Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters

Publication year range
1.
Arch Biochem Biophys ; 741: 109617, 2023 06.
Article in English | MEDLINE | ID: mdl-37121295

ABSTRACT

This study aimed to investigate the effect and mechanism of 8-methoxypsoralen (8-MOP) on acetaminophen (APAP)-induced hepatotoxicity in mice. The study found that 1 h after intraperitoneal injection of 300 mg/kg APAP, treatment with 40 mg/kg, 80 mg/kg and 120 mg/kg 8-MOP could reduce serum transaminase level and histopathological liver necrosis area. Elevated mRNA expression of liver inflammatory mediators caused by excessive APAP was also reversed. 8-MOP significantly reduced APAP-induced hepatotoxicity dose-dependently, and the highest therapeutic dose of 8-MOP (120 mg/kg) had no harmful effects on the liver. Cocktail probe assay revealed that 8-MOP can inhibit Cyp2e1 enzymatic activities of mice, thereby reducing the production of acetaminophen-cysteine (APAP-CYS), a toxic metabolite of APAP. 8-MOP had no significant effect on the protein and gene expression of Cyp2e1. The three-dimensional structures of mouse Cyp2e1 were constructed by homologous modeling. Molecular docking showed that 8-MOP had a good binding effect on the enzyme activity site of Cyp2e1. In summary, 8-MOP dose-dependently attenuated APAP-induced hepatotoxicity by binding to Cyp2e1 and occupying the active center of the enzyme, thus competitively inhibiting the oxidative metabolism of APAP, and reducing the generation of toxic product APAP-CYS.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Methoxsalen , Animals , Mice , Acetaminophen/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Cytochrome P-450 CYP2E1/metabolism , Liver/metabolism , Methoxsalen/pharmacology , Molecular Docking Simulation
2.
Alcohol Clin Exp Res ; 46(6): 928-940, 2022 06.
Article in English | MEDLINE | ID: mdl-35403271

ABSTRACT

BACKGROUND: Hepatic steatosis is an early pathology of alcohol-associated liver disease (ALD). Fatty acid-binding protein-4 (FABP4, a FABP not normally produced in the liver) is secreted by hepatocytes in ALD and stimulates hepatoma proliferation and migration. This study sought to investigate the mechanism[s] by which hepatic ethanol metabolism regulates FABP4 and steatosis. METHODS: Human hepatoma cells (HepG2/HuH7) and cells stably transfected to express cytochrome P450 2E1 (CYP2E1), were exposed to ethanol in the absence or presence of chlormethiazole (a CYP2E1-inhibitor; CMZ) and/or EX-527 (a sirtuin-1 [SIRT1] inhibitor). The culture medium was analyzed for ethanol metabolism and FABP4 protein abundance. Cells were analyzed for FABP4 mRNA expression, SIRT1 protein abundance, and neutral lipid accumulation. In parallel, cells were analyzed for forkhead box O1 [FOXO1], ß-catenin, peroxisome proliferator-activated receptor-α [PPARα], and lipin-1α protein abundance in the absence or presence of ethanol and pharmacological inhibitors of the respective target proteins. RESULTS: CYP2E1-dependent ethanol metabolism inhibited the amount of SIRT1 protein detected, concomitant with increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation, effects abolished by CMZ. Analysis of pathways associated with lipid oxidation revealed increased FOXO1 nuclear localization and decreased ß-catenin, PPARα, and lipin-1α protein levels in CYP2E1-expressing cells in the presence of ethanol. Pharmacological inhibition of SIRT1 mimicked the effects of ethanol, while inhibition of FOXO1 abrogated the effect of ethanol on FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation in CYP2E1-expressing cells. Pharmacological inhibition of ß-catenin, PPARα, or lipin-1α failed to alter the effects of ethanol on FABP4 or neutral lipid accumulation. CONCLUSION: CYP2E1-dependent ethanol metabolism inhibits SIRT1-FOXO1 signaling, which leads to increased FABP4 mRNA expression, FABP4 protein secretion, and neutral lipid accumulation. These data suggest that FABP4 released from steatotic hepatocytes could play a role in promoting tumor cell expansion in the setting of ALD and represents a potential target for therapeutic intervention.


Subject(s)
Carcinoma, Hepatocellular , Fatty Liver , Liver Diseases, Alcoholic , Liver Neoplasms , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cytochrome P-450 CYP2E1/metabolism , Ethanol/metabolism , Ethanol/toxicity , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology , Fatty Liver/metabolism , Humans , Lipids/pharmacology , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Liver Neoplasms/metabolism , PPAR alpha , RNA, Messenger/metabolism , Sirtuin 1 , beta Catenin/metabolism , beta Catenin/pharmacology
3.
Arch Toxicol ; 96(10): 2785-2797, 2022 10.
Article in English | MEDLINE | ID: mdl-35763063

ABSTRACT

Occupational exposure to trichloroethylene (TCE) causes a systemic skin disorder with hepatitis known as TCE hypersensitivity syndrome (TCE-HS). Human Leukocyte Antigen (HLA)-B*13:01 is its susceptibility factor; however, the immunological pathogenesis of TCE-HS remains unknown. We herein examined the hypothesis that autoantibodies to CYP2E1 are primarily involved in TCE-HS. A case-control study of 80 TCE-HS patients, 186 TCE-tolerant controls (TCE-TC), and 71 TCE-nonexposed controls (TCE-nonEC) was conducted to measure their serum anti-CYP2E1 antibody (IgG) levels. The effects of TCE exposure indices, such as 8-h time-weighted-average (TWA) airborne concentrations, urinary metabolite concentrations, and TCE usage duration; sex; smoking and drinking habits; and alanine aminotransferase (ALT) levels on the antibody levels were also analyzed in the two control groups. There were significant differences in anti-CYP2E1 antibody levels among the three groups: TCE-TC > TCE-HS patients > TCE-nonEC. Antibody levels were not different between HLA-B*13:01 carriers and noncarriers in TCE-HS patients and TCE-TC. The serum CYP2E1 measurement suggested increased immunocomplex levels only in patients with TCE-HS. Multiple regression analysis for the two control groups showed that the antibody levels were significantly higher by the TCE exposure. Women had higher antibody levels than men; however, smoking, drinking, and ALT levels did not affect the anti-CYP2E1 antibody levels. Anti-CYP2E1 antibodies were elevated at concentrations lower than the TWA concentration of 2.5 ppm for TCE exposure. Since HLA-B*13:01 polymorphism was not involved in the autoantibody levels, the possible mechanism underlying the pathogenesis of TCE-HS is that TCE exposure induces anti-CYP2E1 autoantibody production, and HLA-B*13:01 is involved in the development of TCE-HS.


Subject(s)
Cytochrome P-450 CYP2E1 , Drug Hypersensitivity Syndrome , Occupational Exposure , Trichloroethylene , Autoantibodies/blood , Autoantibodies/genetics , Autoantibodies/immunology , Case-Control Studies , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/genetics , Chemical and Drug Induced Liver Injury/immunology , Cytochrome P-450 CYP2E1/blood , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/immunology , Drug Hypersensitivity Syndrome/blood , Drug Hypersensitivity Syndrome/etiology , Drug Hypersensitivity Syndrome/immunology , Female , HLA-B Antigens/blood , HLA-B Antigens/genetics , HLA-B Antigens/immunology , Hepatitis, Autoimmune/blood , Hepatitis, Autoimmune/immunology , Humans , Immunoglobulin G/blood , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Male , Occupational Exposure/adverse effects , Polymorphism, Genetic , Trichloroethylene/immunology , Trichloroethylene/toxicity
4.
Int J Mol Sci ; 23(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35682741

ABSTRACT

Acrylamide (AA) toxicity is associated with oxidative stress. During detoxification, AA is either coupled to gluthatione or biotransformed to glycidamide by the enzyme cytochrome P450 2E1 (CYP2E1). The aim of our study was to examine the hepatotoxicity of AA in vivo and in vitro. Thirty male Wistar rats were treated with 25 or 50 mg/kg b.w. of AA for 3 weeks. Qualitative and quantitative immunohistochemical evaluation of inducible nitric oxide synthase (iNOS), CYP2E1, catalase (CAT), superoxide dismutase 1 (SOD1), and SOD2 expression in liver was carried out. Bearing in mind that the liver is consisted mainly of hepatocytes, in a parallel study, we used the rat hepatoma cell line H4IIE to investigate the effects of AA at IC20 and IC50 concentrations on the redox status and the activity of CAT, SOD, and glutathione-S-transferase (GST), their gene expression, and CYP2E1 and iNOS expression. Immunohistochemically stained liver sections showed that treatment with AA25mg induced a significant decrease of CYP2E1 protein expression (p < 0.05), while treatment with AA50mg led to a significant increase of iNOS protein expression (p < 0.05). AA treatment dose-dependently elevated SOD2 protein expression (p < 0.05), while SOD1 protein expression was significantly increased only at AA50mg (p < 0.05). CAT protein expression was not significantly affected by AA treatments (p > 0.05). In AA-treated H4IIE cells, a concentration-dependent significant increase in lipid peroxidation and nitrite levels was observed (p < 0.05), while GSH content and SOD activity significantly decreased in a concentration-dependent manner (p < 0.05). AA IC50 significantly enhanced GST activity (p < 0.05). The level of mRNA significantly increased in a concentration-dependent manner for iNOS, SOD2, and CAT in AA-treated H4IIE cells (p < 0.05). AA IC50 significantly increased the transcription of SOD1, GSTA2, and GSTP1 genes (p < 0.05), while AA IC20 significantly decreased mRNA for CYP2E1 in H4IIE cells (p < 0.05). Obtained results indicate that AA treatments, both in vivo and in vitro, change hepatocytes; drug-metabolizing potential and disturb its redox status.


Subject(s)
Acrylamide , Cytochrome P-450 CYP2E1 , Acrylamide/metabolism , Acrylamide/toxicity , Animals , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Glutathione Transferase/metabolism , Hepatocytes/metabolism , Lipid Peroxidation , Male , Oxidative Stress , RNA, Messenger/metabolism , Rats , Rats, Wistar , Superoxide Dismutase-1/metabolism
5.
Vet Med (Praha) ; 67(5): 245-256, 2022 May.
Article in English | MEDLINE | ID: mdl-39170903

ABSTRACT

We investigated the effect of an albumin infusion on the enzyme activity, expression level of cytochrome P450 2E1 (CYP2E1), and oxidative stress in the serum and liver of streptozotocin (STZ)-induced diabetic rats. The STZ treatment enhanced the alanine aminotransferase and aspartate aminotransferase activities in the rat serum compared with those in the untreated rats. Treatment with STZ elevated the expression and catalytic activity of CYP2E1, and the oxidative stress, and decreased the reducing potentials in the liver, suggesting the possibility of diabetes-induced liver injury. Moreover, the antioxidant activity of the serum albumin decreased in the diabetic rats. In contrast, the administration of purified albumin from the intact rats to the diabetic rats restored these deleterious liver indices in an albumin concentration-dependent manner. These results suggest that an exogenous albumin infusion alleviates liver damage induced by type 1 diabetes.

6.
J Hepatol ; 75(2): 377-386, 2021 08.
Article in English | MEDLINE | ID: mdl-33675874

ABSTRACT

BACKGROUND & AIMS: Liver sinusoidal endothelial cell (LSEC) dysfunction has been reported in alcohol-related liver disease, yet it is not known whether LSECs metabolize alcohol. Thus, we investigated this, as well as the mechanisms of alcohol-induced LSEC dysfunction and a potential therapeutic approach for alcohol-induced liver injury. METHODS: Primary human, rat and mouse LSECs were used. Histone deacetylase 6 (HDAC6) was overexpressed specifically in liver ECs via adeno-associated virus (AAV)-mediated gene delivery to decrease heat shock protein 90 (Hsp90) acetylation in ethanol-fed mice. RESULTS: LSECs expressed CYP2E1 and alcohol dehydrogenase 1 (ADH1) and metabolized alcohol. Ethanol induced CYP2E1 in LSECs, but not ADH1. Alcohol metabolism by CYP2E1 increased Hsp90 acetylation and decreased its interaction with endothelial nitric oxide synthase (eNOS) leading to a decrease in nitric oxide (NO) production. A non-acetylation mutant of Hsp90 increased its interaction with eNOS and NO production, whereas a hyperacetylation mutant decreased NO production. These results indicate that Hsp90 acetylation is responsible for decreases in its interaction with eNOS and eNOS-derived NO production. AAV8-driven HDAC6 overexpression specifically in liver ECs deacetylated Hsp90, restored Hsp90's interaction with eNOS and ameliorated alcohol-induced liver injury in mice. CONCLUSION: Restoring LSEC function is important for ameliorating alcohol-induced liver injury. To this end, blocking acetylation of Hsp90 specifically in LSECs via AAV-mediated gene delivery has the potential to be a new therapeutic strategy. LAY SUMMARY: Alcohol metabolism in liver sinusoidal endothelial cells (LSECs) and the mechanism of alcohol-induced LSEC dysfunction are largely unknown. Herein, we demonstrate that LSECs can metabolize alcohol. We also uncover a mechanism by which alcohol induces LSEC dysfunction and liver injury, and we identify a potential therapeutic strategy to prevent this.


Subject(s)
Acetylation/drug effects , Liver Diseases, Alcoholic/genetics , Adult , Alcohol Drinking/adverse effects , Alcohol Drinking/physiopathology , Analysis of Variance , Animals , Endothelial Cells/drug effects , Endothelial Cells/enzymology , HSP90 Heat-Shock Proteins , Humans , Liver Diseases, Alcoholic/etiology , Mice , Rats
7.
J Gastroenterol Hepatol ; 36(10): 2925-2934, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34031913

ABSTRACT

BACKGROUND AND AIM: Cytochrome P450 2E1 (CYP2E1) plays a role in lipid metabolism, and by increasing hepatic oxidative stress and inflammation, the upregulation of CYP2E1 is involved in development of nonalcoholic steatohepatitis (NASH). We aimed to explore the relationship between CYP2E1-333A>T (rs2070673) and the histological severity of nonalcoholic fatty liver disease (NAFLD). METHODS: We studied 438 patients with biopsy-proven NAFLD. NASH was defined as NAFLD Activity Score ≥ 5 with existence of steatosis, ballooning, and lobular inflammation. CYP2E1-333A>T (rs2070673) was genotyped by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Serum cytokines related to inflammation were measured by the Bio-plex 200 system to investigate possible mediating factors involved in the process. RESULTS: The TA genotype of rs2070673 had a higher prevalence of moderate/severe lobular inflammation (27.6% vs 20.3% vs 13.3%, P < 0.01) and NASH (55.7% vs 42.4% vs 40.5%, P < 0.01) compared with the AA and TT genotypes, respectively. In multivariable regression modeling, the heterozygote state TA was associated with moderate/severe lobular inflammation (adjusted odds ratio: 2.31, 95% confidence interval 1.41-3.78, P < 0.01) or NASH (adjusted odds ratio: 1.82, 95% confidence interval 1.22-2.69, P < 0.01), independently of age, sex, common metabolic risk factors, and presence of liver fibrosis. Compared with no-NASH, NASH patients had significantly higher levels of serum interleukin-1 receptor antagonist, interleukin-18, and interferon-inducible protein-10 (IP-10), whereas only IP-10 was increased with the rs2070673 TA variant (P = 0.01). Mediation analysis showed that IP-10 was responsible for ~60% of the association between the rs2070672 and NASH. CONCLUSIONS: The TA allele of rs2070673 is strongly associated with lobular inflammation and NASH, and this effect appears to be largely mediated by serum IP-10 levels.


Subject(s)
Non-alcoholic Fatty Liver Disease , Alleles , Biopsy , Chemokine CXCL10 , Cytochrome P-450 CYP2E1/genetics , Humans , Inflammation/genetics , Non-alcoholic Fatty Liver Disease/genetics
8.
Pharmacology ; 106(11-12): 687-692, 2021.
Article in English | MEDLINE | ID: mdl-34662883

ABSTRACT

Preparation of brain microsomes by the calcium chloride aggregation method has been suggested as an alternative to the ultracentrifugation method. However, the effects of the calcium chloride concentration on the quality of the microsomal fractions are not known. Brain microsomes were prepared from the adult rat brains using the high-speed ultracentrifugation and low-speed calcium chloride (10-100 mM) aggregation methods (n = 5-6 per group). The microsomal protein yield (spectrometry), the cytochrome P450 reductase (CPR) activity (spectrometry), and the monooxygenase activities (UPLC-MS/MS) of CYP2D and CYP2E1 were determined in the obtained fractions. Increasing the concentrations of calcium chloride progressively increased the protein yield of the low-speed microsomal fractions. However, the increased yield was associated with a significant decrease in the activities of CPR, CYP2D, and CYP2E1. Additionally, the CYP2D and CYP2E1 activities were significantly correlated with the CPR activities of the fractions. In conclusion, when an ultracentrifuge is available, preparation of brain microsomes by the ultracentrifugation method might be preferable. However, the calcium aggregation method at a calcium chloride concentration of 10 mM is an acceptable alternative to the ultracentrifuge method.


Subject(s)
Brain/metabolism , Calcium Chloride/chemistry , Microsomes/metabolism , Animals , Cytochrome P-450 CYP2E1/metabolism , Dose-Response Relationship, Drug , Mixed Function Oxygenases/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Rats , Ultracentrifugation
9.
Pestic Biochem Physiol ; 178: 104944, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34446210

ABSTRACT

Maneb (MB)- and paraquat (PQ)-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) is regulated in parallel by cytochrome P450 2E1 (CYP2E1) and inducible nitric oxide synthase (iNOS). However, mechanism underlying their regulation is not yet understood. The study investigated the role of nuclear factor- kappa B (NF-κB) and mitogen-activated protein kinase/extracellular signal regulated kinase/protein kinase C (MEK/ERK/PKC) pathway in the regulation of iNOS- and CYP2E1-induced oxidative stress in PMNs. MB + PQ-induced changes in nitrite content, lipid peroxidation (LPO), iNOS expression/activity and inflammatory mediators were alleviated by aminoguanidine (AG), an iNOS inhibitor, without any change in CYP2E1. Alternatively, diallyl sulphide (DAS), a CYP2E1 inhibitor, rescued from MB + PQ-induced changes in CYP2E1 activity/expression, free radical generation, superoxide dismutase (SOD) activity, LPO and pro-inflammatory cytokines without any alterations in nitrite content and iNOS activity/expression. Pyrrolidine dithiocarbamate (PDTC), NF-κB inhibitor, did not alter CYP2E1 but mitigated free radical generation, SOD activity, LPO, nitrite content, iNOS activity/expression and levels of pro-inflammatory cytokines (tumor necrosis factor-α, interleukine-1ß and interleukine-4). Ex-vivo treatment with MEK inhibitor (PD98059), ERK1/2 inhibitor (AG126) or PKC inhibitor (rottlerin) ameliorated MB + PQ-induced increase in free radical generation and CYP2E1 activity/expression in PMNs. While PD98059 and AG126 abated MB + PQ-induced increase in ERK1/2, PKC-α/δ and CYP2E1 levels, rottlerin restored PKC-α/δ and CYP2E1 towards normalcy without affecting ERK1/2 level in MB + PQ-treated group. The results suggest that iNOS and CYP2E1 contributing to MB + PQ-induced oxidative stress in rat PMNs exhibit differential regulatory mechanisms. The inflammatory mediators regulate iNOS expression while CYP2E1 expression is triggered via MEK-ERK1/2-PKC pathway.


Subject(s)
Maneb , Animals , Cytochrome P-450 CYP2E1/metabolism , NF-kappa B , Neutrophils/metabolism , Nitric Oxide , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , Paraquat/toxicity , Rats
10.
Toxicol Ind Health ; 37(11): 695-704, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34643460

ABSTRACT

Acrylonitrile (AN) is a known animal carcinogen and suspected human carcinogen. Recently, occupational exposure to AN has considerably increased. Previously, we demonstrated that streptozotocin-induced diabetes potentiates AN-induced acute toxicity in rats and that the induced cytochrome P450 2E1 (CYP2E1) is responsible for this effect. In the present study, we examined whether induction of CYP2E1 is also the underlying mechanism for the potentiation of AN-induced acute toxicity in type 2 diabetes in db/db mice. The effect of phenethyl isothiocyanate (PEITC) in reducing potentiation was also investigated. The mice were randomly divided into the normal control, diabetic control, AN, diabetes + AN, PEITC + AN, and diabetes + PEITC + AN groups. PEITC (40 mg/kg) was orally administered to rats for 3 days, and 1 h after the last PEITC gavage, 45 mg/kg AN was intraperitoneally injected. Time to death was observed. The CYP2E1 level and enzymatic activity, cytochrome c oxidase (CCO) activity, and reactive oxygen species (ROS) levels were measured. The survival rate was decreased in AN-treated db/db mice compared with that in AN-treated wild-type mice. The hepatic CYP2E1 level and enzymatic activity remained unaltered in db/db mice. Phenethyl isothiocyanate alleviated AN-induced acute toxicity in db/db mice as evident in the increased survival rate, restored CCO activity, and decreased ROS level in both the liver and brain. The study results suggested that CYP2E1 may not be responsible for the sensitivity to AN-induced acute toxicity in db/db mice and that PEITC reduced the potentiation of AN-induced acute toxicity in db/db mice.


Subject(s)
Acrylonitrile/pharmacology , Diabetes Mellitus, Type 2/metabolism , Animals , Cytochrome P-450 CYP2E1/analysis , Isothiocyanates , Male , Mice , Mice, Inbred C57BL , Reactive Oxygen Species , Survival Rate
11.
J Appl Biomed ; 19(2): 105-112, 2021 05.
Article in English | MEDLINE | ID: mdl-34907710

ABSTRACT

This study evaluates the protective effect of Echinacoside on acute liver toxicity induced by acetaminophen in mice and the mechanism behind it. Echinacoside and N-Acetyl Cysteine were intragastrically administrated for 7 days, and acetaminophen was intraperitoneally injected into mice 1 h after the last treatment on day 7. At the end of the experimental period, histological examination, parameters for the level of oxidative damage, hepatic malondialdehyde, serum pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6, and interleukin-1ß), UDP-glucuronosyltransferases, and sulfotransferases changes were examined using enzyme-linked immunosorbent assay and standard biochemical procedures. The expression of cytochrome P450 2E1 protein was assessed by western blot, followed by in silico molecular docking. Acetaminophen treatment obviously increased the levels of ALT and AST, changed hepatic histopathology, promoted oxidative stress, decreased antioxidant enzyme activities, and elevated the pro-inflammatory cytokines. Echinacoside significantly attenuated Acetaminophen-induced liver damage in a dose-dependent manner, with the most effective dose at 100 mg/kg. The pretreatments of Echinacoside in different concentrations altered the Acetaminophen-induced hepatotoxicity levels by decreasing the level of liver enzymes, reducing the liver necrosis with vacuolization, decreasing the hepatic malondialdehyde formation, increasing hepatic antioxidants activities, suppressing the pro-inflammatory cytokines (Tumor Necrosis Factor, Interleukin-6 and Interleukin-1beta), inhibiting Nitric Oxide production, enhancing sulfotransferases and UDP-glucuronosyltransferases activities. Notably, the expression of cytochrome P450 2E1 was inhibited by Echinacoside in a dose-dependent manner and the binding energy was -214.3 MeV. Echinacoside showed a significant protective effect against Acetaminophen-induced hepatotoxicity through the inhibition of oxidative stress, the expression of pro-inflammatory cytokines and cytochrome P450 2E1 protein expression.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Chemical and Drug Induced Liver Injury , Cytokines , Glycosides , Oxidative Stress , Acetaminophen/adverse effects , Animals , Antioxidants/pharmacology , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Cytochrome P-450 CYP2E1/metabolism , Cytokines/drug effects , Cytokines/metabolism , Glycosides/pharmacology , Glycosides/therapeutic use , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Malondialdehyde/metabolism , Mice , Molecular Docking Simulation , Oxidative Stress/drug effects , Sulfotransferases/metabolism , Tumor Necrosis Factor-alpha/metabolism , Uridine Diphosphate/metabolism
12.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G428-G438, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31928222

ABSTRACT

Enhanced free fatty acid (FFA) flux from adipose tissue (AT) to liver plays an important role in the development of nonalcoholic steatohepatitis (NASH) and alcohol-associated liver disease (AALD). We determined the effectiveness of nanoformulated superoxide dismutase 1 (Nano) in attenuating liver injury in a mouse model exhibiting a combination of NASH and AALD. Male C57BL6/J mice were fed a chow diet (CD) or a high-fat diet (HF) for 10 wk followed by pair feeding of the Lieber-DeCarli control (control) or ethanol (ET) diet for 4 wk. Nano was administered once every other day for the last 2 wk of ET feeding. Mice were divided into 1) CD + control diet (CD + Cont), 2) high-fat diet (HF) + control diet (HF + Cont), 3) HF + Cont + Nano, 4) HF + ET diet (HF + ET), and 5) HF + ET + Nano. The total fat mass, visceral AT mass (VAT), and VAT perilipin 1 content were significantly lower only in HF + ET-fed mice but not in HF + ET + Nano-treated mice compared with controls. The HF + ET-fed mice showed an upregulation of VAT CYP2E1 protein, and Nano abrogated this effect. We noted a significant rise in plasma FFAs, ALT, and monocyte chemoattractant protein-1 in HF + ET-fed mice, which was blunted in HF + ET + Nano-treated mice. HF + ET-induced increases in hepatic steatosis and inflammatory markers were attenuated upon Nano treatment. Nano reduced hepatic CYP2E1 and enhanced catalase levels in HF + ET-fed mice with a concomitant increase in SOD1 protein and activity in liver. Nano was effective in attenuating AT and liver injury in mice exhibiting a combination of NASH and AALD, partly via reduced CYP2E1-mediated ET metabolism in these organs.NEW & NOTEWORTHY Increased free fatty acid flux from adipose tissue (AT) to liver accompanied by oxidative stress promotes nonalcoholic steatohepatitis (NASH) and alcohol-associated liver injury (AALD). Obesity increases the severity of AALD. Using a two-hit model involving a high-fat diet and chronic ethanol feeding to mice, and treating them with nanoformulated superoxide dismutase (nanoSOD), we have shown that nanoSOD improves AT lipid storage, reduces CYP2E1 in AT and liver, and attenuates the combined NASH/AALD in mice.


Subject(s)
Cytochrome P-450 CYP2E1/metabolism , Fatty Liver, Alcoholic/prevention & control , Intra-Abdominal Fat/drug effects , Liver/drug effects , Nanoparticles , Non-alcoholic Fatty Liver Disease/prevention & control , Superoxide Dismutase-1/administration & dosage , Adiposity/drug effects , Animals , Catalase/metabolism , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Disease Models, Animal , Drug Compounding , Fatty Liver, Alcoholic/enzymology , Fatty Liver, Alcoholic/genetics , Fatty Liver, Alcoholic/pathology , Gene Expression Regulation , Intra-Abdominal Fat/enzymology , Intra-Abdominal Fat/pathology , Lipolysis/drug effects , Liver/enzymology , Liver/pathology , Male , Mice, Inbred C57BL , Nanomedicine , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Oxidative Stress/drug effects , Perilipin-1/genetics , Perilipin-1/metabolism , Signal Transduction , Superoxide Dismutase-1/chemistry
13.
J Pineal Res ; 68(3): e12638, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32053237

ABSTRACT

Alcoholic liver disease is the most prevalent chronic liver disease. Melatonin is known to control many vital processes. Here, we explored a novel molecular mechanism by which melatonin-induced SIRT1 signaling protects against alcohol-mediated oxidative stress and liver injury. Gene expression profiles and metabolic changes were measured in liver specimens of mice and human subjects. Expression levels of Cb1r, Crbn, Btg2, Yy1, pro-inflammatory cytokines, and Cyp2e1 were significantly enhanced in chronic alcohol-challenged mice and human subjects. Levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hepatic CYP2E1 protein, and reactive oxygen species (ROS) were elevated in alcohol-fed WT mice but not in Cb1r antagonist-treated, Crbn null, or Yy1-silenced mice. Importantly, alcohol-induced Yy1 and Cyp2e1 expression, ROS amount, and liver injury were markedly diminished by melatonin treatment and the transduction of Sirt1 in mice, whereas this phenomenon was prominently ablated by silencing of Sirt1. Notably, SIRT1 physically interacted with YY1 and attenuated YY1 occupancy on the Cyp2e1 gene promoter. Melatonin-SIRT1 signaling ameliorates alcohol-induced oxidative liver injury by disrupting the CRBN-YY1-CYP2E1 signaling pathway. The manipulation of CRBN-YY1-CYP2E1 signaling network by the melatonin-SIRT1 pathway highlights a novel entry point for treating alcoholic liver disease.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cytochrome P-450 CYP2E1/metabolism , Liver Diseases, Alcoholic/metabolism , Melatonin/metabolism , Sirtuin 1/metabolism , Ubiquitin-Protein Ligases/metabolism , YY1 Transcription Factor/metabolism , Animals , Humans , Mice , Oxidative Stress/physiology , Signal Transduction/physiology
14.
Zhonghua Gan Zang Bing Za Zhi ; 28(6): 504-508, 2020 Jun 20.
Article in Zh | MEDLINE | ID: mdl-32660180

ABSTRACT

Objective: To study the protective effect and potential mechanism of heme oxygenase (HO-1)/carbon monoxide (CO)-mediated quercetin on alcoholic oxidative damage of primary rat hepatocytes. Methods: Primary rat hepatocytes were isolated and cultured by two-step collagenase technique. Ethanol exposed primary rat hepatocytes were simultaneously added with quercetin (100 µmol/L) and/or hemoglobin (100 µmol/L) or different doses of CO-releasing molecules (CORM-2, 5-50 µmol/L) for their combined action. After polling, LDH, AST activities and MDA and GSH levels were measured in the supernatant of cell culture. The alone or combined effects of quercetin, CORM-2, hemoglobin and zinc protoporphyrin IX exposed to ethanol were detected by the activity of CYP2E1 in liver microsomes. Statistical analysis of data was performed by analysis of variance (ANOVA) and intergroup comparison was done by SNK-test. Results: Simultaneous addition of 100 µmol/L quercetin had significantly reduced ethanol-induced AST and LDH release, and GSH consumption and MDA elevation extent. Moreover, quercetin had not only lost the hemoglobin (CO blocker) protective effect but also had further exacerbated ethanol-induced lipid peroxidation. CORM-2 had reduced ethanol-induced AST and LDH release, and GSH consumption and MDA production in liver cells, and thus had dose-dependent protective effect. Ethanol had increased significantly CYP2E1 activity. Quercetin or CORM-2 had inhibited CYP2E1 activity, while hemoglobin or protoporphyrin IX had eliminated quercetin inhibitory effect and had increased the CYP2E1 activity. Quercetin, and CYP2E1 activity was constant as compared to ethanol group when CORM-2, zinc protoporphyrin IX and ethanol were incubated with hepatocytes, but the CYP2E1 activity was significantly decreased (P < 0.05), and the differences were statistically significant. Conclusion: CO/HO-1 metabolite mediates the protective effect of quercetin on alcoholic oxidative damage of hepatocytes, which may be related to the inhibition of CYP2E1 activity.


Subject(s)
Hepatocytes , Animals , Carbon Monoxide , Cytochrome P-450 CYP2E1 , Ethanol , Heme Oxygenase-1 , Oxidative Stress , Quercetin , Rats
15.
Alcohol Clin Exp Res ; 43(3): 386-400, 2019 03.
Article in English | MEDLINE | ID: mdl-30667528

ABSTRACT

Fifty years ago, in 1968, the pioneering scientists Charles S. Lieber and Leonore M. DeCarli discovered the capacity for liver microsomes to oxidize ethanol (EtOH) and named it the microsomal ethanol-oxidizing system (MEOS), which revolutionized clinical and experimental alcohol research. The last 50 years of MEOS are now reviewed and highlighted. Since its discovery and as outlined in a plethora of studies, significant insight was gained regarding the fascinating nature of MEOS: (i) MEOS is distinct from alcohol dehydrogenase and catalase, representing a multienzyme complex with cytochrome P450 (CYP) and its preferred isoenzyme CYP 2E1, NADPH-cytochrome P450 reductase, and phospholipids; (ii) it plays a significant role in alcohol metabolism at high alcohol concentrations and after induction due to prolonged alcohol use; (iii) hydroxyl radicals and superoxide radicals promote microsomal EtOH oxidation, assisted by phospholipid peroxides; (iv) new aspects focus on microsomal oxidative stress through generation of reactive oxygen species (ROS), with intermediates such as hydroxyethyl radical, ethoxy radical, acetyl radical, singlet radical, hydroxyl radical, alkoxyl radical, and peroxyl radical; (v) triggered by CYP 2E1, ROS are involved in the initiation and perpetuation of alcoholic liver injury, consequently shifting the previous nutrition-based concept to a clear molecular-based disease; (vi) intestinal CYP 2E1 induction and ROS are involved in endotoxemia, leaky gut, and intestinal microbiome modifications, together with hepatic CYP 2E1 and liver injury; (vii) circulating blood CYP 2E1 exosomes may be of diagnostic value; (viii) circadian rhythms provide high MEOS activities associated with significant alcohol metabolism and potential toxicity risks as a largely neglected topic; and (ix) a variety of genetic animal models are useful and have been applied elucidating mechanistic aspects of MEOS. In essence, MEOS along with its CYP 2E1 component currently explains several mechanistic steps leading to alcoholic liver injury and has a promising future in alcohol research.


Subject(s)
Alcohol Oxidoreductases/metabolism , Cytochrome P-450 Enzyme System/metabolism , Ethanol/metabolism , Animals , Circadian Rhythm , Cytochrome P-450 CYP2E1/metabolism , Humans , Liver Diseases, Alcoholic/metabolism , Oxidative Stress
16.
Pharmacology ; 103(3-4): 143-150, 2019.
Article in English | MEDLINE | ID: mdl-30673679

ABSTRACT

BACKGROUND: Ganoderma lucidum Polysaccharides (GLPS) were found to possess various pharmacological properties including anti-inflammatory and hepatoprotective activities. However, the effect and possible mechanism of GLPS treatment on liver injury have not yet been reported. Therefore, this study aimed to explore the potential anti-inflammatory and hepatoprotective effects and possible mechanism of GLPS in carbon tetrachloride (CCl4)-induced acute liver injury mice. SUMMARY: GLPS significantly reduced the activation of NLRP3 inflammasome and improved liver function in liver injury mice. It significantly inhibited CCl4-induced changes of alanine aminotransferase and aspartate aminotransferase activities in serum, as well as nitric oxide synthase (NOS) and cytochrome P450 2E1 (CYP2E1) activities in liver tissue; it also remarkably decreased levels of liver weight and index, total bilirubin, interleukin (IL)-1ß, IL-18, IL-6 and tumor necrosis factor-α in serum, as well as malondialdehyde and IL-1ß in liver tissue. Protein expression levels of liver NLRP3, ASC, and Caspase-1 were also downregulated, while the glutathione level in liver tissue was remarkably enhanced in GLPS groups compared to that of the model group. Key Message: These results suggested that GLPS may be a potential for the prevention and treatment of acute liver injury with liver inflammation. The possible mechanism may be related to the inhibition of free radical lipid peroxidation, NOS, and CYP2E1 activities and activation of liver inflammatory factors.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury/prevention & control , Liver/drug effects , Polysaccharides/pharmacology , Reishi , Animals , Anti-Inflammatory Agents/isolation & purification , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Cytochrome P-450 CYP2E1/metabolism , Cytokines/metabolism , Cytoprotection , Inflammasomes/drug effects , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nitric Oxide Synthase/metabolism , Polysaccharides/isolation & purification , Reishi/chemistry
17.
Int J Mol Sci ; 21(1)2019 Dec 30.
Article in English | MEDLINE | ID: mdl-31906014

ABSTRACT

Cryptotanshinone (CT), a diterpene that is isolated from Salvia miltiorrhiza Bunge, exhibits anti-cancer, anti-oxidative, anti-fibrosis, and anti-inflammatory properties. Here, we examined whether CT administration possess a hepatoprotective effect on chronic ethanol-induced liver injury. We established a chronic alcohol feeding mouse model while using C57BL/6 mice, and examined the liver sections with hematoxylin-eosin (H&E) and Oil Red O (ORO) staining. Further, we analyzed the lipogenesis, fatty acid oxidation, oxidative stress, and inflammation genes by using quantitative polymerase chain reaction (qPCR) and immunoblotting in in vivo, and in vitro while using HepG2 and AML-12 cells. CT treatment significantly ameliorated ethanol-promoted hepatic steatosis, which was consistent with the decreased hepatic triglyceride levels. Interestingly, CT activated the phosphorylation of AMP-activated protein kinase (AMPK), sirtuin 1 (SIRT1), and nuclear factor E2-related factor 2 (Nrf2) proteins. Importantly, compound C (AMPK inhibitor) significantly blocked the CT-mediated reduction in TG accumulation, but not Ex52735 (SIRT1 inhibitor), which suggested that CT countering ethanol-promoted hepatic steatosis is mediated by AMPK activation. Furthermore, CT significantly inhibited cytochrome P450 2E1 (CYP2E1) and enhanced both the expression of antioxidant genes and hepatic glutathione levels. Finally, CT inhibited the ethanol-induced inflammation in ethanol-fed mice and HepG2 cells. Overall, CT exhibits a hepatoprotective effect against ethanol-induced liver injury by the inhibition of lipogenesis, oxidative stress, and inflammation through the activation of AMPK/SIRT1 and Nrf2 and the inhibition of CYP2E1. Therefore, CT could be an effective therapeutic agent for treating ethanol-induced liver injury.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Chemical and Drug Induced Liver Injury, Chronic/drug therapy , Ethanol/adverse effects , NF-E2-Related Factor 2/metabolism , Phenanthrenes/pharmacology , Salvia miltiorrhiza/chemistry , Signal Transduction/drug effects , Sirtuin 1/metabolism , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Chemical and Drug Induced Liver Injury, Chronic/pathology , Disease Models, Animal , Fatty Liver , Glutathione/metabolism , Hep G2 Cells , Humans , Inflammation/genetics , Lipid Metabolism/genetics , Lipogenesis/genetics , Liver/metabolism , Liver/pathology , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Phenanthrenes/therapeutic use
18.
J Hepatol ; 69(1): 142-153, 2018 07.
Article in English | MEDLINE | ID: mdl-29458168

ABSTRACT

BACKGROUND & AIMS: Binge alcohol exposure causes gut leakiness, contributing to increased endotoxemia and inflammatory liver injury, although the molecular mechanisms are still elusive. This study was aimed at investigating the roles of apoptosis of enterocytes and nitration followed by degradation of intestinal tight junction (TJ) and adherens junction (AJ) proteins in binge alcohol-induced gut leakiness. METHODS: The levels of intestinal (ileum) junctional complex proteins, oxidative stress markers and apoptosis-related proteins in rodents, T84 colonic cells and autopsied human ileums were determined by immunoblot, immunoprecipitation, immunofluorescence, and mass-spectral analyses. RESULTS: Binge alcohol exposure caused apoptosis of gut enterocytes with elevated serum endotoxin and liver injury. The levels of intestinal CYP2E1, iNOS, nitrated proteins and apoptosis-related marker proteins were significantly elevated in binge alcohol-exposed rodents. Differential, quantitative mass-spectral analyses of the TJ-enriched fractions of intestinal epithelial layers revealed that several TJ, AJ and desmosome proteins were decreased in binge alcohol-exposed rats compared to controls. Consistently, the levels of TJ proteins (claudin-1, claudin-4, occludin and zonula occludens-1), AJ proteins (ß-catenin and E-cadherin) and desmosome plakoglobin were very low in binge alcohol-exposed rats, wild-type mice, and autopsied human ileums but not in Cyp2e1-null mice. Additionally, pretreatment with specific inhibitors of CYP2E1 and iNOS prevented disorganization and/or degradation of TJ proteins in alcohol-exposed T84 colonic cells. Furthermore, immunoprecipitation followed by immunoblot confirmed that intestinal TJ and AJ proteins were nitrated and degraded via ubiquitin-dependent proteolysis, resulting in their decreased levels. CONCLUSIONS: These results demonstrated for the first time the critical roles of CYP2E1, apoptosis of enterocytes, and nitration followed by ubiquitin-dependent proteolytic degradation of the junctional complex proteins, in promoting binge alcohol-induced gut leakiness and endotoxemia, contributing to inflammatory liver disease. LAY SUMMARY: Binge alcohol exposure causes gut leakiness, contributing to increased endotoxemia and inflammatory liver injury. Our results demonstrated for the first time the critical roles of apoptosis of enterocytes and nitration followed by ubiquitin-dependent proteolytic degradation of the junctional complex proteins in promoting this gut leakiness and endotoxemia. These results provide insight into the molecular mechanisms of alcohol-induced inflammatory liver disease.


Subject(s)
Apoptosis , Cytochrome P450 Family 2/metabolism , Enterocytes/pathology , Ileum/pathology , Liver Diseases, Alcoholic/pathology , Liver/pathology , Oxidative Stress , Adult , Aged , Animals , Cells, Cultured , Endotoxins/metabolism , Enterocytes/metabolism , Ethanol/adverse effects , Female , Hepatocytes/drug effects , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Ileum/drug effects , Ileum/metabolism , Immunoblotting , Immunoprecipitation , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Male , Middle Aged , Rats , Rats, Inbred F344
19.
Arch Toxicol ; 92(10): 3093-3101, 2018 10.
Article in English | MEDLINE | ID: mdl-30132044

ABSTRACT

The Japanese Ministry of Health, Labour, and Welfare recently reported an outbreak of bladder cancer among workers who handled aromatic amines in Japan. 2,4-dimethylaniline (2,4-DMA) is one of the chemicals that workers are considered to have the most opportunities to be exposed. Genotoxic events are known to be crucial steps in the initiation of cancer. However, studies on the genotoxicity of 2,4-DMA are limited, particularly studies investigating the mechanism behind the genotoxicity by 2,4-DMA are completely lacking. We examined genotoxic properties of 2,4-DMA using phosphorylated histone H2AX (γ-H2AX), a sensitive and reliable marker of DNA damage, in cultured human urothelial and hepatic cells. Our results clearly showed that 2,4-DMA at a concentration range of 1-10 mM generates γ-H2AX in both cell lines, indicating that 2,4-DMA is genotoxic. During mechanistic investigation, we found that 2,4-DMA boosts intracellular reactive oxygen species, an effect clearly attenuated by disulfiram, a strong inhibitor of cytochrome P450 2E1 (CYP2E1). In addition, CYP2E1 inhibitors and the antioxidant, N-acetylcysteine, also attenuated γ-H2AX generation following exposure to 2,4-DMA. Collectively, these results suggest that γ-H2AX is formed following exposure to 2,4-DMA via reactive oxygen species produced by CYP2E1-mediated metabolism. Continuous exposure to genotoxic aromatic amines such as 2,4-DMA over a long period of time may have contributed to the development of bladder cancer. Our results provide important insights into the carcinogenicity risk of 2,4-DMA in occupational bladder cancer outbreaks at chemical plants in Japan.


Subject(s)
Aniline Compounds/toxicity , Cytochrome P450 Family 2/metabolism , Hepatocytes/drug effects , Histones/metabolism , Reactive Oxygen Species/metabolism , Cell Cycle/drug effects , Cells, Cultured , Cytochrome P-450 CYP2E1 Inhibitors/pharmacology , DNA Breaks, Double-Stranded/drug effects , Epithelial Cells/drug effects , Hepatocytes/metabolism , Humans , Phosphorylation/drug effects , Ureter/cytology
20.
J Appl Toxicol ; 38(5): 766-772, 2018 05.
Article in English | MEDLINE | ID: mdl-29327353

ABSTRACT

Acetaminophen poisoning increases cytochrome P450 2E1 expression and reactive oxygen species production, which may lead to maladaptive myocardial remodeling and congestive heart failure (CHF). We conducted a nationwide cohort study to investigate the incidence and risk of CHF in patients with acetaminophen poisoning. We identified a cohort of adult patients with newly diagnosed acetaminophen poisoning in the inpatient claims of the Taiwan National Health Insurance Research Database for the 1998-2011 period. A comparison cohort was frequency matched at a 4:1 ratio for sex, age and index year. All patients were followed up until the occurrence of CHF, withdrawal from the National Health Insurance program, or December 31, 2011. Cox proportional hazards models were employed to calculate the risk of CHF in the acetaminophen poisoning cohort compared with the comparison cohort, and the hazard ratios with 95% confidence intervals are presented. A total of 3546 and 14 184 patients with and without acetaminophen poisoning were followed up for a total of 25 856 and 102 119 person-years, respectively. The overall incidence of CHF was higher in the acetaminophen poisoning cohort than in the comparison cohort (8.12 vs. 5.19 per 10 000 person-years). After adjustment for covariates, the acetaminophen poisoning cohort exhibited a 1.59-fold higher risk of CHF (adjusted hazard ratio = 1.59; 95% confidence interval = 1.43-1.75) than did the comparison cohort. Patients with acetaminophen poisoning exhibited a significantly higher risk of CHF compared with the comparison cohort. Clinicians should follow up heart function in patients with acetaminophen poisoning.


Subject(s)
Acetaminophen/poisoning , Heart Failure/chemically induced , Adult , Age Factors , Case-Control Studies , Cohort Studies , Female , Heart Failure/epidemiology , Humans , Male , Middle Aged , Proportional Hazards Models , Risk Factors , Taiwan/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL