Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124.809
Filter
Add more filters

Publication year range
1.
Annu Rev Immunol ; 37: 405-437, 2019 04 26.
Article in English | MEDLINE | ID: mdl-30673535

ABSTRACT

Pathogenic organisms exert a negative impact on host health, revealed by the clinical signs of infectious diseases. Immunity limits the severity of infectious diseases through resistance mechanisms that sense and target pathogens for containment, killing, or expulsion. These resistance mechanisms are viewed as the prevailing function of immunity. Under pathophysiologic conditions, however, immunity arises in response to infections that carry health and fitness costs to the host. Therefore, additional defense mechanisms are required to limit these costs, before immunity becomes operational as well as thereafter to avoid immunopathology. These are tissue damage control mechanisms that adjust the metabolic output of host tissues to different forms of stress and damage associated with infection. Disease tolerance is the term used to define this defense strategy, which does not exert a direct impact on pathogens but is essential to limit the health and fitness costs of infection. Under this argument, we propose that disease tolerance is an inherent component of immunity.


Subject(s)
Disease Resistance/immunology , Immunity, Innate , Infections/immunology , Microbiota/immunology , Animals , Host-Pathogen Interactions , Humans , Immune Tolerance , Immunomodulation
2.
Annu Rev Biochem ; 93(1): 233-259, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38621235

ABSTRACT

Peroxisomes are organelles that play a central role in lipid metabolism and cellular redox homeostasis. The import of peroxisomal matrix proteins by peroxisomal targeting signal (PTS) receptors is an ATP-dependent mechanism. However, the energy-dependent steps do not occur early during the binding of the receptor-cargo complex to the membrane but late, because they are linked to the peroxisomal export complex for the release of the unloaded receptor. The first ATP-demanding step is the cysteine-dependent monoubiquitination of the PTS receptors, which is required for recognition by the AAA+ peroxins. They execute the second ATP-dependent step by extracting the ubiqitinated PTS receptors from the membrane for release back to the cytosol. After deubiquitination, the PTS receptors regain import competence and can facilitate further rounds of cargo import. Here, we give a general overview and discuss recent data regarding the ATP-dependent steps in peroxisome protein import.


Subject(s)
Adenosine Triphosphate , Peroxisomes , Protein Transport , Ubiquitination , Peroxisomes/metabolism , Adenosine Triphosphate/metabolism , Humans , Animals , Peroxisome-Targeting Signal 1 Receptor/metabolism , Peroxisome-Targeting Signal 1 Receptor/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Peroxisomal Targeting Signals , Peroxins/metabolism , Peroxins/genetics , Membrane Proteins
3.
Cell ; 187(13): 3427-3444.e21, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38733990

ABSTRACT

Many behaviors require the coordinated actions of somatic and autonomic functions. However, the underlying mechanisms remain elusive. By opto-stimulating different populations of descending spinal projecting neurons (SPNs) in anesthetized mice, we show that stimulation of excitatory SPNs in the rostral ventromedial medulla (rVMM) resulted in a simultaneous increase in somatomotor and sympathetic activities. Conversely, opto-stimulation of rVMM inhibitory SPNs decreased both activities. Anatomically, these SPNs innervate both sympathetic preganglionic neurons and motor-related regions in the spinal cord. Fiber-photometry recording indicated that the activities of rVMM SPNs correlate with different levels of muscle and sympathetic tone during distinct arousal states. Inhibiting rVMM excitatory SPNs reduced basal muscle and sympathetic tone, impairing locomotion initiation and high-speed performance. In contrast, silencing the inhibitory population abolished muscle atonia and sympathetic hypoactivity during rapid eye movement (REM) sleep. Together, these results identify rVMM SPNs as descending spinal projecting pathways controlling the tone of both the somatomotor and sympathetic systems.


Subject(s)
Medulla Oblongata , Spinal Cord , Sympathetic Nervous System , Animals , Male , Mice , Locomotion/physiology , Medulla Oblongata/physiology , Mice, Inbred C57BL , Motor Neurons/physiology , Neurons/physiology , Sleep, REM/physiology , Spinal Cord/physiology , Sympathetic Nervous System/physiology , Behavior, Animal , Cell Count , Muscle, Skeletal
4.
Cell ; 187(14): 3619-3637.e27, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38851188

ABSTRACT

Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.


Subject(s)
DNA, Mitochondrial , Mitochondria , Mitochondrial Dynamics , Mitochondrial Membranes , Mitochondrial Proteins , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/genetics , Mitochondrial Proteins/metabolism , Humans , Mitochondrial Membranes/metabolism , Mitochondria/metabolism , Animals , HeLa Cells , Mice , Membrane Proteins/metabolism , Membrane Proteins/genetics , Autophagy
5.
Cell ; 187(6): 1476-1489.e21, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38401541

ABSTRACT

Attention filters sensory inputs to enhance task-relevant information. It is guided by an "attentional template" that represents the stimulus features that are currently relevant. To understand how the brain learns and uses templates, we trained monkeys to perform a visual search task that required them to repeatedly learn new attentional templates. Neural recordings found that templates were represented across the prefrontal and parietal cortex in a structured manner, such that perceptually neighboring templates had similar neural representations. When the task changed, a new attentional template was learned by incrementally shifting the template toward rewarded features. Finally, we found that attentional templates transformed stimulus features into a common value representation that allowed the same decision-making mechanisms to deploy attention, regardless of the identity of the template. Altogether, our results provide insight into the neural mechanisms by which the brain learns to control attention and how attention can be flexibly deployed across tasks.


Subject(s)
Attention , Decision Making , Learning , Parietal Lobe , Reward , Animals , Haplorhini
6.
Cell ; 186(16): 3443-3459.e24, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37480851

ABSTRACT

Cells contain numerous abundant molecular machines assembled from multiple subunits. Imbalances in subunit production and failed assembly generate orphan subunits that are eliminated by poorly defined pathways. Here, we determined how orphan subunits of the cytosolic chaperonin CCT are recognized. Several unassembled CCT subunits recruited the E3 ubiquitin ligase HERC2 using ZNRD2 as an adaptor. Both factors were necessary for orphan CCT subunit degradation in cells, sufficient for CCT subunit ubiquitination with purified factors, and necessary for optimal cell fitness. Domain mapping and structure prediction defined the molecular features of a minimal HERC2-ZNRD2-CCT module. The structural model, whose key elements were validated in cells using point mutants, shows why ZNRD2 selectively recognizes multiple orphaned CCT subunits without engaging assembled CCT. Our findings reveal how failures during CCT assembly are monitored and provide a paradigm for the molecular recognition of orphan subunits, the largest source of quality control substrates in cells.


Subject(s)
Chaperonin Containing TCP-1 , Ubiquitin-Protein Ligases , Chaperonin Containing TCP-1/chemistry , Ubiquitin-Protein Ligases/genetics , Humans
7.
Cell ; 186(14): 3062-3078.e20, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37343561

ABSTRACT

Seemingly simple behaviors such as swatting a mosquito or glancing at a signpost involve the precise coordination of multiple body parts. Neural control of coordinated movements is widely thought to entail transforming a desired overall displacement into displacements for each body part. Here we reveal a different logic implemented in the mouse gaze system. Stimulating superior colliculus (SC) elicits head movements with stereotyped displacements but eye movements with stereotyped endpoints. This is achieved by individual SC neurons whose branched axons innervate modules in medulla and pons that drive head movements with stereotyped displacements and eye movements with stereotyped endpoints, respectively. Thus, single neurons specify a mixture of endpoints and displacements for different body parts, not overall displacement, with displacements for different body parts computed at distinct anatomical stages. Our study establishes an approach for unraveling motor hierarchies and identifies a logic for coordinating movements and the resulting pose.


Subject(s)
Fixation, Ocular , Saccades , Animals , Mice , Eye Movements , Neurons/physiology , Superior Colliculi/physiology , Rhombencephalon , Head Movements/physiology
8.
Cell ; 186(1): 162-177.e18, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36608651

ABSTRACT

The cortex influences movement by widespread top-down projections to many nervous system regions. Skilled forelimb movements require brainstem circuitry in the medulla; however, the logic of cortical interactions with these neurons remains unexplored. Here, we reveal a fine-grained anatomical and functional map between anterior cortex (AC) and medulla in mice. Distinct cortical regions generate three-dimensional synaptic columns tiling the lateral medulla, topographically matching the dorso-ventral positions of postsynaptic neurons tuned to distinct forelimb action phases. Although medial AC (MAC) terminates ventrally and connects to forelimb-reaching-tuned neurons and its silencing impairs reaching, lateral AC (LAC) influences dorsally positioned neurons tuned to food handling, and its silencing impairs handling. Cortico-medullary neurons also extend collaterals to other subcortical structures through a segregated channel interaction logic. Our findings reveal a precise alignment between cortical location, its function, and specific forelimb-action-tuned medulla neurons, thereby clarifying interaction principles between these two key structures and beyond.


Subject(s)
Movement , Neurons , Mice , Animals , Movement/physiology , Neurons/physiology , Forelimb/physiology , Brain Stem
9.
Cell ; 186(16): 3460-3475.e23, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37478862

ABSTRACT

All eukaryotes require intricate protein networks to translate developmental signals into accurate cell fate decisions. Mutations that disturb interactions between network components often result in disease, but how the composition and dynamics of complex networks are established remains poorly understood. Here, we identify the E3 ligase UBR5 as a signaling hub that helps degrade unpaired subunits of multiple transcriptional regulators that act within a network centered on the c-Myc oncoprotein. Biochemical and structural analyses show that UBR5 binds motifs that only become available upon complex dissociation. By rapidly turning over unpaired transcription factor subunits, UBR5 establishes dynamic interactions between transcriptional regulators that allow cells to effectively execute gene expression while remaining receptive to environmental signals. We conclude that orphan quality control plays an essential role in establishing dynamic protein networks, which may explain the conserved need for protein degradation during transcription and offers opportunities to modulate gene expression in disease.


Subject(s)
Transcription Factors , Ubiquitin-Protein Ligases , Humans , Gene Expression , HEK293 Cells , HeLa Cells , Mutation , Signal Transduction , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
10.
Cell ; 186(10): 2044-2061, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37172561

ABSTRACT

Phenotypic sex-based differences exist for many complex traits. In other cases, phenotypes may be similar, but underlying biology may vary. Thus, sex-aware genetic analyses are becoming increasingly important for understanding the mechanisms driving these differences. To this end, we provide a guide outlining the current best practices for testing various models of sex-dependent genetic effects in complex traits and disease conditions, noting that this is an evolving field. Insights from sex-aware analyses will not only teach us about the biology of complex traits but also aid in achieving the goals of precision medicine and health equity for all.


Subject(s)
Models, Genetic , Sex Characteristics , Animals , Female , Male , Multifactorial Inheritance , Phenotype , Quality Control , Genome-Wide Association Study , Guidelines as Topic , Gene-Environment Interaction , Humans
11.
Cell ; 186(10): 2176-2192.e22, 2023 05 11.
Article in English | MEDLINE | ID: mdl-37137307

ABSTRACT

The ClpC1:ClpP1P2 protease is a core component of the proteostasis system in mycobacteria. To improve the efficacy of antitubercular agents targeting the Clp protease, we characterized the mechanism of the antibiotics cyclomarin A and ecumicin. Quantitative proteomics revealed that the antibiotics cause massive proteome imbalances, including upregulation of two unannotated yet conserved stress response factors, ClpC2 and ClpC3. These proteins likely protect the Clp protease from excessive amounts of misfolded proteins or from cyclomarin A, which we show to mimic damaged proteins. To overcome the Clp security system, we developed a BacPROTAC that induces degradation of ClpC1 together with its ClpC2 caretaker. The dual Clp degrader, built from linked cyclomarin A heads, was highly efficient in killing pathogenic Mycobacterium tuberculosis, with >100-fold increased potency over the parent antibiotic. Together, our data reveal Clp scavenger proteins as important proteostasis safeguards and highlight the potential of BacPROTACs as future antibiotics.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Endopeptidase Clp/metabolism , Heat-Shock Proteins/metabolism , Mycobacterium tuberculosis/drug effects , Proteostasis
12.
Cell ; 186(2): 346-362.e17, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36638793

ABSTRACT

Ribosomes frequently stall during mRNA translation, resulting in the context-dependent activation of quality control pathways to maintain proteostasis. However, surveillance mechanisms that specifically respond to stalled ribosomes with an occluded A site have not been identified. We discovered that the elongation factor-1α (eEF1A) inhibitor, ternatin-4, triggers the ubiquitination and degradation of eEF1A on stalled ribosomes. Using a chemical genetic approach, we unveiled a signaling network comprising two E3 ligases, RNF14 and RNF25, which are required for eEF1A degradation. Quantitative proteomics revealed the RNF14 and RNF25-dependent ubiquitination of eEF1A and a discrete set of ribosomal proteins. The ribosome collision sensor GCN1 plays an essential role by engaging RNF14, which directly ubiquitinates eEF1A. The site-specific, RNF25-dependent ubiquitination of the ribosomal protein RPS27A/eS31 provides a second essential signaling input. Our findings illuminate a ubiquitin signaling network that monitors the ribosomal A site and promotes the degradation of stalled translation factors, including eEF1A and the termination factor eRF1.


Subject(s)
RNA-Binding Proteins , Trans-Activators , Carrier Proteins/metabolism , Peptide Elongation Factors/genetics , Protein Biosynthesis , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Humans , HeLa Cells , HEK293 Cells , RNA-Binding Proteins/metabolism , Trans-Activators/metabolism , Peptide Elongation Factor 1/metabolism
13.
Cell ; 185(6): 967-979.e12, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35235768

ABSTRACT

In multicellular organisms, cells actively sense and control their own population density. Synthetic mammalian quorum-sensing circuits could provide insight into principles of population control and extend cell therapies. However, a key challenge is reducing their inherent sensitivity to "cheater" mutations that evade control. Here, we repurposed the plant hormone auxin to enable orthogonal mammalian cell-cell communication and quorum sensing. We designed a paradoxical population control circuit, termed "Paradaux," in which auxin stimulates and inhibits net cell growth at different concentrations. This circuit limited population size over extended timescales of up to 42 days of continuous culture. By contrast, when operating in a non-paradoxical regime, population control became more susceptible to mutational escape. These results establish auxin as a versatile "private" communication system and demonstrate that paradoxical circuit architectures can provide robust population control.


Subject(s)
Cell Communication , Signal Transduction , Animals , Cell Count , Cell Engineering , Indoleacetic Acids , Mammals , Quorum Sensing , Synthetic Biology/methods
14.
Cell ; 185(9): 1602-1617.e17, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35487191

ABSTRACT

Prefrontal cortex (PFC) is postulated to exert "top-down control" on information processing throughout the brain to promote specific behaviors. However, pathways mediating top-down control remain poorly understood. In particular, knowledge about direct prefrontal connections that might facilitate top-down control of hippocampal information processing remains sparse. Here we describe monosynaptic long-range GABAergic projections from PFC to hippocampus. These preferentially inhibit vasoactive intestinal polypeptide-expressing interneurons, which are known to disinhibit hippocampal microcircuits. Indeed, stimulating prefrontal-hippocampal GABAergic projections increases hippocampal feedforward inhibition and reduces hippocampal activity in vivo. The net effect of these actions is to specifically enhance the signal-to-noise ratio for hippocampal encoding of object locations and augment object-induced increases in spatial information. Correspondingly, activating or inhibiting these projections promotes or suppresses object exploration, respectively. Together, these results elucidate a top-down prefrontal pathway in which long-range GABAergic projections target disinhibitory microcircuits, thereby enhancing signals and network dynamics underlying exploratory behavior.


Subject(s)
Hippocampus , Prefrontal Cortex , Exploratory Behavior , Hippocampus/physiology , Interneurons/metabolism , Prefrontal Cortex/physiology , Vasoactive Intestinal Peptide
15.
Cell ; 185(1): 131-144.e18, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34919814

ABSTRACT

Two HIV fusion-inhibitory lipopeptides (LP-97 and LP-98) were designed with highly potent, long-acting antiviral activity. Monotherapy using a low dose of LP-98 sharply reduced viral loads and maintained long-term viral suppression in 21 SHIVSF162P3-infected rhesus macaques. We found that five treated monkeys achieved potential posttreatment control (PTC) efficacy and had lower viral DNA in deep lymph nodes, whereas monkeys with a stable viral rebound had higher viral DNA in superficial lymph nodes. The tissues of PTC monkeys exhibited significantly decreased quantitative viral outgrowth and fewer PD-1+ central memory CD4+ T cells, and CD8+ T cells contributed to virologic control efficacy. Moreover, LP-98 administrated as a pre-exposure prophylaxis (PrEP) provided complete protection against SHIVSF162P3 and SIVmac239 infections in 51 monkeys via intrarectal, intravaginal, or intravenous challenge. In conclusion, our lipopeptides exhibit high potential as an efficient HIV treatment or prevention strategy.


Subject(s)
HIV Fusion Inhibitors/administration & dosage , Lipopeptides/administration & dosage , Pre-Exposure Prophylaxis/methods , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Female , HEK293 Cells , Humans , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Sustained Virologic Response , U937 Cells , Viral Load/drug effects
16.
Cell ; 185(26): 5011-5027.e20, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36563666

ABSTRACT

To track and control self-location, animals integrate their movements through space. Representations of self-location are observed in the mammalian hippocampal formation, but it is unknown if positional representations exist in more ancient brain regions, how they arise from integrated self-motion, and by what pathways they control locomotion. Here, in a head-fixed, fictive-swimming, virtual-reality preparation, we exposed larval zebrafish to a variety of involuntary displacements. They tracked these displacements and, many seconds later, moved toward their earlier location through corrective swimming ("positional homeostasis"). Whole-brain functional imaging revealed a network in the medulla that stores a memory of location and induces an error signal in the inferior olive to drive future corrective swimming. Optogenetically manipulating medullary integrator cells evoked displacement-memory behavior. Ablating them, or downstream olivary neurons, abolished displacement corrections. These results reveal a multiregional hindbrain circuit in vertebrates that integrates self-motion and stores self-location to control locomotor behavior.


Subject(s)
Neurons , Zebrafish , Animals , Zebrafish/physiology , Neurons/physiology , Rhombencephalon/physiology , Brain/physiology , Swimming/physiology , Homeostasis , Mammals
17.
Cell ; 185(8): 1308-1324.e23, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35325593

ABSTRACT

Asymmetric localization of oskar ribonucleoprotein (RNP) granules to the oocyte posterior is crucial for abdominal patterning and germline formation in the Drosophila embryo. We show that oskar RNP granules in the oocyte are condensates with solid-like physical properties. Using purified oskar RNA and scaffold proteins Bruno and Hrp48, we confirm in vitro that oskar granules undergo a liquid-to-solid phase transition. Whereas the liquid phase allows RNA incorporation, the solid phase precludes incorporation of additional RNA while allowing RNA-dependent partitioning of client proteins. Genetic modification of scaffold granule proteins or tethering the intrinsically disordered region of human fused in sarcoma (FUS) to oskar mRNA allowed modulation of granule material properties in vivo. The resulting liquid-like properties impaired oskar localization and translation with severe consequences on embryonic development. Our study reflects how physiological phase transitions shape RNA-protein condensates to regulate the localization and expression of a maternal RNA that instructs germline formation.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/metabolism , Embryo, Nonmammalian/metabolism , Animals , Cytoplasmic Ribonucleoprotein Granules , Drosophila/embryology , Drosophila Proteins/genetics , Embryonic Development , Oocytes/metabolism , RNA/metabolism
18.
Cell ; 185(6): 1065-1081.e23, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35245431

ABSTRACT

Motor behaviors are often planned long before execution but only released after specific sensory events. Planning and execution are each associated with distinct patterns of motor cortex activity. Key questions are how these dynamic activity patterns are generated and how they relate to behavior. Here, we investigate the multi-regional neural circuits that link an auditory "Go cue" and the transition from planning to execution of directional licking. Ascending glutamatergic neurons in the midbrain reticular and pedunculopontine nuclei show short latency and phasic changes in spike rate that are selective for the Go cue. This signal is transmitted via the thalamus to the motor cortex, where it triggers a rapid reorganization of motor cortex state from planning-related activity to a motor command, which in turn drives appropriate movement. Our studies show how midbrain can control cortical dynamics via the thalamus for rapid and precise motor behavior.


Subject(s)
Motor Cortex , Movement , Thalamus , Animals , Mesencephalon , Mice , Motor Cortex/physiology , Neurons/physiology , Thalamus/physiology
19.
Cell ; 185(4): 585-602.e29, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35051368

ABSTRACT

The relevance of extracellular magnesium in cellular immunity remains largely unknown. Here, we show that the co-stimulatory cell-surface molecule LFA-1 requires magnesium to adopt its active conformation on CD8+ T cells, thereby augmenting calcium flux, signal transduction, metabolic reprogramming, immune synapse formation, and, as a consequence, specific cytotoxicity. Accordingly, magnesium-sufficiency sensed via LFA-1 translated to the superior performance of pathogen- and tumor-specific T cells, enhanced effectiveness of bi-specific T cell engaging antibodies, and improved CAR T cell function. Clinically, low serum magnesium levels were associated with more rapid disease progression and shorter overall survival in CAR T cell and immune checkpoint antibody-treated patients. LFA-1 thus directly incorporates information on the composition of the microenvironment as a determinant of outside-in signaling activity. These findings conceptually link co-stimulation and nutrient sensing and point to the magnesium-LFA-1 axis as a therapeutically amenable biologic system.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Lymphocyte Function-Associated Antigen-1/metabolism , Magnesium/metabolism , Animals , Bacterial Infections/immunology , Caloric Restriction , Cell Line, Tumor , Cytotoxicity, Immunologic , HEK293 Cells , Humans , Immunologic Memory , Immunological Synapses/metabolism , Immunotherapy , Lymphocyte Activation/immunology , MAP Kinase Signaling System , Magnesium/administration & dosage , Male , Mice, Inbred C57BL , Neoplasms/immunology , Neoplasms/pathology , Neoplasms/therapy , Phenotype , Phosphorylation , Proto-Oncogene Proteins c-jun/metabolism
20.
Annu Rev Biochem ; 90: 631-658, 2021 06 20.
Article in English | MEDLINE | ID: mdl-33823651

ABSTRACT

Collagen is the most abundant protein in mammals. A unique feature of collagen is its triple-helical structure formed by the Gly-Xaa-Yaa repeats. Three single chains of procollagen make a trimer, and the triple-helical structure is then folded in the endoplasmic reticulum (ER). This unique structure is essential for collagen's functions in vivo, including imparting bone strength, allowing signal transduction, and forming basement membranes. The triple-helical structure of procollagen is stabilized by posttranslational modifications and intermolecular interactions, but collagen is labile even at normal body temperature. Heat shock protein 47 (Hsp47) is a collagen-specific molecular chaperone residing in the ER that plays a pivotal role in collagen biosynthesis and quality control of procollagen in the ER. Mutations that affect the triple-helical structure or result in loss of Hsp47 activity cause the destabilization of procollagen, which is then degraded by autophagy. In this review, we present the current state of the field regarding quality control of procollagen.


Subject(s)
Collagen/chemistry , Fibrosis/metabolism , HSP47 Heat-Shock Proteins/metabolism , Procollagen/chemistry , Procollagen/metabolism , Animals , Collagen/metabolism , Endoplasmic Reticulum/metabolism , Fibrosis/genetics , HSP47 Heat-Shock Proteins/chemistry , HSP47 Heat-Shock Proteins/genetics , Humans , Hydroxylation , Molecular Chaperones/metabolism , Proline/chemistry , Proline/metabolism , Protein Conformation , Protein Folding , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL