Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 783
Filter
Add more filters

Publication year range
1.
J Neurophysiol ; 132(2): 527-530, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38985940

ABSTRACT

Ischemic preconditioning (IPC) can enhance maximal strength likely due to neural priming. Cruz et al. (Cruz R, Tramontin AF, Oliveira AS, Caputo F, Denadai BS, Greco CC. Scand J Med Sci Sports 34: e14591, 2024) examined the neurophysiological mechanisms responsible for the ergogenic effect. Although key neurophysiological measures remained largely unchanged, voluntary activation and maximal strength were greater following IPC than sham-IPC. Although the mechanistic evidence remains inconclusive, the greater maximal strength provides further evidence of the ergogenic benefit of IPC. Researchers should continue examining the broader functional implications of IPC.


Subject(s)
Ischemic Preconditioning , Ischemic Preconditioning/methods , Humans , Muscle Strength/physiology , Muscle, Skeletal/physiology
2.
Eur J Nutr ; 2024 Sep 04.
Article in English | MEDLINE | ID: mdl-39231871

ABSTRACT

PURPOSE: Caffeine is a potent central nervous system stimulant that increases the activity of the prefrontal cortex and can improve various cognitive skills. An improvement in these cognitive skills can lead to further benefits in athletic performance. Therefore, it is necessary to clarify the dose-response of caffeine on cognitive performance. This study aimed to determine the effects of different doses of caffeine on sport-related cognitive aspects. METHODS: Twenty-nine healthy physically active young adults were recruited. All participants completed three trials under the following conditions: (a) placebo, (b) 3 mg/kg, or (c) 6 mg/kg body mass of caffeine. In each trial, different cognitive abilities were evaluated with the following battery of tests: reaction time (Dynavision™ D2), anticipation (Bassin Anticipation Timer), sustained attention (Go/No-Go and Eriksen Flanker Test) and memory tests. Moreover, the side effects and the perceived sensation index were recorded 24 h after each test. RESULTS: Reaction time only improved following 6 mg/kg of caffeine intake (Physical reaction time: -0.04 s, 95% CI -0.08 to -0.01 s, P = 0.036, d = 0.5; Motor reaction time: -0.04 s, 95% CI -0.07 to -0.01 s, P = 0.008, d = 0.6) compared to the placebo condition. Anticipation, sustained attention, and memory were not affected after either caffeine dose intake (all P > 0.05). In addition, the 6 mg/kg dose of caffeine augmented the occurrence of the side effects of increased activeness (P = 0.046) and nervousness (P = 0.001). CONCLUSION: Acute intake of 6 mg/kg caffeine is effective in improving reaction time despite increasing the occurrence of side effects in healthy physically active young adults. STUDY REGISTRATION: This study has been registered in ClinicalTrials whose ID is: NCT05995314 (2023-08-08).

3.
Scand J Med Sci Sports ; 34(1): e14307, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36648389

ABSTRACT

Top-class athletes have optimized their athletic performance largely through adequate training, nutrition, recovery, and sleep. A key component of sports nutrition is the utilization of nutritional ergogenic aids, which may provide a small but significant increase in athletic performance. Over the last decade, there has been an exponential increase in the consumption of nutritional ergogenic aids, where over 80% of young athletes report using at least one nutritional ergogenic aid for training and/or competition. Accordingly, due to their extensive use, there is a growing need for strong scientific investigations validating or invalidating the efficacy of novel nutritional ergogenic aids. Notably, an overview of the physiological considerations that play key roles in determining ergogenic efficacy is currently lacking. Therefore, in this brief review, we discuss important physiological considerations that contribute to ergogenic efficacy for nutritional ergogenic aids that are orally ingested including (1) the impact of first pass metabolism, (2) rises in systemic concentrations, and (3) interactions with the target tissue. In addition, we explore mouth rinsing as an alternate route of ergogenic efficacy that bypasses the physiological hurdles of first pass metabolism via direct stimulation of the central nervous system. Moreover, we provide real-world examples and discuss several practical factors that can alter the efficacy of nutritional ergogenic aids including human variability, dosing protocols, training status, sex differences, and the placebo effect. Taking these physiological considerations into account will strengthen the quality and impact of the literature regarding the efficacy of potential ergogenic aids for top-class athletes.


Subject(s)
Athletic Performance , Performance-Enhancing Substances , Humans , Female , Male , Dietary Supplements , Athletes , Performance-Enhancing Substances/pharmacology
4.
Scand J Med Sci Sports ; 34(9): e14731, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39308061

ABSTRACT

Carbohydrates are critical for high-intensity exercise performance. However, the effects of carbohydrate supplementation on muscle metabolism and performance during short-duration high-intensity intermittent exercise remain inadequately explored. Our aim was to address this aspect in a randomized, counterbalanced, double-blinded crossover design. Eleven moderately-to-well-trained males performed high-intensity intermittent cycling receiving carbohydrate (CHO, ~55 g/h) or placebo (PLA) fluid supplementation. Three exercise periods (EX1-EX3) were completed comprising 10 × 45 s at ~105% Wmax interspersed with 135 s rest between bouts and ~20 min between periods. Repeated sprint ability (5 × 6 s sprints with 24 s recovery) was assessed at baseline and after each period. Thigh muscle biopsies were obtained at baseline and before and after EX3 to determine whole-muscle and fiber-type-specific glycogen depletion. No differences were found in muscle glycogen degradation at the whole-muscle (p = 0.683) or fiber-type-specific level (p = 0.763-0.854) with similar post-exercise whole-muscle glycogen concentrations (146 ± 20 and 122 ± 15 mmol·kg-1 dw in CHO and PLA, respectively). Repeated sprint ability declined by ~9% after EX3 with no between-condition differences (p = 0.971) and no overall differences in ratings of perceived exertion (p = 0.550). This was despite distinctions in blood glucose concentrations throughout exercise, reaching post-exercise levels of 5.3 ± 0.2 and 4.1 ± 0.2 mmol·L-1 (p < 0.001) in CHO and PLA, respectively, accompanied by fivefold higher plasma insulin levels in CHO (p < 0.001). In conclusion, we observed no effects of carbohydrate ingestion on net muscle glycogen breakdown or sprint performance during short-duration high-intensity intermittent exercise despite elevated blood glucose and insulin levels. These results therefore question the efficacy of carbohydrate supplementation strategies in high-intensity intermittent sports.


Subject(s)
Athletic Performance , Cross-Over Studies , Dietary Carbohydrates , Glycogen , Muscle, Skeletal , Humans , Male , Glycogen/metabolism , Dietary Carbohydrates/administration & dosage , Double-Blind Method , Muscle, Skeletal/metabolism , Muscle, Skeletal/physiology , Athletic Performance/physiology , Young Adult , Adult , High-Intensity Interval Training , Blood Glucose/metabolism , Insulin/blood , Dietary Supplements , Bicycling/physiology
5.
Scand J Med Sci Sports ; 34(4): e14629, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646853

ABSTRACT

BACKGROUND: Athletes commonly use creatine, caffeine, and sodium bicarbonate for performance enhancement. While their isolated effects are well-described, less is known about their potential additive effects. METHODS: Following a baseline trial, we randomized 12 endurance-trained males (age: 25 ± 5 years, VO2max: 56.7 ± 4.6 mL kg-1 min-1; mean ± SD) and 11 females (age: 25 ± 3 years, VO2max: 50.2 ± 3.4 mL kg-1 min-1) to 5 days of creatine monohydrate (0.3 g kg-1 per day) or placebo loading, followed by a daily maintenance dose (0.04 g kg-1) throughout the study. After the loading period, subjects completed four trials in randomized order where they ingested caffeine (3 mg kg-1), sodium bicarbonate (0.3 g kg-1), placebo, or both caffeine and sodium bicarbonate before a maximal voluntary contraction (MVC), 15-s sprint, and 6-min time trial. RESULTS: Compared to placebo, mean power output during 15-s sprint was higher following loading with creatine than placebo (+34 W, 95% CI: 10 to 58, p = 0.008), but with no additional effect of caffeine (+10 W, 95% CI: -7 to 24, p = 0.156) or sodium bicarbonate (+5 W, 95% CI: -4 to 13, p = 0.397). Mean power output during 6-min time trial was higher with caffeine (+12 W, 95% CI: 5 to 18, p = 0.001) and caffeine + sodium bicarbonate (+8 W, 95% CI: 0 to 15, p = 0.038), whereas sodium bicarbonate (-1 W, 95% CI: -7 to 6, p = 0.851) and creatine (-6 W, 95% CI: -15 to 4, p = 0.250) had no effects. CONCLUSION: While creatine and caffeine can enhance sprint- and time trial performance, respectively, these effects do not seem additive. Therefore, supplementing with either creatine or caffeine appears sufficient to enhance sprint or short intense exercise performance.


Subject(s)
Athletic Performance , Caffeine , Creatine , Performance-Enhancing Substances , Sodium Bicarbonate , Humans , Caffeine/pharmacology , Caffeine/administration & dosage , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/pharmacology , Male , Creatine/administration & dosage , Creatine/pharmacology , Adult , Female , Young Adult , Performance-Enhancing Substances/administration & dosage , Performance-Enhancing Substances/pharmacology , Athletic Performance/physiology , Physical Endurance/drug effects , Endurance Training , Double-Blind Method , Oxygen Consumption/drug effects
6.
Scand J Med Sci Sports ; 34(1): e14500, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37880916

ABSTRACT

PURPOSE: Many athletes use long-acting beta2 -agonist formoterol in treatment of asthma. However, studies in non-athlete cohorts demonstrate that inhaled formoterol can enhance sprint performance calling into question whether its use in competitive sports should be restricted. We investigated whether formoterol at upper recommended inhaled doses (54 µg) would enhance sprint ability and intense exercise performance in elite cyclists. METHODS: Twenty-one male cyclists (V̇O2max : 70.4 ± 4.3 mL × min-1 × kg-1 , mean ± SD) completed two 6-s all-out sprints followed by 4-min all-out cycling after inhaling either 54 µg formoterol or placebo. We also assessed cyclists' leg muscle mass by dual-energy X-ray absorptiometry and muscle fiber type distribution of vastus lateralis biopsies. RESULTS: Peak and mean power output during the 6-s sprint was 32 W (95% CI, 19-44 W, p < 0.001) and 36 W (95% CI, 24-48 W, p < 0.001) higher with formoterol than placebo, corresponding to an enhancing effect of around 3%. Power output during 4-min all-out cycling was 9 W (95% CI, 2-16 W, p = 0.01) greater with formoterol than placebo, corresponding to an enhancing effect of 2.3%. Performance changes in response to formoterol were unrelated to cyclists' VO2max and leg lean mass, whereas muscle fiber Type I distribution correlated with change in sprinting peak power in response to formoterol (r2 = 0.314, p = 0.012). CONCLUSION: Our findings demonstrate that an inhaled one-off dose of 54 µg formoterol has a performance-enhancing potential on sprint ability and short intense performance in elite male cyclists, which is irrespective of training status but partly related to muscle fiber type distribution for sprint ability.


Subject(s)
Asthma , Athletic Performance , Humans , Male , Formoterol Fumarate/pharmacology , Muscle, Skeletal , Exercise , Quadriceps Muscle/physiology , Bicycling/physiology , Athletic Performance/physiology
7.
Scand J Med Sci Sports ; 34(3): e14595, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38458991

ABSTRACT

We investigated the acute effects of caffeine supplementation (6 mgï½¥kg-1 ) on 60-m sprint performance and underlying components with a step-to-step ground reaction force measurement in 13 male sprinters. After the first round sprint as a control, caffeine supplementation-induced improvement in 60-m sprint times (7.811 s at the first versus 7.648 s at the second round, 2.05%) were greater compared with the placebo condition (7.769 s at the first versus 7.768 s at the second round, 0.02%). Using average values for every four steps, in the caffeine condition, higher running speed (all six step groups), higher step frequency (5th-16th and 21st-24th step groups), shorter support time (all the step groups except for 13th-16th step) and shorter braking time (9th-24th step groups) were found. Regarding ground reaction forces variables, greater braking mean force (13th-19th step group), propulsive mean force (1st-12th and 17th-20th step groups), and effective vertical mean force (9th-12th step group) were found in the caffeine condition. For the block clearance phase at the sprint start, push-off and reaction times did not change, while higher total anteroposterior mean force, average horizontal external power, and ratio of force were found in the caffeine condition. These results indicate that, compared with placebo, acute caffeine supplementation improved sprint performance regardless of sprint sections during the entire acceleration phase from the start through increases in step frequency with decreases in support time. Moreover, acute caffeine supplementation promoted increases in the propulsive mean force, resulting in the improvement of sprint performance.


Subject(s)
Athletic Performance , Caffeine , Humans , Male , Biomechanical Phenomena , Caffeine/pharmacology , Kinetics , Acceleration , Dietary Supplements
8.
Eur J Appl Physiol ; 124(8): 2489-2502, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38568259

ABSTRACT

PURPOSE: Caffeine is a commonly used ergogenic aid for endurance events; however, its efficacy and safety have been questioned in hot environmental conditions. The aim of this study was to investigate the effects of acute caffeine supplementation on cycling time to exhaustion and thermoregulation in the heat. METHODS: In a double-blind, randomised, cross-over trial, 12 healthy caffeine-habituated and unacclimatised males cycled to exhaustion in the heat (35 °C, 40% RH) at an intensity associated with the thermoneutral gas exchange threshold, on two separate occasions, 60 min after ingesting caffeine (5 mg/kg) or placebo (5 mg/kg). RESULTS: There was no effect of caffeine supplementation on cycling time to exhaustion (TTE) (caffeine; 28.5 ± 8.3 min vs. placebo; 29.9 ± 8.8 min, P = 0.251). Caffeine increased pulmonary oxygen uptake by 7.4% (P = 0.003), heat production by 7.9% (P = 0.004), whole-body sweat rate (WBSR) by 21% (P = 0.008), evaporative heat transfer by 16.5% (P = 0.006) and decreased estimated skin blood flow by 14.1% (P < 0.001) compared to placebo. Core temperature was higher by 0.6% (P = 0.013) but thermal comfort decreased by - 18.3% (P = 0.040), in the caffeine condition, with no changes in rate of perceived exertion (P > 0.05). CONCLUSION: The greater heat production and storage, as indicated by a sustained increase in core temperature, corroborate previous research showing a thermogenic effect of caffeine ingestion. When exercising at the pre-determined gas exchange threshold in the heat, 5 mg/kg of caffeine did not provide a performance benefit and increased the thermal strain of participants.


Subject(s)
Body Temperature Regulation , Caffeine , Humans , Caffeine/pharmacology , Caffeine/administration & dosage , Male , Body Temperature Regulation/drug effects , Body Temperature Regulation/physiology , Adult , Bicycling/physiology , Hot Temperature , Double-Blind Method , Cross-Over Studies , Young Adult , Oxygen Consumption/drug effects , Sweating/drug effects , Sweating/physiology
9.
Eur J Appl Physiol ; 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-39068627

ABSTRACT

INTRODUCTION: Sodium bicarbonate (NaHCO3) ingestion has been found to be ergogenic in high-intensity exercise that ranges from 1 to 10 min; however, limited studies have investigated high-intensity exercise beyond this duration. PURPOSE: The present study aimed to determine the effect of NaHCO3 ingested using a carbohydrate hydrogel delivery system on 40 km time trial (TT) performance in trained male cyclists. METHODS: Fourteen trained male cyclists ingested 0.3 g kg-1 BM NaHCO3 (Maurten AB, Sweden) to determine individualised peak alkalosis, which established time of ingestion prior to exercise. Participants completed a 40 km familiarisation TT, and two 40 km experimental TTs after ingestion of either NaHCO3 or placebo in a randomised, double-blind, crossover design. RESULTS: NaHCO3 supplementation improved performance (mean improvement = 54.14 s ± 18.16 s; p = 0.002, g = 0.22) and increased blood buffering capacity prior to (HCO3- mean increase = 5.6 ± 0.2 mmol L-1, p < 0.001) and throughout exercise (f = 84.82, p < 0.001, pη2 = 0.87) compared to placebo. There were no differences in total gastrointestinal symptoms (GIS) between conditions either pre- (NaHCO3, 22 AU; Placebo, 44 AU; p = 0.088, r = 0.46) or post-exercise (NaHCO3, 76 AU; Placebo, 63 AU; p = 0.606, r = 0.14). CONCLUSION: The present study suggests that ingesting NaHCO3 mini-tablets in a carbohydrate hydrogel can enhance 40 km TT performance in trained male cyclists, with minimal GIS. This ingestion strategy could therefore be considered by cyclists looking for a performance enhancing ergogenic aid.

10.
Eur J Appl Physiol ; 124(2): 537-549, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37608124

ABSTRACT

PURPOSE: We investigated whether caffeine consumption can enhance peak oxygen uptake ([Formula: see text]) by increasing peak ventilation during an incremental cycling test, and subsequently enhance time to exhaustion (TTE) during high-intensity cycling exercise in moderate normobaric hypoxia. METHODS: We conducted a double-blind, placebo cross-over design study. Sixteen recreational male endurance athletes (age: 20 ± 2 years, [Formula: see text]: 55.6 ± 3.6 ml/kg/min, peak power output: 318 ± 40 W) underwent an incremental cycling test and a TTE test at 80% [Formula: see text] (derived from the placebo trial) in moderate normobaric hypoxia (fraction of inspired O2: 15.3 ± 0.2% corresponding to a simulated altitude of ~ 2500 m) after consuming either a moderate dose of caffeine (6 mg/kg) or a placebo. RESULTS: Caffeine consumption resulted in a higher peak ventilation [159 ± 21 vs. 150 ± 26 L/min; P < 0.05; effect size (ES) = 0.31]. [Formula: see text] (3.58 ± 0.44 vs. 3.47 ± 0.47 L/min; P < 0.01; ES = 0.44) and peak power output (308 ± 44 vs. 302 ± 44 W; P = 0.02, ES = 0.14) were higher following caffeine consumption than during the placebo trial. During the TTE test, caffeine consumption enhanced minute ventilation (P = 0.02; ES = 0.28) and extended the TTE (426 ± 74 vs. 358 ± 75 s; P < 0.01, ES = 0.91) compared to the placebo trial. There was a positive correlation between the percent increase of [Formula: see text] following caffeine consumption and the percent increase in TTE (r = 0.49, P < 0.05). CONCLUSION: Moderate caffeine consumption stimulates breathing and aerobic metabolism, resulting in improved performance during incremental and high-intensity endurance exercises in moderate normobaric hypoxia.


Subject(s)
Caffeine , Physical Endurance , Humans , Male , Adolescent , Young Adult , Adult , Caffeine/pharmacology , Exercise , Hypoxia , Oxygen , Oxygen Consumption , Exercise Test
11.
Eur J Appl Physiol ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39179881

ABSTRACT

PURPOSE: With limited studies exploring the dose-response of caffeine consumption on repeated sprint ability in hypoxia, this study aimed to determine the optimal caffeine dose (low, moderate or high) during repeated sprints in hypoxia to exhaustion. METHODS: On separate visits, twelve active males randomly performed four experimental trials in normobaric hypoxia (inspired oxygen fraction: 16.5 ± 0.2%). Participants ingested placebo (PLA) or caffeine capsules (3, 6 or 9 mg/kg or LOW, MOD and HIGH, respectively) 1 h before exercise and then underwent a repeated cycling sprint test (10 s sprint/20 s active recovery) to exhaustion. Total sprint number and work done, peak and mean power output, blood lactate concentration, cardiorespiratory and perceptual responses were recorded. RESULTS: Total sprint number was greater in MOD and HIGH compared to PLA (20 ± 7 and 18 ± 8 vs. 13 ± 4; all P < 0.05), with MOD also higher than LOW (15 ± 6; P = 0.02). Total work done was greater in MOD (111 ± 40 kJ) and HIGH (100 ± 35 kJ) compared to LOW (83 ± 29 kJ) and PLA (76 ± 25 kJ) (all P < 0.05). However, there were no significant differences in total sprint number or total work done between MOD and HIGH (all P > 0.05). Blood lactate concentration was higher in both MOD and HIGH compared to PLA (all P < 0.05). However, peak and mean power outputs, fatigue index, and ratings of perceived exertion did not differ across different caffeine dosages (all P > 0.05). CONCLUSION: A moderate dose of caffeine (6 mg/kg) is the optimal amount for enhancing repeated cycling sprint ability when compared to low and high doses in moderate normobaric hypoxia.

12.
Eur J Appl Physiol ; 124(7): 2111-2122, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38421429

ABSTRACT

PURPOSE: This study aimed to compare the effects of acute and multi-day low-dose sodium bicarbonate (SB) intake on high-intensity endurance exercise performance. METHODS: In a randomized, double-blind, cross-over design, twelve recreational male cyclists (age: 31.17 ± 4.91 years; V ˙ O2peak: 47.98 ± 7.68 ml·kg-1·min-1) completed three endurance performance tests following acute SB (ASB, 0.2 g·kg-1 SB), multi-day SB (MSB, 0.2 g·kg-1·day-1 SB for four days), and placebo (PLA) intake. The high-intensity endurance performance was assessed with a cycling exercise test, wherein participants cycled on a bicycle ergometer at 95% of the predetermined anaerobic threshold for 30 min, followed by a time-to-exhaustion test at 110% of the anaerobic threshold. Data were analyzed using one-way and two-way repeated-measures ANOVA. RESULTS: Significant main effects of supplementation protocol were evident in pre-exercise bicarbonate concentrations (F = 27.93; p < 0.01; partial eta squared (η2) = 0.72; false discovery rate (FDR)-adjusted p value = 0.001). Prior to performance test, blood bicarbonate concentrations were significantly higher in MSB (25.78 ± 1.63 mmol·L-1 [95% CI 26.55-28.44] (p < 0.001; FDR-adjusted p value = 0.001)) and ASB (27.49 ± 1.49 mmol·L-1 [95% CI 24.75-26.81] (p < 0.001; FDR-adjusted p value = 0.007)) compared to PLA (23.75 ± 1.40 mmol·L-1 [95% CI 22.86 to 24.64]). Time-to-exhaustion increased in MSB (54.27 ± 9.20 min [95% CI 48.43-60.12]) compared to PLA (49.75 ± 10.80 min [95% CI 42.89-56.62]) (p = 0.048); however, this increase in MSB did not reach the significance threshold of 1% FDR (FDR-adjusted p value = 0.040). No significant difference was noted in exhaustion times between ASB (51.15 ± 8.39 min [95% CI 45.82-56.48]) and PLA (p > 0.05). CONCLUSION: Both acute and multi-day administration of low-dose SB improves buffering system in cyclists; nevertheless, neither intervention demonstrates sufficient efficacy in enhancing high-intensity endurance performance.


Subject(s)
Bicycling , Physical Endurance , Sodium Bicarbonate , Humans , Male , Adult , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/pharmacology , Bicycling/physiology , Physical Endurance/drug effects , Physical Endurance/physiology , Athletic Performance/physiology , Double-Blind Method , Cross-Over Studies , Anaerobic Threshold/drug effects , Dietary Supplements , Oxygen Consumption/drug effects
13.
Eur J Appl Physiol ; 124(6): 1645-1658, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38193908

ABSTRACT

The aim of the present study was to investigate the acute effect of caffeine or quercetin ingestion on motor unit firing patterns and muscle contractile properties before and after resistance exercise. High-density surface electromyography (HDs-EMG) during submaximal contractions and electrically elicited torque in knee extensor muscles were measured before (PRE) and 60 min after (POST1) ingestion of caffeine, quercetin glycosides, or placebo, and after resistance exercise (POST2) in ten young males. The Convolution Kernel Compensation technique was used to identify individual motor units of the vastus lateralis muscle for the recorded HDs-EMG. Ingestion of caffeine or quercetin induced significantly greater decreases in recruitment thresholds (RTs) from PRE to POST1 compared with placebo (placebo: 94.8 ± 9.7%, caffeine: 84.5 ± 16.2%, quercetin: 91.9 ± 36.7%), and there were significant negative correlations between the change in RTs (POST1-PRE) and RT at PRE for caffeine (rs = - 0.448, p < 0.001) and quercetin (rs = - 0.415, p = 0.003), but not placebo (rs = - 0.109, p = 0.440). Significant positive correlations between the change in firing rates (POST2-POST1) and RT at PRE were noted with placebo (rs = 0.380, p = 0.005) and quercetin (rs = 0.382, p = 0.007), but not caffeine (rs = 0.069, p = 0.606). No significant differences were observed in electrically elicited torque among the three conditions. These results suggest that caffeine or quercetin ingestion alters motor unit firing patterns after resistance exercise in different threshold-dependent manners in males.


Subject(s)
Caffeine , Muscle, Skeletal , Quercetin , Resistance Training , Humans , Caffeine/pharmacology , Caffeine/administration & dosage , Male , Quercetin/pharmacology , Resistance Training/methods , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Young Adult , Muscle Contraction/drug effects , Adult , Motor Neurons/physiology , Motor Neurons/drug effects , Electromyography
14.
Pediatr Exerc Sci ; : 1-7, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39244191

ABSTRACT

PURPOSE: To determine the acute response of lactate supplementation on athletic performance. METHOD: Fifteen athletes under the age of 15 performed the following 4 sessions in a nonrandomized order: (1) familiarization, (2) control, (3)  participants ingested calcium lactate (21.5 mg·kg-1 body mass), and (4) participants ingested a placebo (PLA, calcium carbonate, 21.5 mg·kg-1 body mass). The capsules were randomly offered and consumed 60 minutes before the physical tests. To assess the physical performance, the athletes executed squat jump, countermovement squat jump, 20-m linear sprint, change of direction test, and running anaerobic sprint test. RESULTS: There were no significant differences between conditions for squat jump, countermovement jump, change of direction, and minimum power obtained in the running anaerobic sprint test (P > .05). Conversely, we observed a worse performance (P < .05) in the 20-m linear sprint test in the PLA and lactate conditions compared with control (P < .05). The lactate condition worsened performance during running anaerobic sprint test for peak power, mean power, and fatigue index compared with control and PLA (P < .05). CONCLUSIONS: Calcium lactate supplementation worsened repetitive running sprint ability and 20-m sprint performance. However, lactate supplementation does not affect jump or agility capacity. Therefore, calcium lactate supplementation seems to be an ineffective strategy to improve anaerobic and neuromuscular performance in soccer players 15 years of age or less.

15.
Int J Sport Nutr Exerc Metab ; 34(1): 30-37, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37898479

ABSTRACT

Guarana (GUA) seed extract, containing caffeine (CAF) and additional bioactive compounds, may positively affect mental performance, but evidence regarding exercise is limited. This investigation assessed acute GUA ingestion compared with CAF on endurance performance. Eleven endurance-trained noncyclists and cyclists (V˙O2peak = 49.7 ± 5.9, 60.4 ± 4.6 ml·kg·min-1) completed a double-blind, crossover experiment after ingesting (a) 100 mg CAF, (b) 500 mg GUA (containing 130 mg CAF), or (c) placebo (P) prior to 60-min fixed cycling workload (FIX) + 15-min time trial. Oxygen uptake, heart rate, respiratory exchange ratio, blood glucose, and lactate were not different (p ≥ .052) during FIX. A significant interaction (p = .042) for perceived exertion was observed at 50-min FIX with lower rating (p = .023) for GUA versus CAF but not compared with P. Work accumulated over 15-min time trial was greater (p = .038) for GUA versus P due to higher early (1-11 min) work outputs. Work performance favored (effect size = 0.18; 95% confidence interval [0.003, 0.355], p = .046) GUA (241.4 ± 39.9 kJ) versus P (232.1 ± 46.6 kJ), but CAF (232.3 ± 43.9) was not different from GUA (effect size = 0.19; 95% confidence interval [-0.022, 0.410], p = .079) or P. Postexercise strength loss was not attenuated with GUA (-5.6 ± 8.5%) or CAF (-8.3 ± 9.4%) versus P (-10.3 ± 5.1%). Acute GUA ingestion improved work performance relative to P, but effects were trivial to small and unrelated to altered substrate oxidation or muscular strength. Ergogenicity may involve central mechanisms reducing perceived effort with GUA (containing 130 mg caffeine). Due to issues related to identical matching of dosage, whether GUA confers additional benefits beyond its CAF content cannot be determined at present.


Subject(s)
Athletic Performance , Paullinia , Humans , Caffeine , Physical Endurance/physiology , Lactic Acid , Exercise/physiology , Double-Blind Method , Cross-Over Studies , Athletic Performance/physiology
16.
Int J Sport Nutr Exerc Metab ; : 1-6, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39326860

ABSTRACT

BACKGROUND: Preexercise caffeine intake has proven to exert ergogenic effects on cycling performance. However, whether these benefits are also observed under fatigue conditions remains largely unexplored. We aimed to assess the effect of caffeine ingested during prolonged cycling on subsequent time-trial performance in trained cyclists. METHODS: The study followed a triple-blinded, randomized, placebo-controlled cross-over design. Eleven well-trained junior cyclists (17 ± 1 years) performed a field-based 8-min time trial under "fresh" conditions (i.e., after their usual warm-up) or after two work-matched steady-state cycling sessions (total energy expenditure∼20 kJ/kg and ∼100 min duration). During the latter sessions, participants consumed caffeine (3 mg/kg) or a placebo ∼60 min before the time trial. We assessed power output, heart rate, and rating of perceived exertion during the time trial and mood state (Brunel Mood Scale) before and after each session. RESULTS: No significant condition effect was found for the mean power output attained during the time trial (365 ± 25, 369 ± 31, and 364 32 W for "fresh," caffeine, and placebo condition, respectively; p = .669). Similar results were found for the mean heart rate (p = .100) and rating of perceived exertion (p = 1.000) during the time trial and for the different mood domains (all p > .1). CONCLUSIONS: Caffeine intake during prolonged exercise seems to exert no ergogenic effects on subsequent time-trial performance in junior cyclists. Future studies should determine whether significant effects can be found with larger caffeine doses or after greater fatigue levels.

17.
Int J Sport Nutr Exerc Metab ; 34(2): 101-110, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38215733

ABSTRACT

Caffeine is an ergogenic substance that is consumed globally in many forms. The use of buccally absorbable formulations instead of gastrointestinal uptake has become increasingly popular over the years, especially when accelerated absorption with minimal gastrointestinal stress is desired. This study investigated the impact of five different formulations and administration routes of caffeine on the whole blood concentrations of caffeine, paraxanthine, and theobromine: caffeinated capsules, tablets, shots, pouches, and chewing gums. A uniform dose of caffeine (200 mg) was administered to 16 healthy recreational athletes (26.0 ± 2.1 years) using a randomized crossover design. Samples were taken in the form of dried blood spots at 16 different time points in a 2-hr timeframe after drug administration. The samples were analyzed using a validated liquid chromatography-tandem mass spectrometry method. The results for caffeine showed no significant differences in the overall bioavailability (area under the concentration-time curve), maximal concentration, and time to maximum concentration. However, when analyzing the bioavailability of caffeine in the first 5, 10, and 15 min, the liquid caffeine formulation was superior to other administered forms (p < .05). This indicates that caffeine solubility has a major influence on its absorption rate. In sports, the rate of caffeine absorption must be considered, not only when ingesting anhydrous caffeine, but also when choosing buccal absorption. These findings imply that general guidelines for ergogenic caffeine use should consider the formulation used and, accordingly, the corresponding route of absorption.


Subject(s)
Caffeine , Sports , Humans , Administration, Oral , Area Under Curve , Biological Availability , Cross-Over Studies , Young Adult , Adult
18.
Int J Sport Nutr Exerc Metab ; 34(3): 137-144, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38458183

ABSTRACT

There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.


Subject(s)
Caffeine , Creatine , Humans , Male , Anaerobiosis , Caffeine/pharmacology , Cross-Over Studies , Double-Blind Method , Polyesters
19.
Int J Sport Nutr Exerc Metab ; 34(6): 340-348, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39168461

ABSTRACT

This study aimed to investigate the effects of caffeine ingestion by chewing gum (GUMCAF) combined with priming exercise on pulmonary oxygen uptake (V˙O2) and near-infrared spectroscopy-derived muscle oxygen extraction (HHb + Mb) kinetics during cycling performed in a severe-intensity domain. Fifteen trained cyclists completed four visits: two under a placebo gum (GUMPLA) and two under GUMCAF ingestion. Each visit consisted of two square-wave cycling bouts at Δ70 intensity (70% of difference between the V˙O2 at first ventilatory threshold and V˙O2max) with duration of 6 min each and 5 min of passive rest between the bouts. The GUMPLA or GUMCAF (400 mg) was chewed for 5 min, 12 min before the first Δ70 bout in a randomized double-blind procedure. The fundamental phase and slow component of HHb + Mb and V˙O2 kinetics were evaluated. For HHb + Mb kinetics, regardless of ingested gum, priming exercise effects occurred on the time constant (GUMCAF 16.0 ± 4.0 vs. 13.9 ± 2.9 s; GUMPLA 15.7 ± 6.1 vs. 13.2 ± 2.5 s), amplitude, slow component, time delay, and mean response time parameters (p ≤ .032). For V˙O2 kinetics, there were significant effects of bouts on the amplitude, slow component, end V˙O2, and the gain kinetics parameters (p < .017). Baseline V˙O2 was higher during GUMCAF than GUMPLA (p = .020). No significant effects occurred for the interaction between gum and bout in any parameter of V˙O2 or HHb + Mb kinetics. Therefore, unlike the priming exercise in severe-intensity exercise, GUMCAF is not an effective strategy for improving V˙O2 or HHb + Mb kinetics acceleration.


Subject(s)
Bicycling , Caffeine , Chewing Gum , Cross-Over Studies , Muscle, Skeletal , Oxygen Consumption , Spectroscopy, Near-Infrared , Humans , Double-Blind Method , Bicycling/physiology , Adult , Male , Caffeine/administration & dosage , Caffeine/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Young Adult , Kinetics , Exercise/physiology
20.
Int J Sport Nutr Exerc Metab ; 34(6): 362-371, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39222921

ABSTRACT

This study investigated the effect of oral and topical sodium bicarbonate (SB) on soccer-specific performance during simulated soccer exercise. In a block randomized, double-blind, crossover design, 10 collegiate male soccer players (stature: 181.7 ± 3.2 cm, body mass: 81.7 ± 10.5 kg) performed soccer-specific performance tests (countermovement jumps, Illinois agility, 8 × 25 m repeated sprints) throughout a 90-min soccer-specific aerobic field test (SAFT90) following 0.3 g/kg body mass SB in capsules (SB-ORAL), 0.9036 g/kg body mass PR Lotion (SB-LOTION), or placebo capsules and lotion (PLA). Soccer-specific performance tests were conducted pre-SAFT90, during half-time and post-SAFT90. Blood samples were analyzed for acid-base balance (pH; bicarbonate, HCO3-) and strong ions (sodium, Na+; potassium, K+). Average sprint times were quicker for SB-ORAL than PLA during half-time (3.7%; p = .049; g = .57) and post-SAFT90 (4.9%; p = .041; g = .66). SB-ORAL increased pH and HCO3- prewarm-up and during half-time (p < .05), and lowered K+ during half-time (p = .035) compared with PLA. SB-LOTION increased pH (p = .019) and lowered K+ (p = .012) during half-time compared with PLA. SB-LOTION increased Na+ postexercise compared with PLA (p = .008). Repeated sprint times during simulated soccer exercise improved for SB-ORAL, which might have been mechanistically underpinned by elevated blood buffering capacity and greater regulation of strong ion concentration. Consuming SB in capsules is a more effective strategy than topical SB application for improving blood buffering capacity and repeated sprint performance throughout competitive soccer matches.


Subject(s)
Athletes , Athletic Performance , Cross-Over Studies , Running , Soccer , Sodium Bicarbonate , Humans , Sodium Bicarbonate/administration & dosage , Sodium Bicarbonate/blood , Male , Athletic Performance/physiology , Soccer/physiology , Double-Blind Method , Young Adult , Administration, Oral , Running/physiology , Administration, Topical , Acid-Base Equilibrium/drug effects , Sports Nutritional Physiological Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL