Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Cell Mol Neurobiol ; 43(3): 1369-1384, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35864429

ABSTRACT

Seasonal changes in peripheral inflammation are well documented in both humans and animal models, but seasonal changes in neuroinflammation, especially the impact of seasonal lighting environment on neuroinflammation remain unclear. To address this question, the present study examined the effects of environmental lighting conditions on neuroinflammation in a diurnal rodent model, Nile grass rats (Arvicanthis niloticus). Male and female grass rats were housed in either bright (brLD) or dim (dimLD) light during the day to simulate a summer or winter light condition, respectively. After 4 weeks, microglia markers Iba-1 and CD11b, as well as pro-inflammatory cytokines TNF-α and IL-6, were examined in the anterior cingulate cortex (ACC), basolateral amygdala (BLA), and dorsal hippocampus (dHipp). The results revealed that winter-like dim light during the day leads to indicators of increased neuroinflammation in a brain site- and sex-specific manner. Specifically, relatively few changes in the neuroinflammatory markers were observed in the ACC, while numerous changes were found in the BLA and dHipp. In the BLA, winter-like dimLD resulted in hyper-ramified microglia morphology and increased expression of the pro-inflammatory cytokine IL-6, but only in males. In the dHipp, dimLD led to a higher number and hyper-ramified morphology of microglia as well as increased expression of CD11b and TNF-α, but only in females. Neuroinflammatory state is thus influenced by environmental light, differently in males and females, and could play a role in sex differences in the prevalence and symptoms of psychiatric or neurological disorders that are influenced by season or other environmental light conditions. Diurnal Nile grass rats were housed under bright or dim light during the day for 4 weeks, simulating seasonal fluctuations in daytime lighting environment. Dim light housing resulted in hyper-ramified morphology of microglia (scale bar, 15 µm) and altered expression of pro-inflammatory cytokines (TNF-α) in a sex- and brain region-specific manner.


Subject(s)
Brain , Lighting , Microglia , Neuroinflammatory Diseases , Neuroinflammatory Diseases/etiology , Murinae , Models, Animal , Male , Female , Animals , Brain/physiopathology , Brain/radiation effects , CD11b Antigen/analysis , CD11b Antigen/genetics , Biomarkers/analysis , Gene Expression Regulation/radiation effects , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/genetics , Interleukin-6/analysis , Interleukin-6/genetics , Sex Factors , Microglia/metabolism , Microglia/radiation effects
2.
Front Cell Neurosci ; 18: 1339282, 2024.
Article in English | MEDLINE | ID: mdl-38333056

ABSTRACT

In this work, we introduce a diurnal rodent, the Mongolian gerbil (Meriones unguiculatus) (MG) as an alternative to study retinal cone system physiology and pathophysiology in mice. The cone system is of particular importance, as it provides high-acuity and color vision and its impairment in retinal disorders is thus especially disabling. Despite their nocturnal lifestyle, mice are currently the most popular animals to study cone-related diseases due to the high availability of genetically modified models. However, the potential for successful translation of any cone-related results is limited due to the substantial differences in retinal organization between mice and humans. Alternatively, there are diurnal rodents such as the MG with a higher retinal proportion of cones and a macula-like specialized region for improved visual resolution, the visual streak. The focus of this work was the evaluation of the MG's cone system functionality using full-field electroretinography (ERG), together with a morphological assessment of its retinal/visual streak organization via angiography, optical coherence tomography (OCT), and photoreceptor immunohistochemistry. We found that rod system responses in MGs were comparable or slightly inferior to mice, while in contrast, cone system responses were much larger, more sensitive, and also faster than those in the murine counterparts, and in addition, it was possible to record sizeable ON and OFF ERG components. Morphologically, MG cone photoreceptor opsins were evenly distributed throughout the retina, while mice show a dorsoventral M- and S-opsin gradient. Additionally, each cone expressed a single opsin, in contrast to the typical co-expression of opsins in mice. Particular attention was given to the visual streak region, featuring a higher density of cones, elongated cone and rod outer segments (OSs), and an increased thickness of the inner and outer retinal layers in comparison to peripheral regions. In summary, our data render the MG a supreme model to investigate cone system physiology, pathophysiology, and to validate potential therapeutic strategies in that context.

3.
Behav Processes ; 179: 104214, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32768461

ABSTRACT

Animals trade-off predation risk against feeding opportunities and prey species may use signals or cues of predators to assess predation risk. We analyzed the mesopredators pine and stone marten (Martes martes, M. foina) and nocturnal and diurnal rodents (Glis glis, Apodemus spp., Sciurus vulgaris). The non-experimental approach used camera traps at feeders which were visited by both, predator and prey. As prey species can eavesdrop on predator signals/cues, there should show some avoidance behavior. The study was conducted on a small mountain in Germany, largely covered by wood, between 29.6.2018 and 5.10.2018. Camera traps were placed 0.6 m near a feeder. Food was replenished regularly to provide a continuous food supply. 34 camera traps provided data for an analysis; total trap nights were 513 (12,312 h). Martens detected the food sources first in 10 instances, and prey species Apodemus/G. glis in 24 instances. G. glis seemed to generally avoid places where martens were feeding while Apodemus and Sciurus did not. The visitations of G. glis depended on whether martens were the first visitors and it significantly avoided such places. Similarly, Apodemus appeared less often at a feeder when martens have been present as a first visitor. The time interval to resume feeding to a monitored feeder after a marten visit was significantly longer compared to a control in G. glis, but not in Apodemus and S. vulgaris. The study shows different responses, with the weakest in the diurnal rodent, and the highest in G. glis. Thus, if a food resource was known by prey species before a predator occurred, the trade-off was shifted towards feeding, but when the predators detect the food source first, the trade-off was shifted to predator avoidance.


Subject(s)
Avoidance Learning , Mustelidae , Rodentia , Animals , Predatory Behavior
4.
Neuroscience ; 404: 175-183, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30690136

ABSTRACT

Light has pervasive effects on the physiology and behavior of mammals. Several human studies have shown that light modulates cognitive functions; however, the mechanisms responsible for the effects of light remain unclear. Our previous work using diurnal male Nile grass rats (Arvicanthis niloticus) revealed that reduced illuminance during the day leads to impairments in hippocampal-dependent spatial learning/memory, reduced CA1 dendritic spine density, and attenuated hippocampal brain-derived neurotrophic factor (BDNF) expression in males. The present study examined the impact of ambient light intensity on hippocampal functions in female grass rats and explored sex differences in behavioral and hippocampal responses. Female grass rats were housed in either a 12:12-hr bright light-dark (brLD, 1000 lx) or dim light-dark (dimLD, 50 lx) cycle for four weeks. The dimLD group showed impaired spatial memory in the Morris water maze task and reduced CA1 apical dendritic spine density, similar to prior observations in males. However, the behavioral deficits seen in females were more severe than those seen in males, with dimLD females showing no evidence of long-term retention over the 24-hour periods between training sessions. In contrast to the attenuated hippocampal BDNF expression found in dimLD males, there was no significant difference in the expression of BDNF and of its receptor TrkB between females in brLD and dimLD. The results suggest that, as seen in male grass rats, reduced illuminance during the day impairs hippocampal-dependent spatial memory and hippocampal plasticity in female diurnal grass rats, but the underlying signaling pathways responsible for the effects of light restriction may differ between the sexes.


Subject(s)
Hippocampus/physiology , Neuronal Plasticity/physiology , Photoperiod , Spatial Learning/physiology , Spatial Memory/physiology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Circadian Rhythm/physiology , Cognition/physiology , Dendritic Spines/metabolism , Female , Hippocampus/metabolism , Light , Maze Learning/physiology , Murinae , Receptor, trkB/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL