Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Sci Food Agric ; 104(1): 225-234, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37549225

ABSTRACT

BACKGROUND: Environmental stress can induce oxidative stress in Apis cerana cerana, leading to cellular oxidative damage, reduced vitality, and even death. Currently, owing to an incomplete understanding of the molecular mechanisms by which A. cerana cerana resists oxidative damage, there is no available method to mitigate the risk of this type of damage. Cyclin plays an important role in cell stress resistance. The aim of this study was to explore the in vivo protection of cyclin H against oxidative damage induced by abiotic stress in A. cerana cerana and clarify the mechanism of action. We isolated and identified the AccCyclin H gene in A. cerana cerana and analysed its responses to different exogenous stresses. RESULTS: The results showed that different oxidative stressors can induce or inhibit the expression of AccCyclin H. After RNA-interference-mediated AccCyclin H silencing, the activity of antioxidant-related genes and related enzymes was inhibited, and trehalose metabolism was reduced. AccCyclin H gene silencing reduced A. cerana cerana high-temperature tolerance. Exogenous trehalose supplementation enhanced the total antioxidant capacity of A. cerana cerana, reduced the accumulation of oxidants, and improved the viability of A. cerana cerana under high-temperature stress. CONCLUSION: Our findings suggest that trehalose can alleviate adverse stress and that AccCyclin H may participate in oxidative stress reactions by regulating trehalose metabolism. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Trehalose , Animals , Bees/genetics , Antioxidants/metabolism , Oxidative Stress , Stress, Physiological , RNA Interference , Insect Proteins/chemistry
2.
Int J Mol Sci ; 23(19)2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36233116

ABSTRACT

The complex host interaction network of human cytomegalovirus (HCMV) involves the regulatory protein kinase pUL97, which represents a viral cyclin-dependent kinase (CDK) ortholog. pUL97 interacts with the three human cyclin types T1, H, and B1, whereby the binding region of cyclin T1 and the pUL97 oligomerization region were both assigned to amino acids 231-280. We further addressed the question of whether HCMVs harboring mutations in ORF-UL97, i.e., short deletions or resistance-conferring point mutations, are affected in the interaction with human cyclins and viral replication. To this end, clinically relevant UL97 drug-resistance-conferring mutants were analyzed by whole-genome sequencing and used for genetic marker transfer experiments. The recombinant HCMVs indicated conservation of pUL97-cyclin interaction, since all viral UL97 point mutants continued to interact with the analyzed cyclin types and exerted wild-type-like replication fitness. In comparison, recombinant HCMVs UL97 Δ231-280 and also the smaller deletion Δ236-275, but not Δ241-270, lost interaction with cyclins T1 and H, showed impaired replication efficiency, and also exhibited reduced kinase activity. Moreover, a cellular knock-out of cyclins B1 or T1 did not alter HCMV replication phenotypes or pUL97 kinase activity, possibly indicating alternative, compensatory pUL97-cyclin interactions. In contrast, however, cyclin H knock-out, similar to virus deletion mutants in the pUL97-cyclin H binding region, exhibited strong defective phenotypes of HCMV replication, as supported by reduced pUL97 kinase activity in a cyclin H-dependent coexpression setting. Thus, cyclin H proved to be a very relevant determinant of pUL97 kinase activity and viral replication efficiency. As a conclusion, the results provide evidence for the functional importance of pUL97-cyclin interaction. High selective pressure on the formation of pUL97-cyclin complexes was identified by the use of clinically relevant mutants.


Subject(s)
Cyclin H , Cytomegalovirus , Viral Proteins , Amino Acids/metabolism , Cyclin H/genetics , Cyclin H/metabolism , Cyclin T/genetics , Cyclin T/metabolism , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cytomegalovirus/physiology , Genetic Markers , Humans , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Viral Proteins/genetics , Virus Replication/genetics
3.
Cancer Cell Int ; 20: 316, 2020.
Article in English | MEDLINE | ID: mdl-32694938

ABSTRACT

BACKGROUND: Cell cycle dysregulation plays a key role in the pathogenesis of malignant tumors. As a part of the CDK-activating kinase (CAK) trimeric complex, cyclin H is necessary to regulate the cell cycle and proliferation. This investigation aims to characterize the clinical significance and the biological functions of cyclin H in ovarian cancer. METHODS: Immunohistochemical staining was performed on 60 ovarian cancer cases, and a correlation between cyclin H expression and the clinical characteristics of ovarian cancer was analyzed. The function of cyclin H in ovarian cancer was further explored using HO8910 cells and a subcutaneous xenograft model of nude mice. RESULT: Cyclin H was slightly expressed in grade 1 ovarian cancer but highly expressed in grade 2 and grade 3 cancerous tissues. The Spearman's rank correlation analysis showed that the expression of cyclin H is positively correlated with the tumor grade, the FIGO stage, histological grade, and the peritoneal metastasis of ovarian cancer and is also positively correlated with the Ki67 and p-CDK2 in ovarian cancer. Additionally, we found that the five-year survival rate was higher in patients expressing low cyclin H than those expressing high cyclin H. Further, knockdown of cyclin H was achieved using an shRNA in HO8910 ovarian cancer cell line. Silencing cyclin H resulted in a G1/S cell cycle arrest in ovarian cancer cells suppressing its growth. The Ki67 expression was also decreased in cyclin H silenced ovarian cancer. CONCLUSION: These results suggest that high expression of cyclin H predicts the poor prognosis and promotes the growth of ovarian cancer by regulating the cell cycle.

4.
Tumour Biol ; 36(9): 6701-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25820824

ABSTRACT

CtBP2, as a transcriptional corepressor of epithelial-specific genes, has been reported to promote tumor due to upregulating epithelial-mesenchymal transition (EMT) in cancer cells. CtBP2 was also demonstrated to contribute to the proliferation of esophageal squamous cell carcinoma (ESCC) cells through a negative transcriptional regulation of p16(INK4A). In this study, for the first time, we reported that CtBP2 expression, along with CCNH/CDK7, was higher in ESCC tissues with lymph node metastases than in those without lymph node metastases. Moreover, both CtBP2 and CCNH/CDK7 were positively correlated with E-cadherin, tumor grade, and tumor metastasis. However, the concrete mechanism of CtBP2's role in enhancing ESCC migration remains incompletely understood. We confirmed that CCNH/CDK7 could directly interact with CtBP2 in ESCC cells in vivo and in vitro. Furthermore, our data demonstrate for the first time that CtBP2 enhanced the migration of ESCC cells in a CCNH/CDK7-dependent manner. Our results indicated that CCNH/CDK7-CtBP2 axis may augment ESCC cell migration, and targeting the interaction of both may provide a novel therapeutic target of ESCC.


Subject(s)
Alcohol Oxidoreductases/biosynthesis , Carcinoma, Squamous Cell/genetics , Cyclin H/biosynthesis , Cyclin-Dependent Kinases/biosynthesis , Esophageal Neoplasms/genetics , Nerve Tissue Proteins/biosynthesis , Aged , Alcohol Oxidoreductases/genetics , Carcinoma, Squamous Cell/pathology , Cell Movement/genetics , Cell Proliferation/genetics , Co-Repressor Proteins , Cyclin H/genetics , Cyclin-Dependent Kinase Inhibitor p16/biosynthesis , Cyclin-Dependent Kinase Inhibitor p16/genetics , Cyclin-Dependent Kinases/genetics , Epithelial-Mesenchymal Transition , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Male , Middle Aged , Nerve Tissue Proteins/genetics , Cyclin-Dependent Kinase-Activating Kinase
5.
Protein Expr Purif ; 114: 9-14, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26073096

ABSTRACT

Cyclin H (CycH), a member of the large cyclin family, participates in every process of cell division. Its biological functions and importance have received wide attention in mammalians, but not in higher plants. This work reports a protein purification protocol for obtaining Arabidopsis CycH;1 (AtCycH;1) from prokaryotic expression system, followed by characterization of its biophysical properties. The protein was constructed with a His-tag at its N-terminus. One-step nickel-affinity purification yielded high pure target protein, which behaved as a monomer in the testing condition. Circular Dichroism spectrum revealed that AtCycH;1 is a helical protein containing a significant amount of disordered structures. Further assays indicated that AtCycH;1 exhibits poor heat-resistance and can be easily degraded in room temperature, suggesting low stability for the protein. The flexible and unstable properties may be intrinsic to the protein in vivo as it has to bind with different partners during the cell cycle and be promptly degraded to meet the phase transition. The instability, however, can be improved by adding SO4(2-) ion in the protein buffer. The presence of a high concentration of SO4(2-) is capable of increasing the thermal stability and inhibiting the degradation. Irrespective of whether the association of SO4(2-) with AtCycH;1 drives the protein into more compact form or not, the current results may provide clues for a successful crystallization of AtCycH;1 and its subsequent structural analysis in the future.


Subject(s)
Arabidopsis Proteins/chemistry , Arabidopsis Proteins/isolation & purification , Arabidopsis/chemistry , Cyclins/chemistry , Cyclins/isolation & purification , Amino Acid Sequence , Arabidopsis Proteins/metabolism , Circular Dichroism , Cyclins/metabolism , Hot Temperature , Molecular Sequence Data , Protein Stability , Sequence Alignment
6.
bioRxiv ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38405971

ABSTRACT

Cyclin-dependent kinase 7 (Cdk7) occupies a central position in cell-cycle and transcriptional regulation owing to its function as both a CDK-activating kinase (CAK) and part of the general transcription factor TFIIH. Cdk7 forms an active complex upon association with Cyclin H and Mat1, and its catalytic activity is regulated by two phosphorylations in the activation segment (T loop): the canonical activating modification at T170 and another at S164. Here we report the crystal structure of the fully activated human Cdk7/Cyclin H/Mat1 complex containing both T-loop phosphorylations. Whereas pT170 coordinates a set of basic residues conserved in other CDKs, pS164 nucleates an arginine network involving all three subunits that is unique to the ternary Cdk7 complex. We identify differential dependencies of kinase activity and substrate recognition on individual phosphorylations within the Cdk7 T loop. The CAK function of Cdk7 is not affected by T-loop phosphorylation, whereas activity towards non-CDK substrates is increased several-fold by phosphorylation at T170. Moreover, dual T-loop phosphorylation at both T170 and S164 stimulates multi-site phosphorylation of transcriptional substrates-the RNA polymerase II (RNAPII) carboxy-terminal domain (CTD) and the SPT5 carboxy-terminal repeat (CTR) region. In human cells, Cdk7-regulatory phosphorylation is a two-step process in which phosphorylation of S164 precedes, and may prime, T170 phosphorylation. Thus, dual T-loop phosphorylation can regulate Cdk7 through multiple mechanisms, with pS164 supporting tripartite complex formation and possibly influencing Cdk7 processivity, while the canonical pT170 enhances kinase activity towards critical substrates involved in transcription.

7.
Oncol Rev ; 18: 1375291, 2024.
Article in English | MEDLINE | ID: mdl-38707485

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) accounts for half of non-Hodgkin lymphoma cases in people living with human immunodeficiency syndrome (PLWH). The interplay of viremia, immune dysregulation and co-infection with oncogenic viruses play a role in pathogenesis of DLBCL in PLWH (HIV-DLBCL). This scoping review aimed to describe the molecular landscape of HIV-DLBCL, investigate the impact of biomarker on clinical outcomes and describe technologies used to characterise HIV-DLBCL. Thirty-two papers published between 2001 and 2023 were included in this review. Samples of HIV-DLBCL were relatively small (16-110). Cohort effects influenced frequencies of molecular characteristics hence their impact on survival was not clear. Molecular features were distinct from HIV-unrelated DLBCL. The most frequently assessed characteristic was cell of origin (81.3% of studies). Somatic mutations were the least researched (6.3% of studies). Overall, biomarker identification in HIV-DLBCL requires broader richer data from larger or pooled samples using more powerful techniques such as next-generation sequencing.

8.
Cells ; 13(16)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39195228

ABSTRACT

Herpesviral protein kinases, such as the therapy-relevant pUL97 of human cytomegalovirus (HCMV), are important for viral replication efficiency as well as pathogenesis, and represent key antiviral drug targets. HCMV pUL97 is a viral cyclin-dependent kinase (CDK) ortholog, as it shares functional and structural properties with human CDKs. Recently, the formation of vCDK/pUL97-cyclin complexes and the phosphorylation of a variety of viral and cellular substrate proteins has been demonstrated. Genetic mapping and structural modeling approaches helped to define two pUL97 interfaces, IF1 and IF2, responsible for cyclin binding. In particular, the regulatory importance of interactions between vCDK/pUL97 and host cyclins as well as CDKs has been highlighted, both as determinants of virus replication and as a novel drug-targeting option. This aspect was substantiated by the finding that virus replication was impaired upon cyclin type H knock-down, and that such host-directed interference also affected viruses resistant to existing therapies. Beyond the formation of binary interactive complexes, a ternary pUL97-cyclin H-CDK7 complex has also been described, and in light of this, an experimental trans-stimulation of CDK7 activity by pUL97 appeared crucial for virus-host coregulation. In accordance with this understanding, several novel antiviral targeting options have emerged. These include kinase inhibitors directed to pUL97, to host CDKs, and to the pUL97-cyclin H interactive complexes. Importantly, a statistically significant drug synergy has recently been reported for antiviral treatment schemes using combinations of pharmacologically relevant CDK7 and vCDK/pUL97 inhibitors, including maribavir. Combined, such findings provide increased options for anti-HCMV control. This review focuses on regulatory interactions of vCDK/pUL97 with the host cyclin-CDK apparatus, and it addresses the functional relevance of these key effector complexes for viral replication and pathogenesis. On this basis, novel strategies of antiviral drug targeting are defined.


Subject(s)
Antiviral Agents , Cyclin-Dependent Kinases , Cytomegalovirus , Viral Proteins , Humans , Antiviral Agents/pharmacology , Cytomegalovirus/drug effects , Cytomegalovirus/physiology , Viral Proteins/metabolism , Viral Proteins/chemistry , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Virus Replication/drug effects , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Animals , Cyclins/metabolism , Phosphotransferases (Alcohol Group Acceptor)
9.
Virus Res ; 335: 199200, 2023 10 02.
Article in English | MEDLINE | ID: mdl-37591314

ABSTRACT

Human cytomegalovirus (HCMV) infection is shaped by a tightly regulated interplay between viral and cellular proteins. Distinct kinase activities, such as the viral cyclin-dependent kinase ortholog (vCDK) pUL97 and cellular CDK7 are both crucial for efficient viral replication. Previously, we reported that both kinases, vCDK/pUL97 and CDK7, interact with cyclin H, thereby achieving an enhanced level of kinase activity and overall functionality in viral replication. Here we provide a variety of novel results, as generated on a methodologically extended basis, and present a concept for the codetermination of viral replication efficiency through these kinase activities: (i) cyclin H expression, in various human cell types, is substantially upregulated by strains of HCMV including the clinically relevant HCMV Merlin; (ii) vCDK/pUL97 interacts with human cyclin H in both HCMV-infected and plasmid-transfected cell systems; (iii) a doxycycline-inducible shRNA-dependent knock-down (KD) of cyclin H significantly reduces pUL97 activity (qSox in vitro kinase assay); (iv) accordingly, pUL97 in vitro kinase activity is seen significantly increased upon addition of recombinant cyclin H; (v) as a point of specific importance, human CDK7 activity shows an increase by vCDK/pUL97-mediated trans-stimulation (whereas pUL97 is not stimulated by CDK7); (vi) phosphosite-specific antibodies indicate an upregulated CDK7 phosphorylation upon HCMV infection, as mediated through a pUL97-specific modulatory effect (i.e. shown by pUL97 inhibitor treatment or pUL97-deficient viral mutant); (vii) finally, an efficient KD of cyclin H in primary fibroblasts generally results in an impaired HCMV replication efficiency as measured on protein and genomic levels. These results show evidence for the codetermination of viral replication by vCDK/pUL97, cyclin H and CDK7, thus supporting the specific importance of cyclin H as a central regulatory factor, and suggesting novel targeting options for antiviral drugs.


Subject(s)
Cyclin-Dependent Kinases , Cytomegalovirus , Humans , Antiviral Agents , Cyclin H , Cyclin-Dependent Kinases/genetics , Cytomegalovirus/genetics , Phosphorylation
10.
Cancer Chemother Pharmacol ; 82(3): 421-428, 2018 09.
Article in English | MEDLINE | ID: mdl-29936608

ABSTRACT

PURPOSE: Digestive tract cancer patients treated with oxaliplatin are often associated with the development of peripheral neuropathy. The aim of the present study is to identify the influence of single-nucleotide polymorphisms (SNPs) in genes involved in oxaliplatin metabolism, cell cycle control, detoxification or excretion pathways with the development of oxaliplatin-induced acute peripheral neuropathy (acute OXAIPN) and its severity among digestive tract cancer patients treated with oxaliplatin-based chemotherapy. PATIENTS AND METHODS: A total of 228 digestive tract cancer patients undergoing with the oxaliplatin-based chemotherapy between November 2014 and December 2016 were included in the current study. Genomic DNA was extracted from peripheral blood by standard phenol-chloroform method. Genotyping of five SNPs in four genes [GSTP1 (rs1965), ABCG2 (rs3114018), CCNH (rs2230641, rs3093816), AGXT (rs4426527)] was carried out by Real-Time TaqMan SNP genotyping assay. RESULTS: We found that the two genetic variants rs2230641 and rs3093816 in cyclin H (CCNH) gene were significantly associated with both the incidence and severity of acute OXAIPN. For CCNH-rs2230641 (AA vs AG+GG; dominant model) Incidence: OR 2.62, 95% CI 1.44-4.75, p = 0.001, severity; OR 4.64, 95% CI 1.58-13.62, p = 0.002. For CCNH-rs3093816 (AA vs AG+GG; dominant model); incidence: OR 3.43, 95% CI 1.57-7.50, p = 0.001; severity: OR 2.36, 95% CI 1.05-5.30, p = 0.033. CONCLUSIONS: The results of the present study found significant association between CCNH polymorphisms and acute OXAIPN development. However, further studies are warranted from independent groups to validate our study results.


Subject(s)
Cyclin H/genetics , Digestive System Neoplasms/drug therapy , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/genetics , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cohort Studies , Digestive System Neoplasms/genetics , Digestive System Neoplasms/metabolism , Female , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Oxaliplatin/administration & dosage , Oxaliplatin/pharmacokinetics , Polymorphism, Single Nucleotide , Prospective Studies , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL