Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Theor Appl Genet ; 134(11): 3611-3623, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34319424

ABSTRACT

KEY MESSAGE: Soybean acyl-ACP thioesterase gene family have been characterized; GmFATA1A mutants were discovered to confer high oleic acid, while GmFATB mutants presented low palmitic and high oleic acid seed content. Soybean oil stability and quality are primarily determined by the relative proportions of saturated versus unsaturated fatty acids. Commodity soybean typically contains 11% palmitic acid, as the primary saturated fatty acids. Reducing palmitic acid content is the principal approach to minimize the levels of saturated fatty acids in soybean. Though high palmitic acid enhances oxidative stability of soybean oil, it is negatively correlated with oil and oleic acid content and can cause coronary heart diseases for humans. For plants, acyl-acyl carrier protein (ACP) thioesterases (TEs) are a group of enzymes to hydrolyze acyl group and release free fatty acid from plastid. Among them, GmFATB1A has become the main target to genetically reduce the palmitic acid content in soybean. However, the role of members in soybean acyl-ACP thioesterase gene family is largely unknown. In this study, we characterized two classes of TEs, GmFATA, and GmFATB in soybean. We also denominated two GmFATA members and discovered six additional members that belong to GmFATB gene family through phylogenetic, syntenic, and in silico analysis. Using TILLING-by-Sequencing+, we identified an allelic series of mutations in five soybean acyl-ACP thioesterase genes, including GmFATA1A, GmFATB1A, GmFATB1B, GmFATB2A, and GmFATB2B. Additionally, we discovered mutations at GmFATA1A to confer high oleic acid (up to 34.5%) content, while mutations at GmFATB presented low palmitic acid (as low as 5.6%) and high oleic acid (up to 36.5%) phenotypes. The obtained soybean mutants with altered fatty acid content can be used in soybean breeding program for improving soybean oil composition traits.


Subject(s)
Fatty Acids/chemistry , Glycine max/genetics , Plant Proteins/genetics , Soybean Oil/chemistry , Thiolester Hydrolases/genetics , Multigene Family , Oleic Acid , Palmitic Acid , Phylogeny , Plant Breeding , Seeds/chemistry , Glycine max/enzymology
2.
J Exp Bot ; 66(14): 4251-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25969557

ABSTRACT

Seeds of members of the genus Cuphea accumulate medium-chain fatty acids (MCFAs; 8:0-14:0). MCFA- and palmitic acid- (16:0) rich vegetable oils have received attention for jet fuel production, given their similarity in chain length to Jet A fuel hydrocarbons. Studies were conducted to test genes, including those from Cuphea, for their ability to confer jet fuel-type fatty acid accumulation in seed oil of the emerging biofuel crop Camelina sativa. Transcriptomes from Cuphea viscosissima and Cuphea pulcherrima developing seeds that accumulate >90% of C8 and C10 fatty acids revealed three FatB cDNAs (CpuFatB3, CvFatB1, and CpuFatB4) expressed predominantly in seeds and structurally divergent from typical FatB thioesterases that release 16:0 from acyl carrier protein (ACP). Expression of CpuFatB3 and CvFatB1 resulted in Camelina oil with capric acid (10:0), and CpuFatB4 expression conferred myristic acid (14:0) production and increased 16:0. Co-expression of combinations of previously characterized Cuphea and California bay FatBs produced Camelina oils with mixtures of C8-C16 fatty acids, but amounts of each fatty acid were less than obtained by expression of individual FatB cDNAs. Increases in lauric acid (12:0) and 14:0, but not 10:0, in Camelina oil and at the sn-2 position of triacylglycerols resulted from inclusion of a coconut lysophosphatidic acid acyltransferase specialized for MCFAs. RNA interference (RNAi) suppression of Camelina ß-ketoacyl-ACP synthase II, however, reduced 12:0 in seeds expressing a 12:0-ACP-specific FatB. Camelina lines presented here provide platforms for additional metabolic engineering targeting fatty acid synthase and specialized acyltransferases for achieving oils with high levels of jet fuel-type fatty acids.


Subject(s)
Cuphea/metabolism , Palmitoyl-CoA Hydrolase/metabolism , Seeds/metabolism , Amino Acid Sequence , Cuphea/embryology , Cuphea/enzymology , Fatty Acids/metabolism , Molecular Sequence Data , Palmitoyl-CoA Hydrolase/chemistry , Plant Leaves/metabolism , Sequence Homology, Amino Acid
3.
Int J Biol Macromol ; 278(Pt 3): 134848, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39168197

ABSTRACT

Diverse uses of maize oil attracted various stakeholders, including food, feed, and bioenergy, highlighting the increased demand for sustainable production. Here, 48 diverse sub-tropical maize genotypes varying for dgat1-2 and fatb genes governing oil attributes, were evaluated in three diverse locations to assess trends of oil content, fatty acid (FA) profile, the effect of environment on oil attributes, the impact of different gene combinations and determine FA health and nutritional properties. The genotypes revealed wide variation in oil content (OC: 3.4-6.8 %) and FA compositional traits, namely palmitic (PA, 11.3-24.1 %), oleic (OA, 21.5-42.7 %), linoleic (LA, 36.6-61.7 %), and linolenic (ALA, 0.7-2.3 %) acids. Double-mutants with both favourable alleles (dd/ff) exhibited 51.6 % higher oil, 33.2 % higher OA, and 30.2 % reduced PA compared to wild-types (d+d+/f+f+) across locations. These double-mutants had lower saturated FA (12.2 %), and higher unsaturated FA (87.0 %), indicating reduced susceptibility to autooxidation, with lower atherogenicity (0.14), thrombogenicity (0.27) and peroxidisability (48.15), higher cholesterolemic index (7.16), optimum oxidability (5.27) and higher nutritive-value-index (3.35) compared to d+d+/f+f+, making them promising for significant health and nutritional benefits. Locally adapted stable novel double-mutants with high-oil and better FA properties identified here can expedite the maize breeding programs, meeting production demands and addressing long-standing challenges for breeders.

4.
Front Plant Sci ; 13: 969844, 2022.
Article in English | MEDLINE | ID: mdl-36119569

ABSTRACT

Triacylglycerol (TAG), which is a neutral lipid, has a structure in which three molecules of fatty acid (FA) are ester-bonded to one molecule of glycerol. TAG is important energy source for seed germination and seedling development in plants. Depending on the FA composition of the TAG, it is used as an edible oil or industrial material for cosmetics, soap, and lubricant. As the demand for plant oil is rising worldwide, either the type of FA must be changed or the total oil content of various plants must be increased. In this review, we discuss the regulation of FA metabolism by Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, a recent genome-editing technology applicable to various plants. The development of plants with higher levels of oleic acid or lower levels of very long-chain fatty acids (VLCFAs) in seeds are discussed. In addition, the current status of research on acyltransferases, phospholipases, TAG lipases, and TAG synthesis in vegetative tissues is described. Finally, strategies for the application of CRISPR/Cas9 in lipid metabolism studies are mentioned.

5.
Plants (Basel) ; 10(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34834905

ABSTRACT

CRISPR/Cas9 is a commonly used technique in reverse-genetics research to knock out a gene of interest. However, when targeting a multigene family or multiple genes, it is necessary to construct a vector with multiple single guide RNAs (sgRNAs) that can navigate the Cas9 protein to the target site. In this protocol, the Golden Gate cloning method was used to generate multiple sgRNAs in the Cas9 vector. The vectors used were pHEE401E_UBQ_Bar and pBAtC_tRNA, which employ a one-promoter/one-sgRNA and a polycistronic-tRNA-gRNA strategy, respectively. Golden Gate cloning was performed with type IIS restriction enzymes to generate gRNA polymers for vector inserts. Four sgRNAs containing the pHEE401E_UBQ_Bar vector and four to six sgRNAs containing the pBAtC_tRNA vector were constructed. In practice, we constructed multiple sgRNAs targeting multiple genes of FAD2 and FATB in soybean using this protocol. These three vectors were transformed into soybeans using the Agrobacterium-mediated method. Using deep sequencing, we confirmed that the T0 generation transgenic soybean was edited at various indel ratios in the predicted target regions of the FAD2 and FATB multigenes. This protocol is a specific guide that allows researchers to easily follow the cloning of multiple sgRNAs into commonly used CRISPR/Cas9 vectors for plants.

6.
J Agric Food Chem ; 68(19): 5507-5520, 2020 May 13.
Article in English | MEDLINE | ID: mdl-32320606

ABSTRACT

Petroselinic acid (18:1Δ6), a monounsaturated cis Δ-6 fatty acid, has many prospective applications in functional foods and for the nutraceutical and pharmaceutical industries. Up to 80% of petroselinic acid has been found in the oil from fruits of coriander (Coriandrum sativum L.), which make it an ideal source for investigating the biosynthesis of petroselinic acid. A coriander acyl-acyl carrier protein desaturase was identified to be involved in its biosynthesis more than two decades ago, but since then little further progress in this area has been reported. In this study, the fatty acid profiles of coriander fruits at six developmental stages were analyzed. Fruit samples from three developmental stages with rapid accumulation of petroselinic acid were used for RNA sequencing using the Illumina Hiseq4000 platform. The transcriptome analysis presented 93 323 nonredundant unigenes and 8545 differentially expressed genes. Functional annotation and combined gene expression data revealed candidate genes potentially involved in petroselinic acid biosynthesis and its incorporation into triacylglycerols. Tissue-specific examination of q-PCR validation further suggested that ACPD1/3, KAS I-1, FATB-1/3, and DGAT2 may be highly involved. Bioinformatic analysis of CsFATB and CsDGAT2 identified their putative key amino acids or functional motifs. These results provide a molecular foundation for petroselinic acid biosynthesis in coriander fruit and facilitate its genetic engineering in other hosts.


Subject(s)
Coriandrum/genetics , Oleic Acids/biosynthesis , Plant Proteins/genetics , Biosynthetic Pathways , Coriandrum/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling , Plant Proteins/metabolism , Transcriptome
7.
Heliyon ; 6(10): e05237, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33102858

ABSTRACT

Koelreuteria paniculata is a deciduous tree, popular in temperate regions for its ornamental value, which accumulates unusual cyanolipids in its seeds. The seed oil of this plant is rich in the unusual cis-11-eicosenoic fatty acid (20:1, or gondoic acid), a monounsaturated oil of interest to the oleochemical industry. In higher plants, de novo fatty acid biosynthesis takes place in the plastids, a process that is terminated by hydrolysis of the thioester bond between the acyl moiety and the ACP by acyl-ACP thioesterases. The specificity of acyl-ACP thioesterases is fundamental in controlling the fatty acid composition of seed oil. To determine the mechanisms involved in fatty acid biosynthesis in K. paniculata seeds, we isolated, cloned and sequenced two cDNAs encoding acyl-ACP thioesterases in this plant, KpFatA and KpFatB. Both of them were expressed heterologously in Escherichia coli and characterized with different acyl-ACP substrates. The K. paniculata FatB2 displayed unusual substrate specificity, so that unlike most FatB2 type enzymes, it displayed preference for oleoyl-ACP instead of palmitoyl-ACP. This specificity was consistent with the changes in E. coli and N. benthamiana fatty acid composition following heterologous expression of this enzyme. KpFatB also showed certain genetic divergence relative to other FatB-type thioesterases and when modelled, its structure revealed differences at the active site. Together, these results suggest that this thioesterase could be a new class of FatB not described previously.

8.
Front Plant Sci ; 10: 1263, 2019.
Article in English | MEDLINE | ID: mdl-31681369

ABSTRACT

Oil palm (Elaeis guineensis) is the highest yielding oil crop per unit area worldwide, but its oil is considered unhealthy for human consumption due to its high palmitic acid content (C16:0). In order to facilitate breeding for fatty acid content in oil palm, genome-wide association analysis (GWAS) was used to identify and validate single-nucleotide polymorphism (SNP) markers and underlying candidate genes associated with fatty acid content in a diversity panel of 200 oil palm individuals. A total of 1,261,501 SNP markers previously developed using SLAF-seq (specific locus amplified fragment sequencing) were used for GWAS. Based on this analysis, 62 SNP markers were significantly associated with fatty acid composition, and 223 candidate genes were identified in the flanking regions of these SNPs. We found one gene (acyl-ACP thioesterase B genes) that was involved in fatty acid biosynthesis and that was associated with high palmitic acid content in the mesocarp. Over-expression of this gene caused a significant increase in palmitic acid content. Our study provides key loci that can be used for breeding oil palm cultivars with low palmitic acid content.

9.
Front Plant Sci ; 9: 1496, 2018.
Article in English | MEDLINE | ID: mdl-30459777

ABSTRACT

Sunflower seeds (Helianthus annuus L.) accumulate large quantities of triacylglycerols (TAG) between 12 and 28 days after flowering (DAF). This is the period of maximal acyl-acyl carrier protein (acyl-ACP) thioesterase activity in vitro, the enzymes that terminate the process of de novo fatty acid synthesis by catalyzing the hydrolysis of the acyl-ACPs synthesized by fatty acid synthase. Fatty acid thioesterases can be classified into two families with distinct substrate specificities, namely FatA and FatB. Here, some new aspects of these enzymes have been studied, assessing how both enzymes contribute to the acyl composition of sunflower oil, not least through the changes in their expression during the process of seed filling. Moreover, the binding pockets of these enzymes were modeled based on new data from plant thioesterases, revealing important differences in their volume and geometry. Finally, the subcellular location of the two enzymes was evaluated and while both possess an N-terminal plastid transit peptide, only in FatB contains a hydrophobic sequence that could potentially serve as a transmembrane domain. Indeed, using in vivo imaging and organelle fractionation, H. annuus thioesterases, HaFatA and HaFatB, appear to be differentially localized in the plastid stroma and membrane envelope, respectively. The divergent roles fulfilled by HaFatA and HaFatB in oil biosynthesis are discussed in the light of our data.

10.
Plant Physiol Biochem ; 96: 345-55, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26351151

ABSTRACT

Fatty acids from dietary lipids can impart both beneficial and harmful health effects. The compositional balance between saturated and unsaturated fatty acids plays a decisive role in maintaining the physiological harmony, proper growth and development in the human system. In case of Brassica juncea seed oil, the level of saturated fatty acid, especially desirable stearate is very much lower than the recommended value, along with a high content of nutritionally undesirable erucic acid. Therefore, in order to shift the carbon flux towards the production of stearate at the expense of erucate, the MlFatB gene encoding a FatB thioesterase from Madhuca longifolia (latifolia) was expressed heterologously in seed tissues of B. juncea. The functional MlFatB competed with the highly active endogenous BjFatA thioesterase, and the transgenic B. juncea lines showed noteworthy changes in their seed fatty acid profiles. The proportion of stearate increased up to 16-fold, constituting almost 31% of the total fatty acids along with the production of arachidic acid in significant amount (up to ∼11%). Moreover, the content of erucate was reduced up to 71% in the seed oils of transgenic lines. Although a nutritionally desirable fatty acid profile was achieved, the transgenic seeds exhibit reduction or abolition of seed germination in addition to a decrease in seed lipid content. The findings of the present study revealing the stearoyl-ACP thioesterase-mediated enhancement of the stearate content that is associated with reduced germination frequency of transgenic B. juncea seeds, may explain why no natural or induced stearate-rich Brassica has been found or developed. Furthermore, this study also suggests that the newly characterized MlFatB is a potential candidate gene for refined metabolic engineering strategy in B. juncea or other plant species for increasing stearate content in seed oil.


Subject(s)
Lipid Metabolism , Mustard Plant/metabolism , Plant Oils/metabolism , Plant Proteins/genetics , Seeds/metabolism , Stearic Acids/metabolism , Genes, Plant , Germination , Mustard Plant/genetics , Plants, Genetically Modified , Seeds/growth & development
11.
Phytochemistry ; 107: 7-15, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25212866

ABSTRACT

Acyl-acyl carrier protein (ACP) thioesterases are intraplastidial enzymes that terminate de novo fatty acid biosynthesis in the plastids of higher plants by hydrolyzing the thioester bond between ACP and the fatty acid synthesized. Free fatty acids are then esterified with coenzyme A prior to being incorporated into the glycerolipids synthesized through the eukaryotic pathway. Acyl-ACP thioesterases belong to the TE14 family of thioester-active enzymes and can be classified as FatAs and FatBs, which differ in their amino acid sequence and substrate specificity. Here, the FatA and FatB thioesterases from Camelina sativa seeds, a crop of interest in plant biotechnology, were cloned, sequenced and characterized. The mature proteins encoded by these genes were characterized biochemically after they were heterologously expressed in Escherichia coli and purified. C. sativa contained three different alleles of both the FatA and FatB genes. These genes were expressed most strongly in expanding tissues in which lipids are very actively synthesized, such as developing seed endosperm. The CsFatA enzyme displayed high catalytic efficiency on oleoyl-ACP and CsFatB acted efficiently on palmitoyl-ACP. The contribution of these two enzymes to the synthesis of C. sativa oil was discussed in the light of these results.


Subject(s)
Brassicaceae/enzymology , Fatty Acids/analysis , Plant Oils/metabolism , Seeds/chemistry , Thiolester Hydrolases , Acyl Carrier Protein/metabolism , Amino Acid Sequence , Base Sequence , Escherichia coli/genetics , Fatty Acids/biosynthesis , Fatty Acids/metabolism , Plants/metabolism , Polymerase Chain Reaction , Substrate Specificity , Thiolester Hydrolases/classification , Thiolester Hydrolases/genetics , Thiolester Hydrolases/isolation & purification , Thiolester Hydrolases/metabolism
12.
Gene ; 542(1): 16-22, 2014 May 25.
Article in English | MEDLINE | ID: mdl-24631366

ABSTRACT

Acyl-acyl carrier protein (ACP) thioesterases (TE EC 3.1.2.14) are fatty acid biosynthesis key enzymes that determine fatty acid carbon chain length in most plant tissues. A full-length cDNA corresponding to one of the fatty acyl-ACP thioesterase (Fat) genes, designated LcFatB, was isolated from developing Lindera communis seeds using PCR and RACE with degenerate primers based on conserved sequences of multiple TE gene sequences obtained from GenBank. The 1788 bp cDNA had an open reading frame (ORF) of 1260 bp encoding a protein of 419 amino acids. The deduced amino acid sequence showed 61-73% identity to proteins in the FatB class of plant thioesterases. Real-time quantitative PCR analysis revealed that LcFatB was expressed in all tissues of L. communis, with the highest expression in the developing seeds 75days after flowering. Recombinant pET-MLcFatB was constructed using the pET-30 a vector and transformed into Escherichia coli BL21(DE3)△FadE, a strain that deleted the acyl-CoA dehydrogenase (FadE). SDS-PAGE analysis of proteins isolated from pET-MLcFatB E. coli cells after induction with IPTG revealed a protein band at ~40.5kDa, corresponding to the predicted size of LcFatB mature protein. The decanoic acid and lauric acid contents of the pET-MLcFatB transformant were increased significantly. These findings suggest that an LcFatB gene from a non-traditional oil-seed tree could be used to function as a saturated acyl-ACP thioesterase and could potentially be used to modify the fatty acid composition of seed oil from L. communis or other species through transgenic approaches.


Subject(s)
Lindera/enzymology , Thiolester Hydrolases/genetics , Amino Acid Sequence , Base Sequence , Cloning, Molecular , Decanoic Acids/metabolism , Gene Expression Profiling , Lauric Acids/metabolism , Molecular Sequence Data , Phylogeny , Seeds/enzymology , Sequence Alignment , Sequence Analysis, DNA , Thiolester Hydrolases/biosynthesis , Thiolester Hydrolases/classification , Thiolester Hydrolases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL