sludge:sand = 1:1 ratio for 380 min for a volume of water with arsenic of ~3000 mL. The kinetics of the adsorption process conformed to a pseudo-second-order model. In terms of the equilibrium studies, the Sips model yielded the most accurate representation of the data, revealing a maximum equilibrium capacity of 70.1 mg As(V)/g sludge. For the dynamic regime, the experimental data were fitted using the Bohart-Adams, Thomas, and Clark models, in order to establish the mechanism of the process. Additionally, desorption studies were conducted, serving as an essential step in validating the practical applicability of the adsorption process, specifically in relation to the reutilization of the adsorbent material.

14.
Environ Pollut ; 307: 119523, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35643290

ABSTRACT

Magnetic carbon were synthesized from sugarcane bagasse using hydrothermal carbonization followed by thermal activation was converted to solid state as beads (hydrogels SACFe) using sodium alginate and applied as adsorbent in removal sulfamethoxazole in batch and column mode. From adsorption parameter analysis it was confirmed that 0.6 g L-1 SACFe was effective in removing 50 mg L-1 of SMX at pH 6.2. Sorption of SMX on SACFe beads followed Elovich kinetics and Freundlich isotherm. It was further confirmed that sorption occurred on heterogeneous surface of SACFe beads with chemisorption as rate limiting step. Maximum adsorption capacity was obtained as 58.439 mg g-1 pH studies revealed that charged assisted hydrogen bonding, EDA interactions are some of the mechanism that favoured removal of SMX. From column studies it was found that bead height of 2 cm and flow rate of 1.5 mL min-1 found to be best in removing pollutant. Thomas model fitted better the experimental data stating that improved interaction between adsorbent and adsorbate act as major driving force tool in obtaining maximum sorption capacity. Breakthrough curve was completely affected by varied flow rate and bed height. Column adsorption was effective in reducing COD and BOD levels of sewage which are affected by toxic pollutants and miscellaneous compounds. Feasibility analysis showed that SACFe beads could be employed for real-time applications as it is cost, energy effective and easy recovery.


Subject(s)
Saccharum , Water Pollutants, Chemical , Adsorption , Alginates/chemistry , Cellulose , Charcoal/chemistry , Hydrogels , Hydrogen-Ion Concentration , Kinetics , Magnetic Phenomena , Microspheres , Sewage , Sulfamethoxazole , Water/chemistry , Water Pollutants, Chemical/chemistry
15.
J Hazard Mater ; 421: 126804, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34388928

ABSTRACT

The simultaneous removal of organic and inorganic pollutants from water requires multifunctional adsorbents. Cryogels of carboxymethyl cellulose (CMC) and sugarcane bagasse (BG) were modified with cetyltrimethylammonium bromide (CTAB) micelles for the adsorption of methylene blue (MB), Cr(VI) ions and bisphenol A (BPA) separately, in binary or ternary aqueous mixtures. Batch adsorption studies of MB and Cr(VI) and BPA on the CMCBG-CTAB adsorbents indicated removal capacities of 100%, 70% and 95%, respectively. MB adsorbed as multilayers on the CMCBG walls by electrostatic interaction, whereas Cr(VI) and BPA adsorbed on the cationic CTAB micelles surface and hydrophobic core of CTAB micelles, respectively. The breakthrough curves obtained for pure adsorbates and their mixtures showed that the adsorption of Cr(VI) ions increased (i) ~ 3.5 times in binary mixture with BPA or in the ternary mixture, in comparison to pure Cr(VI) solution, and (ii) 1.4 times in binary mixture with MB molecules, due to synergistic effects. In the presence of Cr(VI) ions in binary or ternary mixtures, the adsorption of MB was dramatically reduced due to screening effects. The adsorption of BPA was not significantly affected by the presence of MB or Cr(VI). The adsorbents were recycled five times without significant efficiency loss.


Subject(s)
Methylene Blue , Water Pollutants, Chemical , Adsorption , Benzhydryl Compounds , Carboxymethylcellulose Sodium , Cellulose , Cetrimonium , Chromium/analysis , Cryogels , Hydrogen-Ion Concentration , Kinetics , Phenols , Water , Water Pollutants, Chemical/analysis
16.
Chemosphere ; 287(Pt 1): 131962, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34450369

ABSTRACT

A fish scale-based porous activated biochar with defined pore size (DPBC) was fabricated by a one-step calcination and activation method. The DPBC possessed an ultrahigh specific surface area of 3370 m2 g-1 and its pore diameter centered at 1.49 nm which fits into the ciprofloxacin (CIP) molecular dimension, making it an ideal adsorbent for CIP adsorption due to the molecular pore-filling effect. The maximum Langmuir monolayer adsorption capacity of DPBC for CIP was higher than 1000 mg g-1 and the equilibrium time was less than 4 h, superior to most adsorbents reported in literature. Thermodynamic analysis indicated the adsorption process was spontaneous and endothermic. Notably, fixed-bed experiments showed an encouraging adsorption performance towards CIP, with a high saturated dynamic adsorption capacity of 880.3 mg g-1. Both Thomas and Yoon-Nelson models predict the fixed-bed column adsorption performance well. Hydrophobic effect, π-π interaction, π-π EDA, cation exchange, hydrogen bonding formation, pore filling effect, electrostatic and cation-π interaction involved in the CIP adsorption on the DPBC.


Subject(s)
Ciprofloxacin , Water Pollutants, Chemical , Adsorption , Animals , Charcoal , Kinetics , Water Pollutants, Chemical/analysis
17.
Environ Sci Pollut Res Int ; 29(42): 63936-63952, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35467193

ABSTRACT

Adsorbents made of hydroxypropyl methylcellulose (HPMC) and sugarcane bagasse (BG) microparticles were applied for the separation of 17α-ethinylestradiol (EE2) from aqueous solution in batch, and from aqueous solution and freshwater in fixed-bed columns. HPMC chains and BG microparticles were crosslinked by the esterification with citric acid. The adsorbents presented compression modulus values that increased from 208 ± 20 kPa (pure HPMC) to 917 ± 90 kPa, when the content of BG particles added to HPMC was 50 wt% (HPMC50BG). The porosity (~ 97%), specific surface area (1.16 ± 0.10 m2/g) and swelling degree (20 ± 1 g water/g) values were not affected by the addition of BG particles. The adsorption isotherms determined for EE2 on HPMC and on HPMC50BG fitted to the Langmuir and Freundlich models; the adsorption capacity of HPMC was slightly higher than that of composite HPMC50BG. Nevertheless, the addition of BG particles rendered outstanding mechanical reinforcement and dimensional stability to the adsorbents. The adsorption was driven by (i) hydrophobic interactions between EE2 methylene and aromatic groups and HPMC methyl groups, as evidenced by FTIR spectroscopy, and (ii) H bonds between HPMC and EE2 hydroxyl groups, as revealed by the adsorption enthalpy change (ΔHads) of - 45 kJ/mol. Column adsorption experiments of EE2 from aqueous solution on HPMC and HPMC50BG indicated adsorptive capacity (q0) values of 8.06 mg/g and 4.07 mg/g, respectively. These values decreased considerably for the adsorption of EE2 from river water, probably due to the competition of EE2 with humic substances dissolved in natural water. The HPMC adsorbents could be recycled retaining up to 83% of the original efficiency.


Subject(s)
Saccharum , Water Pollutants, Chemical , Adsorption , Cellulose , Citric Acid , Ethinyl Estradiol/chemistry , Fresh Water , Humic Substances , Hydrogen-Ion Concentration , Hypromellose Derivatives , Indicators and Reagents , Kinetics , Water/chemistry
18.
Water Environ Res ; 93(2): 241-253, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32654246

ABSTRACT

Nutrients mobilized by stormwater can exacerbate eutrophication in receiving waters. While bioretention systems are increasingly employed to improve stormwater quality, they do not normally incorporate design attributes for removal of dissolved organic nitrogen (DON). Thus, the current study concentrated on continuous column adsorption of stormwater DON using a media mixture of coal activated carbon and quartz sand. Adsorption of eight model organic nitrogenous compounds was studied and only pyrrole showed an appreciable adsorption performance; other organic nitrogen compounds were weakly adsorbed. The breakthrough depth for pyrrole was 88 m (equivalent to 4.4 m simulated rainfall depth), at a superficial velocity of 61 cm/hr and influent DON concentration of 1 mg N/L. Subsequent experiments revealed that adsorption of pyrrole was minimally affected by superficial velocity, such that its DON removal efficiency was greater than 91% for all tested superficial velocities (7-489 cm/hr). Accordingly, adsorption processes may be employed for removing stormwater DON fractions behaving similarly to pyrrole; data suggest DON removal initially at greater than 95%, gradually falling to 30% through 25 years of service. PRACTITIONER POINTS: Adsorption of eight different organic nitrogenous compounds onto coal-based activated carbon was investigated. Amino acids and an amino sugar were weakly adsorbed onto the activated carbon. Pyrrole, a moderately hydrophobic heterocyclic organic nitrogen compound was effectively adsorbed. A 30-cm depth was considered as adequate for removal of pyrrole and compounds that would similarly adsorb. Evidence of biological ammonification was present in all studies except for pyrrole.


Subject(s)
Charcoal , Organic Chemicals , Adsorption , Nitrogen
19.
Carbohydr Polym ; 255: 117398, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33436226

ABSTRACT

Nowadays, access to clean water sources worldwide and particularly in Southern Africa is inadequate because of its pollution by organic, inorganic, and microorganism contaminants. A range of conventional water treatment techniques has been used to resolve the problem. However, these methods are currently facing the confronts posed by new emerging contaminants. Therefore, there is a need to develop simple and lower cost-effective water purification methods that use recyclable bio-based natural polymers such as chitosan modified with nanomaterials. These novel functional chitosan-based nanomaterials have been proven to effectively eliminate the different environmental pollutants from wastewater to acceptable levels. This paper aims to present a review of the recent development of functional chitosan modified with carbon nanostructured and inorganic nanoparticles. Their application as biosorbents in fixed-bed continuous flow column adsorption for water purification is also discussed.

20.
Chemosphere ; 272: 129640, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33465618

ABSTRACT

The mesoporous poly(N,N'-methylene-bis(1-(3-vinylimidazolium)) chloride), labeled as PDVIm-Cl, with double anions (Cl-) and low monomer molecular weight was synthesized and applied in the adsorption of anionic dyes (acid orange 7 (AO7), sunset yellow (SY), reactive blue 19 (RB19), congo red (CR)). Due to the mesoporous structure, abundant Cl- and positively charged imidazole rings, the poly(ionic liquid) (PIL) exhibited superior adsorption ability towards anionic dyes. What is more, the RB19 adsorption by PDVIm-Cl could achieve the highest capacity (2605 ± 254 mg g-1) which was nearly twice higher than the maximum adsorption capacity of the previously reported materials. All the adsorption kinetic data and isotherms fitted well with the pseudo second-order model and Langmuir-Freundlich model. To better explore the practical potential of the PIL for dye adsorption, the adsorption under different pH values and column adsorption performances were also evaluated. Results showed that PDVIm-Cl exhibited high removal efficiencies for anionic dyes over a wide pH range (2-10). Also, the great reusability could be well demonstrated by the achievable continuous column adsorption-desorption process. It is worth mentioning that the regeneration could be realized with very little desorbent which was far less than the adsorption volume flowing through the column and the desorption efficiency was well maintained after three consecutive cycles. At last, the adsorption mechanism was explored by experiments combined with quantum chemical calculations and showed anionic dyes adsorption by PDVIm-Cl was a joint process dominated by the ion exchange, electrostatic interaction, hydrogen bond and π-π stacking.


Subject(s)
Ionic Liquids , Water Pollutants, Chemical , Adsorption , Anions , Coloring Agents , Hydrogen-Ion Concentration , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL