Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Nutrients ; 16(2)2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38276554

ABSTRACT

Intermittent fasting (IF) and caloric restriction (CR) are dietary strategies to prevent and attenuate obesity associated with conditions and aging-related outcomes. This scoping review examined the cardiometabolic, cancer, and neurocognitive outcome differences between IF and CR interventions among adults. We applied a systematic approach to scope published randomized controlled trials (databases: PubMed, CINAHL Plus, PsychInfo, Scopus, and Google Scholar) from inception through August 2023. The initial search provided 389 unique articles which were critically appraised. Thirty articles met the eligibility criteria for inclusion: 12 were IF, 10 were CR, and 8 were combined IF and CR interventions. IF and CR were associated with weight loss; however, IF studies tended to report greater adherence compared with CR. Overall, IF and CR were equivalently effective across cardiometabolic, cancer, and neurocognitive outcomes. Our findings suggest that IF has health benefits in a variety of conditions and may be better accepted and tolerated than CR, but more comparative research is required.


Subject(s)
Cardiovascular Diseases , Neoplasms , Adult , Humans , Aging , Caloric Restriction , Cardiovascular Diseases/prevention & control , Fasting , Intermittent Fasting , Neoplasms/prevention & control , Randomized Controlled Trials as Topic
2.
Transl Neurodegener ; 13(1): 17, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38561866

ABSTRACT

Huntington's disease (HD) is a devastating neurodegenerative disorder caused by aggregation of the mutant huntingtin (mHTT) protein, resulting from a CAG repeat expansion in the huntingtin gene HTT. HD is characterized by a variety of debilitating symptoms including involuntary movements, cognitive impairment, and psychiatric disturbances. Despite considerable efforts, effective disease-modifying treatments for HD remain elusive, necessitating exploration of novel therapeutic approaches, including lifestyle modifications that could delay symptom onset and disease progression. Recent studies suggest that time-restricted eating (TRE), a form of intermittent fasting involving daily caloric intake within a limited time window, may hold promise in the treatment of neurodegenerative diseases, including HD. TRE has been shown to improve mitochondrial function, upregulate autophagy, reduce oxidative stress, regulate the sleep-wake cycle, and enhance cognitive function. In this review, we explore the potential therapeutic role of TRE in HD, focusing on its underlying physiological mechanisms. We discuss how TRE might enhance the clearance of mHTT, recover striatal brain-derived neurotrophic factor levels, improve mitochondrial function and stress-response pathways, and synchronize circadian rhythm activity. Understanding these mechanisms is critical for the development of targeted lifestyle interventions to mitigate HD pathology and improve patient outcomes. While the potential benefits of TRE in HD animal models are encouraging, future comprehensive clinical trials will be necessary to evaluate its safety, feasibility, and efficacy in persons with HD.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Animals , Humans , Huntington Disease/genetics , Huntington Disease/therapy , Huntington Disease/metabolism , Fasting , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL