Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.652
Filter
Add more filters

Publication year range
1.
Immunity ; 56(7): 1548-1560.e5, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37279752

ABSTRACT

Cryptococcus neoformans is the leading cause of fungal meningitis and is characterized by pathogenic eosinophil accumulation in the context of type-2 inflammation. The chemoattractant receptor GPR35 is expressed by granulocytes and promotes their migration to the inflammatory mediator 5-hydroxyindoleacetic acid (5-HIAA), a serotonin metabolite. Given the inflammatory nature of cryptococcal infection, we examined the role of GPR35 in the circuitry underlying cell recruitment to the lung. GPR35 deficiency dampened eosinophil recruitment and fungal growth, whereas overexpression promoted eosinophil homing to airways and fungal replication. Activated platelets and mast cells were the sources of GPR35 ligand activity and pharmacological inhibition of serotonin conversion to 5-HIAA, or genetic deficiency in 5-HIAA production by platelets and mast cells resulted in more efficient clearance of Cryptococcus. Thus, the 5-HIAA-GPR35 axis is an eosinophil chemoattractant receptor system that modulates the clearance of a lethal fungal pathogen, with implications for the use of serotonin metabolism inhibitors in the treatment of fungal infections.


Subject(s)
Cryptococcosis , Invasive Fungal Infections , Humans , Eosinophils , Hydroxyindoleacetic Acid , Mast Cells , Blood Platelets , Ligands , Receptors, Formyl Peptide , Serotonin , Cryptococcosis/microbiology , Cryptococcosis/pathology , Receptors, G-Protein-Coupled/genetics
2.
Mol Cell ; 82(6): 1186-1198.e6, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35202575

ABSTRACT

Epigenetic evolution occurs over million-year timescales in Cryptococcus neoformans and is mediated by DNMT5, the first maintenance type cytosine methyltransferase identified in the fungal or protist kingdoms, the first dependent on adenosine triphosphate (ATP), and the most hemimethyl-DNA-specific enzyme known. To understand these novel properties, we solved cryo-EM structures of CnDNMT5 in three states. These studies reveal an elaborate allosteric cascade in which hemimethylated DNA binding first activates the SNF2 ATPase domain by a large rigid body rotation while the target cytosine partially flips out of the DNA duplex. ATP binding then triggers striking structural reconfigurations of the methyltransferase catalytic pocket to enable cofactor binding, completion of base flipping, and catalysis. Bound unmethylated DNA does not open the catalytic pocket and is instead ejected upon ATP binding, driving high fidelity. This unprecedented chaperone-like, enzyme-remodeling role of the SNF2 ATPase domain illuminates how energy is used to enable faithful epigenetic memory.


Subject(s)
Adenosine Triphosphate , Epigenome , Adenosine Triphosphatases/genetics , Adenosine Triphosphate/metabolism , Cytosine/chemistry , DNA/genetics , DNA Methylation , Methyltransferases/genetics
3.
Annu Rev Microbiol ; 76: 369-388, 2022 09 08.
Article in English | MEDLINE | ID: mdl-35650665

ABSTRACT

The last several decades have witnessed a surge in drug-resistant fungal infections that pose a serious threat to human health. While there is a limited arsenal of drugs that can be used to treat systemic infections, scientific advances have provided renewed optimism for the discovery of novel antifungals. The development of chemical-genomic assays using Saccharomyces cerevisiae has provided powerful methods to identify the mechanism of action of molecules in a living cell. Advances in molecular biology techniques have enabled complementary assays to be developed in fungal pathogens, including Candida albicans and Cryptococcus neoformans. These approaches enable the identification of target genes for drug candidates, as well as genes involved in buffering drug target pathways. Here, we examine yeast chemical-genomic assays and highlight how such resources can be utilized to predict the mechanisms of action of compounds, to study virulence attributes of diverse fungal pathogens, and to bolster the antifungal pipeline.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Antifungal Agents/pharmacology , Candida albicans/genetics , Cryptococcus neoformans/genetics , Genomics/methods , Humans , Saccharomyces cerevisiae
4.
Semin Immunol ; 67: 101751, 2023 05.
Article in English | MEDLINE | ID: mdl-36989541

ABSTRACT

Immunity to fungal infections of the central nervous system (CNS) is one of the most poorly understood subjects within the field of medical mycology. Yet, the majority of deaths from invasive fungal infections are caused by brain-tropic fungi. In recent years, there have been several significant discoveries in the regulation of neuroinflammation and the role of the immune system in tissue homeostasis within the CNS. In this review, I highlight five important advances in the neuroimmunology field over the last decade and discuss how we should capitalise on these discoveries to better understand the pathogenesis of fungal CNS infections. In addition, the latest insights into fungal invasion tactics, microglia-astrocyte crosstalk and regulation of antifungal adaptive immune responses are summarised in the context of our contemporary understanding of CNS-specific immunity.


Subject(s)
Central Nervous System Infections , Mycoses , Humans , Central Nervous System , Microglia , Immunity
5.
Semin Immunol ; 66: 101728, 2023 03.
Article in English | MEDLINE | ID: mdl-36841146

ABSTRACT

The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.


Subject(s)
COVID-19 , Mycoses , Humans , Lung , Fungi , Immunity, Innate
6.
Proc Natl Acad Sci U S A ; 121(38): e2412534121, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39259590

ABSTRACT

Cryptococcus neoformans has emerged as a frontrunner among deadly fungal pathogens and is particularly life-threatening for many HIV-infected individuals with compromised immunity. Multiple virulence factors contribute to the growth and survival of C. neoformans within the human host, the two most prominent of which are the polysaccharide capsule and melanin. As both of these features are associated with the cell wall, we were interested to explore possible cooperative or competitive interactions between these two virulence factors. Whereas capsule thickness had no effect on the rate at which cells became melanized, build-up of the melanin pigment layer resulted in a concomitant loss of polysaccharide material, leaving melanized cells with significantly thinner capsules than their nonmelanized counterparts. When melanin was provided exogenously to cells in a transwell culture system we observed a similar inhibition of capsule growth and maintenance. Our results show that melanin sequesters calcium thereby limiting its availability to form divalent bridges between polysaccharide subunits required for outer capsule assembly. The decreased ability of melanized cells to incorporate exported polysaccharide into the growing capsule correlated with the amount of shed polysaccharide, which could have profound negative impacts on the host immune response.


Subject(s)
Calcium , Cell Wall , Cryptococcus neoformans , Melanins , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/growth & development , Melanins/metabolism , Calcium/metabolism , Cell Wall/metabolism , Fungal Capsules/metabolism , Humans , Polysaccharides/metabolism , Fungal Polysaccharides/metabolism
7.
Proc Natl Acad Sci U S A ; 121(7): e2315733121, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38330012

ABSTRACT

Cryptococcus neoformans is a fungal pathogen responsible for cryptococcosis and cryptococcal meningitis. The C. neoformans' capsular polysaccharide and its shed exopolysaccharide function both as key virulence factors and to protect the fungal cell from phagocytosis. Currently, a glycoconjugate of these polysaccharides is being explored as a vaccine to protect against C. neoformans infection. In this study, NOE and J-coupling values from NMR experiments were consistent with a converged structure of the synthetic decasaccharide, GXM10-Ac3, calculated from MD simulations. GXM10-Ac3 was designed as an extension of glucuronoxylomannan (GXM) polysaccharide motif (M2) which is common in the clinically predominant serotype A strains and is recognized by protective forms of GXM-specific monoclonal antibodies. The M2 motif is a hexasaccharide with a three-residue α-mannan backbone, modified by ß-(1→2)-xyloses (Xyl) on the first two mannoses (Man) and a ß-(1→2)-glucuronic acid (GlcA) on the third Man. Combined NMR and MD analyses reveal that GXM10-Ac3 adopts an extended structure, with Xyl/GlcA branches alternating sides along the α-mannan backbone. O-acetyl esters also alternate sides and are grouped in pairs. MD analysis of a twelve M2-repeating unit polymer supports the notion that the GXM10-Ac3 structure is uniformly represented throughout the polysaccharide. This derived GXM model displays high flexibility while maintaining a structural identity, yielding insights to further explore intermolecular interactions between polysaccharides, interactions with anti-GXM mAbs, and the cryptococcal polysaccharide architecture.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Mannans , Cryptococcus neoformans/chemistry , Polysaccharides/chemistry , Cryptococcosis/microbiology , Magnetic Resonance Spectroscopy , Antibodies, Monoclonal , Antibodies, Fungal
8.
Proc Natl Acad Sci U S A ; 121(21): e2319707121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38743622

ABSTRACT

Glycogen is a glucose storage molecule composed of branched α-1,4-glucan chains, best known as an energy reserve that can be broken down to fuel central metabolism. Because fungal cells have a specialized need for glucose in building cell wall glucans, we investigated whether glycogen is used for this process. For these studies, we focused on the pathogenic yeast Cryptococcus neoformans, which causes ~150,000 deaths per year worldwide. We identified two proteins that influence formation of both glycogen and the cell wall: glycogenin (Glg1), which initiates glycogen synthesis, and a protein that we call Glucan organizing enzyme 1 (Goe1). We found that cells missing Glg1 lack α-1,4-glucan in their walls, indicating that this material is derived from glycogen. Without Goe1, glycogen rosettes are mislocalized and ß-1,3-glucan in the cell wall is reduced. Altogether, our results provide mechanisms for a close association between glycogen and cell wall.


Subject(s)
Cell Wall , Cryptococcus neoformans , Fungal Proteins , Glucans , Glycogen , Cell Wall/metabolism , Glycogen/metabolism , Glucans/metabolism , Fungal Proteins/metabolism , Cryptococcus neoformans/metabolism , Glucosyltransferases/metabolism , beta-Glucans/metabolism
9.
Proc Natl Acad Sci U S A ; 121(32): e2314087121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39083421

ABSTRACT

Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.


Subject(s)
Antifungal Agents , Cryptococcus neoformans , Glucosyltransferases , Trehalose , Cryptococcus neoformans/enzymology , Cryptococcus neoformans/metabolism , Cryptococcus neoformans/genetics , Glucosyltransferases/metabolism , Glucosyltransferases/genetics , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/metabolism , Trehalose/metabolism , Trehalose/analogs & derivatives , Trehalose/biosynthesis , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Models, Molecular , Humans , Catalytic Domain , Crystallography, X-Ray
10.
Proc Natl Acad Sci U S A ; 120(2): e2217111120, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36603033

ABSTRACT

A pet cockatoo was the suspected source of Cryptococcus neoformans recovered from an immunocompromised patient with cryptococcosis based on molecular analyses available in 2000. Here, we report whole genome sequence analysis of the clinical and cockatoo strains. Both are closely related MATα strains belonging to the VNII lineage, confirming that the human infection likely originated from pet bird exposure. The two strains differ by 61 single nucleotide polymorphisms, including eight nonsynonymous changes involving seven genes. To ascertain whether changes in these genes are selected for during mammalian infection, we passaged the cockatoo strain in mice. Remarkably, isolates obtained from mouse tissue possess a frameshift mutation in one of the seven genes altered in the human sample (LQVO5_000317), a gene predicted to encode an SWI-SNF chromatin-remodeling complex protein. In addition, both cockatoo and patient strains as well as mouse-passaged isolates obtained from brain tissue had a premature stop codon in a homologue of ZFC3 (LQVO5_004463), a predicted single-zinc finger containing protein, which is associated with larger capsules when deleted and reverted to a full-length protein in the mouse-passaged isolates obtained from lung tissue. The patient strain and mouse-passaged isolates show variability in virulence factors, with differences in capsule size, melanization, rates of nonlytic expulsion from macrophages, and amoeba predation resistance. Our results establish that environmental strains undergo genomic and phenotypic changes during mammalian passage, suggesting that animal virulence can be a mechanism for genetic change and that the genomes of clinical isolates may provide a readout of mutations acquired during infection.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Animals , Mice , Cryptococcus neoformans/genetics , Virulence/genetics , Virulence Factors/genetics , Biological Evolution , Mammals
11.
Proc Natl Acad Sci U S A ; 120(4): e2209831120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669112

ABSTRACT

We recently reported transposon mutagenesis as a significant driver of spontaneous mutations in the human fungal pathogen Cryptococcus deneoformans during murine infection. Mutations caused by transposable element (TE) insertion into reporter genes were dramatically elevated at high temperatures (37° vs. 30°) in vitro, suggesting that heat stress stimulates TE mobility in the Cryptococcus genome. To explore the genome-wide impact of TE mobilization, we generated transposon accumulation lines by in vitro passage of C. deneoformans strain XL280α for multiple generations at both 30° and at the host-relevant temperature of 37°. Utilizing whole-genome sequencing, we identified native TE copies and mapped multiple de novo TE insertions in these lines. Movements of the T1 DNA transposon occurred at both temperatures with a strong bias for insertion between gene-coding regions. By contrast, the Tcn12 retrotransposon integrated primarily within genes and movement occurred exclusively at 37°. In addition, we observed a dramatic amplification in copy number of the Cnl1 (Cryptococcus neoformans LINE-1) retrotransposon in subtelomeric regions under heat-stress conditions. Comparing TE mutations to other sequence variations detected in passaged lines, the increase in genomic changes at elevated temperatures was primarily due to mobilization of the retroelements Tcn12 and Cnl1. Finally, we found multiple TE movements (T1, Tcn12, and Cnl1) in the genomes of single C. deneoformans isolates recovered from infected mice, providing evidence that mobile elements are likely to facilitate microevolution and rapid adaptation during infection.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Animals , Mice , Retroelements/genetics , Cryptococcus neoformans/genetics , Cryptococcosis/genetics , Genome , Heat-Shock Response/genetics , DNA Transposable Elements/genetics
12.
Clin Microbiol Rev ; 37(1): e0014223, 2024 03 14.
Article in English | MEDLINE | ID: mdl-38294218

ABSTRACT

Over recent decades, the global burden of fungal disease has expanded dramatically. It is estimated that fungal disease kills approximately 1.5 million individuals annually; however, the true worldwide burden of fungal infection is thought to be higher due to existing gaps in diagnostics and clinical understanding of mycotic disease. The development of resistance to antifungals across diverse pathogenic fungal genera is an increasingly common and devastating phenomenon due to the dearth of available antifungal classes. These factors necessitate a coordinated response by researchers, clinicians, public health agencies, and the pharmaceutical industry to develop new antifungal strategies, as the burden of fungal disease continues to grow. This review provides a comprehensive overview of the new antifungal therapeutics currently in clinical trials, highlighting their spectra of activity and progress toward clinical implementation. We also profile up-and-coming intracellular proteins and pathways primed for the development of novel antifungals targeting their activity. Ultimately, we aim to emphasize the importance of increased investment into antifungal therapeutics in the current continually evolving landscape of infectious disease.


Subject(s)
Antifungal Agents , Mycoses , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Mycoses/drug therapy , Mycoses/microbiology , Drug Resistance, Fungal
13.
J Biol Chem ; 300(6): 107397, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38763332

ABSTRACT

Constant domains in antibody molecules at the level of the Fab (CH1 and CL) have long been considered to be simple scaffolding elements that physically separate the paratope-defining variable (V) region from the effector function-mediating constant (C) regions. However, due to recent findings that C domains of different isotypes can modulate the fine specificity encoded in the V region, elucidating the role of C domains in shaping the paratope and influencing specificity is a critical area of interest. To dissect the relative contributions of each C domain to this phenomenon, we generated antibody fragments with different C regions omitted, using a set of antibodies targeting capsular polysaccharides from the fungal pathogen, Cryptococcus neoformans. Antigen specificity mapping and functional activity measurements revealed that V region-only antibody fragments exhibited poly-specificity to antigenic variants and extended to recognition of self-antigens, while measurable hydrolytic activity of the capsule was greatly attenuated. To better understand the mechanistic origins of the remarkable loss of specificity that accompanies the removal of C domains from identical paratopes, we performed molecular dynamics simulations which revealed increased paratope plasticity in the scFv relative to the corresponding Fab. Together, our results provide insight into how the remarkable specificity of immunoglobulins is governed and maintained at the level of the Fab through the enforcement of structural restrictions on the paratope by CH1 domains.


Subject(s)
Cryptococcus neoformans , Epitopes , Cryptococcus neoformans/immunology , Cryptococcus neoformans/chemistry , Epitopes/chemistry , Epitopes/immunology , Immunoglobulin Constant Regions/chemistry , Immunoglobulin Constant Regions/genetics , Molecular Dynamics Simulation , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fab Fragments/metabolism , Humans , Antibody Specificity , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/immunology , Single-Chain Antibodies/genetics , Animals , Antibodies, Fungal/immunology , Antibodies, Fungal/chemistry
14.
Eur J Immunol ; 54(6): e2350771, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38494423

ABSTRACT

Vomocytosis, also known as nonlytic exocytosis, is a process whereby fully phagocytosed microbes are expelled from phagocytes without discernible damage to either the phagocyte or microbe. Although this phenomenon was first described in the opportunistic fungal pathogen Cryptococcus neoformans in 2006, to date, mechanistic studies have been hampered by an inability to reliably stimulate or inhibit vomocytosis. Here we present the fortuitous discovery that macrophages lacking the scavenger receptor MAcrophage Receptor with COllagenous domain (MARCO), exhibit near-total vomocytosis of internalised cryptococci within a few hours of infection. Marco-/- macrophages also showed elevated vomocytosis of a yeast-locked C. albicans strain, suggesting this to be a broadly relevant observation. We go on to show that MARCO's role in modulating vomocytosis is independent of its role as a phagocytic receptor, suggesting that this protein may play an important and hitherto unrecognised role in modulating macrophage behaviour.


Subject(s)
Cryptococcus neoformans , Macrophages , Receptors, Immunologic , Animals , Mice , Cryptococcus neoformans/immunology , Macrophages/immunology , Macrophages/microbiology , Receptors, Immunologic/metabolism , Receptors, Immunologic/immunology , Receptors, Immunologic/genetics , Candida albicans/immunology , Phagocytosis/immunology , Mice, Knockout , Exocytosis/immunology , Cryptococcosis/immunology
15.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35169080

ABSTRACT

Cellular development is orchestrated by evolutionarily conserved signaling pathways, which are often pleiotropic and involve intra- and interpathway epistatic interactions that form intricate, complex regulatory networks. Cryptococcus species are a group of closely related human fungal pathogens that grow as yeasts yet transition to hyphae during sexual reproduction. Additionally, during infection they can form large, polyploid titan cells that evade immunity and develop drug resistance. Multiple known signaling pathways regulate cellular development, yet how these are coordinated and interact with genetic variation is less well understood. Here, we conducted quantitative trait locus (QTL) analyses of a mapping population generated by sexual reproduction of two parents, only one of which is unisexually fertile. We observed transgressive segregation of the unisexual phenotype among progeny, as well as a large-cell phenotype under mating-inducing conditions. These large-cell progeny were found to produce titan cells both in vitro and in infected animals. Two major QTLs and corresponding quantitative trait genes (QTGs) were identified: RIC8 (encoding a guanine-exchange factor) and CNC06490 (encoding a putative Rho-GTPase activator), both involved in G protein signaling. The two QTGs interact epistatically with each other and with the mating-type locus in phenotypic determination. These findings provide insights into the complex genetics of morphogenesis during unisexual reproduction and pathogenic titan cell formation and illustrate how QTL analysis can be applied to identify epistasis between genes. This study shows that phenotypic outcomes are influenced by the genetic background upon which mutations arise, implicating dynamic, complex genotype-to-phenotype landscapes in fungal pathogens and beyond.


Subject(s)
Cryptococcosis/genetics , Cryptococcus/genetics , Epistasis, Genetic/genetics , Biological Evolution , Cryptococcus/metabolism , Cryptococcus/pathogenicity , Fungal Proteins/genetics , Genes, Mating Type, Fungal/genetics , Hyphae/growth & development , Morphogenesis , Phenotype , Quantitative Trait Loci/genetics , Reproduction/genetics , Reproduction, Asexual
16.
J Infect Dis ; 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39207255

ABSTRACT

BACKGROUND: Despite availability of HIV treatment globally, cryptococcal meningitis continues to cause considerable morbidity and mortality. The role of the immune response in acute mortality remains unclear. METHODS: To investigate the immune environment in the central nervous system, cerebrospinal fluid (CSF) from 337 Ugandans with advanced HIV and first-episode cryptococcal meningitis was collected at time of hospitalization. Participants were treated with standard of care amphotericin-B and fluconazole. Cytokines and chemokines in the CSF were quantified and compared by 14-day survival, stratification by quartiles, and logistical regression to determine association with acute mortality. RESULTS: 84 (24.9%) of the participants died by day 14 of hospitalization. Persons who survived to day 14 had higher levels of proinflammatory macrophage inflammatory protein (MIP)-3ß and interferon (IFN)-ß and cytotoxicity-associated Granzyme-B and inflammatory protein (IP)-10 compared to those who died (P<.05 for each). Logistical regression analysis revealed that per two-fold increase in proinflammatory IL-6, IL-1α, MIP-1ß, MIP-3ß, and IFN-ß and cytotoxicity-associated IL-12, TNF-α, Granzyme-B, and IP-10 CSF concentrations, the risk of acute 14-day mortality decreased. Similar biomarkers were implicated when stratified by quartiles and further identified that lower concentrations of anti-inflammatory IL-10 and IL-13 as associated with 14-day mortality (P<.05 for each). CONCLUSION: Proinflammatory and cytotoxicity-associated cytokine and chemokine responses in the CSF decrease the risk of acute 14-day mortality. These data suggest that a cytotoxic immune environment in the CSF could potentially improve acute survival. Further research on cytotoxic cells is crucial to improve understanding of innate and adaptive immune responses in cryptococcal meningitis.

17.
J Proteome Res ; 23(9): 3917-3932, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39140824

ABSTRACT

Accurate and reliable detection of fungal pathogens presents an important hurdle to manage infections, especially considering that fungal pathogens, including the globally important human pathogen, Cryptococcus neoformans, have adapted diverse mechanisms to survive the hostile host environment and moderate virulence determinant production during coinfections. These pathogen adaptations present an opportunity for improvements (e.g., technological and computational) to better understand the interplay between a host and a pathogen during disease to uncover new strategies to overcome infection. In this study, we performed comparative proteomic profiling of an in vitro coinfection model across a range of fungal and bacterial burden loads in macrophages. Comparing data-dependent acquisition and data-independent acquisition enabled with parallel accumulation serial fragmentation technology, we quantified changes in dual-perspective proteome remodeling. We report enhanced and novel detection of pathogen proteins with data-independent acquisition-parallel accumulation serial fragmentation (DIA-PASEF), especially for fungal proteins during single and dual infection of macrophages. Further characterization of a fungal protein detected only with DIA-PASEF uncovered a novel determinant of fungal virulence, including altered capsule and melanin production, thermotolerance, and macrophage infectivity, supporting proteomics advances for the discovery of a novel putative druggable target to suppress C. neoformans pathogenicity.


Subject(s)
Cryptococcus neoformans , Fungal Proteins , Macrophages , Proteomics , Cryptococcus neoformans/pathogenicity , Proteomics/methods , Fungal Proteins/metabolism , Fungal Proteins/genetics , Virulence , Macrophages/microbiology , Macrophages/metabolism , Cryptococcosis/microbiology , Humans , Proteome/analysis , Proteome/metabolism , Melanins/metabolism , Melanins/biosynthesis , Animals , Host-Pathogen Interactions , Virulence Factors/metabolism , Mice
18.
Infect Immun ; 92(4): e0003724, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38470135

ABSTRACT

Small molecules are components of fungal extracellular vesicles (EVs), but their biological roles are only superficially known. NOP16 is a eukaryotic gene that is required for the activity of benzimidazoles against Cryptococcus deuterogattii. In this study, during the phenotypic characterization of C. deuterogattii mutants expected to lack NOP16 expression, we observed a reduced EV production. Whole-genome sequencing, RNA-Seq, and cellular proteomics revealed that, contrary to our initial findings, these mutants expressed Nop16 but exhibited altered expression of 14 genes potentially involved in sugar transport. Based on this observation, we designated these mutant strains as Past1 and Past2, representing potentially altered sugar transport. Analysis of the small molecule composition of EVs produced by wild-type cells and the Past1 and Past2 mutant strains revealed not only a reduced number of EVs but also an altered small molecule composition. In a Galleria mellonella model of infection, the Past1 and Past2 mutant strains were hypovirulent. The hypovirulent phenotype was reverted when EVs produced by wild-type cells, but not mutant EVs, were co-injected with the mutant cells in G. mellonella. These results connect EV biogenesis, cargo, and cryptococcal virulence.

19.
Infect Immun ; 92(6): e0002424, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38700335

ABSTRACT

Cryptococcus deneoformans is a yeast-type fungus that causes fatal meningoencephalitis in immunocompromised patients and evades phagocytic cell elimination through an escape mechanism. Memory T (Tm) cells play a central role in preventing the reactivation of this fungal pathogen. Among these cells, tissue-resident memory T (TRM) cells quickly respond to locally invaded pathogens. This study analyzes the kinetics of effector T (Teff) cells and Tm cells in the lungs after cryptococcal infection. Emphasis is placed on the kinetics and cytokine expression of TRM cells in the early phase of infection. CD4+ Tm cells exhibited a rapid increase by day 3, peaked at day 7, and then either maintained their levels or exhibited a slight decrease until day 56. In contrast, CD8+ Tm cells reached their peak on day 3 and thereafter decreased up to day 56 post-infection. These Tm cells were predominantly composed of CD69+ TRM cells and CD69+ CD103+ TRM cells. Disruption of the CARD9 gene resulted in reduced accumulation of these TRM cells and diminished interferon (IFN) -γ expression in TRM cells. TRM cells were derived from T cells with T cell receptors non-specific to ovalbumin in OT-II mice during cryptococcal infection. In addition, TRM cells exhibited varied behavior in different tissues. These results underscore the importance of T cells, which produce IFN-γ in the lungs during the early stage of infection, in providing early protection against cryptococcal infection through CARD9 signaling.


Subject(s)
Antigens, CD , Antigens, Differentiation, T-Lymphocyte , Cryptococcosis , Cryptococcus , Interferon-gamma , Lectins, C-Type , Lung , Animals , Cryptococcosis/immunology , Cryptococcosis/microbiology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice , Antigens, Differentiation, T-Lymphocyte/metabolism , Cryptococcus/immunology , Antigens, CD/metabolism , Antigens, CD/genetics , Lectins, C-Type/metabolism , Lectins, C-Type/genetics , Lung/immunology , Lung/microbiology , Memory T Cells/immunology , Memory T Cells/metabolism , Mice, Inbred C57BL , Immunologic Memory , Immunity, Innate , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/immunology
20.
J Clin Immunol ; 44(7): 163, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008214

ABSTRACT

BACKGROUND: Cryptococcosis is a life-threatening disease caused by Cryptococcus neoformans or C. gattii. Neutralizing autoantibodies (auto-Abs) against granulocyte-macrophage colony-stimulating factor (GM-CSF) in otherwise healthy adults with cryptococcal meningitis have been described since 2013. We searched for neutralizing auto-Abs in sera collected from Colombian patients with non-HIV-associated cryptococcosis in a retrospective national cohort from 1997 to 2016. METHODS: We reviewed clinical and laboratory records and assessed the presence of neutralizing auto-Abs against GM-CSF in 30 HIV negative adults with cryptococcosis (13 caused by C. gattii and 17 caused by C. neoformans). RESULTS: We detected neutralizing auto-Abs against GM-CSF in the sera of 10 out of 13 (77%) patients infected with C. gattii and one out of 17 (6%) patients infected with C. neoformans. CONCLUSIONS: We report eleven Colombian patients diagnosed with cryptococcosis who had auto-Abs that neutralize GM-CSF. Among these patients, ten were infected with C. gattii and only one with C. neoformans.


Subject(s)
Antibodies, Neutralizing , Autoantibodies , Cryptococcosis , Cryptococcus gattii , Cryptococcus neoformans , Granulocyte-Macrophage Colony-Stimulating Factor , Humans , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , Autoantibodies/blood , Autoantibodies/immunology , Male , Colombia , Female , Adult , Cryptococcus gattii/immunology , Middle Aged , Cryptococcus neoformans/immunology , Cryptococcosis/immunology , Cryptococcosis/diagnosis , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Retrospective Studies , HIV Seronegativity/immunology , Young Adult , Aged
SELECTION OF CITATIONS
SEARCH DETAIL