Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Environ Res ; 252(Pt 1): 118777, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38527723

ABSTRACT

Anaerobic digestion of phenolic wastewater by anaerobic membrane bioreactor (AnMBR) has revealed increasing attractiveness, but the application of AnMBRs for treating high-strength phenolic wastewater faces challenges related to elevated phenol stress and membrane fouling. In this study, the coupling of AnMBR and polyaluminum chloride (PAC) was developed for efficient treatment of high-strength phenolic wastewater. The system achieved robust removal efficiencies of phenol (99%) and quinoline (98%) at a gradual increase of phenol concentration from 1000 to 5000 mg/L and a constant quinoline concentration of 100 mg/L. The dosing of PAC could effectively control the membrane fouling rate with the transmembrane pressure (TMP) increasing rate as low as 0.17 kPa/d. The robust performances were mainly attributed to the favorable retention of functional microbes through membrane interception, while pulse cross flow buffered against phenol stress and facilitated cake layer removal. Meanwhile, the enriched core functional microbes, such as Syntrophorhabdus, Syntrophus, Mesotoga and Methanolinea, played a crucial role in further reduction of phenol stress. Notably, the significant presence of biomacromolecule degrader, such as Levilinea, contributed to membrane fouling mitigation through extracellular polymer degradation. Moreover, the enlargement of particle size distribution (PSD) by PAC was expected to mitigate membrane fouling. This study provided a promising avenue for sustainable treatment of high-strength phenolic wastewater.


Subject(s)
Bioreactors , Membranes, Artificial , Waste Disposal, Fluid , Wastewater , Wastewater/chemistry , Waste Disposal, Fluid/methods , Anaerobiosis , Aluminum Hydroxide/chemistry , Phenols/analysis , Water Pollutants, Chemical/analysis
2.
Environ Res ; 219: 115074, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36528047

ABSTRACT

Silver nanoparticles (AgNPs) has been widely detected in the substrates of constructed wetlands (CWs), posing threaten to pollutants removal efficiency of CWs. However, the way to alleviate the toxicity of AgNPs on CWs is unclear. In this study, the gravel (GR), biochar (BC), pyrite (PY) and pyrite coupled with biochar matrix (PYBC) were selected as substrates to restore the pollutants removal efficiency of CWs under the exposure to the environment (0.2 mg/L) and accumulation (10 mg/L) concentration of AgNPs. Results showed that the BC and PY showed limited mitigation effects, while the PYBC alleviated the toxicity significantly. Especially in the exposure to the accumulation concentration of AgNPs, the removal of NH4+-N, TN, COD and TP in the PYBC were 10.2%, 8.3%, 9.4% and 10.7% higher than that in the GR, respectively. Mechanism analysis verified that AgNPs were transformed into Ag-Fe-S core shell aggregates (size >200 nm) decreasing bioavailability and the damage to cytomembrane. The PYBC restored the nitrogen removal efficiency by increasing the abundance of Nitrospira and Geothrix, which these bacteria were defined as nitrifiers and Feammox bacteria. This study provides a promising strategy to mitigate AgNPs' toxicity on the pollutant removal efficiency in CWs.


Subject(s)
Metal Nanoparticles , Wetlands , Waste Disposal, Fluid/methods , Wastewater , Metal Nanoparticles/toxicity , Silver/toxicity , Nitrogen/analysis , Bacteria
3.
Environ Res ; 227: 115748, 2023 06 15.
Article in English | MEDLINE | ID: mdl-36972772

ABSTRACT

Recently, C/N ratio is suggested as a promising control factor with dissolved oxygen (DO) achieving mainstream partial nitritation (PN); however, their combined effects on mainstream PN are still limited. This study evaluated the mainstream PN with respect to the combined factors, and investigated the prioritized factor affecting the community of aerobic functional microbes competing with NOB. Response surface methodology was performed to assess the combined effects of C/N ratio and DO on the activity of functional microbes. Aerobic heterotrophic bacteria (AHB) played the greatest role in oxygen competition among functional microbes, which resulted in relative inhibition of nitrite-oxidizing bacteria (NOB). The combination of high C/N ratio and low DO had a positive role in the relative inhibition of NOB. In bioreactor operation, the PN was successfully achieved at ≥ 1.5 of C/N ratio for 0.5-2.0 mg/L DO conditions. Interestingly, aerobic functional microbes outcompeting NOB were shifted with C/N ratio rather than DO, suggesting C/N ratio is more prioritized factor achieving mainstream PN. These findings will provide insights into how combined aerobic conditions contribute to achieve mainstream PN.


Subject(s)
Ammonium Compounds , Microbiota , Oxygen , Oxidation-Reduction , Nitrogen , Nitrites , Bacteria , Bioreactors/microbiology , Sewage/microbiology
4.
J Environ Manage ; 342: 118143, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37196621

ABSTRACT

The performance of an electric-integrated vertical flow constructed wetland (E-VFCW) for chloramphenicol (CAP) removal, changes in microbial community structure, and the fate of antibiotic resistance genes (ARGs) were evaluated. CAP removal in the E-VFCW system was 92.73% ± 0.78% (planted) and 90.80% ± 0.61% (unplanted), both were higher than the control system which was 68.17% ± 1.27%. The contribution of anaerobic cathodic chambers in CAP removal was higher than the aerobic anodic chambers. Plant physiochemical indicators in the reactor revealed electrical stimulation increased oxidase activity. Electrical stimulation enhanced the enrichment of ARGs in the electrode layer of the E-VFCW system (except floR). Plant ARGs and intI1 levels were higher in the E-VFCW than in the control system, suggesting electrical stimulation induces plants to absorb ARGs, reducing ARGs in the wetland. The distribution of intI1 and sul1 genes in plants suggests that horizontal transfer may be the main mechanism dispersing ARGs in plants. High throughput sequencing analysis revealed electrical stimulation selectively enriched CAP degrading functional bacteria (Geobacter and Trichlorobacter). Quantitative correlation analysis between bacterial communities and ARGs confirmed the abundance of ARGs relates to the distribution of potential hosts and mobile genetic elements (intI1). E-VFCW is effective in treating antibiotic wastewater, however ARGs potentially accumulate.


Subject(s)
Chloramphenicol , Wetlands , Chloramphenicol/pharmacology , Chloramphenicol/analysis , Genes, Bacterial , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/analysis , Wastewater , Bacteria/genetics
5.
J Environ Manage ; 342: 118359, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37311348

ABSTRACT

Constructed wetlands (CWs) added with biochar were built to study pollutant removal efficiencies, nitrous oxide (N2O) emission characteristics, and biological mechanisms in nitrogen transformation. The results showed that biochar addition enhanced the average removal rates of ammonium (NH4+-N), total nitrogen, and chemical oxygen demand by 4.03-18.5%, 2.90-4.99%, and 2.87-5.20% respectively while reducing N2O emissions by 25.85-83.41%. Based on 15N stable isotope tracing, it was found that nitrification, denitrification, and simultaneous nitrification and denitrification were the main processes contributing to N2O emission. The addition of biochar resulted in maximum reduction rates of 71.50%, 80.66%, and 73.09% for these three processes, respectively. The relative abundance of nitrogen-transforming microbes, such as Nitrospira, Dechloromonas, and Denitratisoma, increased after the addition of biochar, promoting nitrogen removal and reducing N2O emissions. Adding biochar could increase the functional gene copy number and enzyme activity responsible for nitrogen conversion, which helped achieve efficient NH4+-N oxidation and eliminate nitrite accumulation, thereby reducing N2O emissions.


Subject(s)
Denitrification , Wetlands , Charcoal/metabolism , Nitrogen , Nitrous Oxide/metabolism
6.
Mol Ecol ; 31(5): 1403-1415, 2022 03.
Article in English | MEDLINE | ID: mdl-34878672

ABSTRACT

Microorganisms are major constituents of the total biomass in permafrost regions, whose underlain soils are frozen for at least two consecutive years. To understand potential microbial responses to climate change, here we examined microbial community compositions and functional capacities across four soil depths in an Alaska tundra site. We showed that a 5-year warming treatment increased soil thaw depth by 25.7% (p = .011) within the deep organic layer (15-25 cm). Concurrently, warming reduced 37% of bacterial abundance and 64% of fungal abundances in the deep organic layer, while it did not affect microbial abundance in other soil layers (i.e., 0-5, 5-15, and 45-55 cm). Warming treatment altered fungal community composition and microbial functional structure (p < .050), but not bacterial community composition. Using a functional gene array, we found that the relative abundances of a variety of carbon (C)-decomposing, iron-reducing, and sulphate-reducing genes in the deep organic layer were decreased, which was not observed by the shotgun sequencing-based metagenomics analysis of those samples. To explain the reduced metabolic capacities, we found that warming treatment elicited higher deterministic environmental filtering, which could be linked to water-saturated time, soil moisture, and soil thaw duration. In contrast, plant factors showed little influence on microbial communities in subsurface soils below 15 cm, despite a 25.2% higher (p < .05) aboveground plant biomass by warming treatment. Collectively, we demonstrate that microbial metabolic capacities in subsurface soils are reduced, probably arising from enhanced thaw by warming.


Subject(s)
Permafrost , Carbon/metabolism , Carbon Cycle , Permafrost/microbiology , Soil/chemistry , Soil Microbiology , Tundra
7.
J Environ Sci (China) ; 86: 50-64, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31787190

ABSTRACT

Production of biochemicals from waste streams has been attracting increasing worldwide interest to achieve climate protection goals. Chain elongation (CE) for production of medium-chain carboxylic acids (MCCAs, especially caproate, enanthate and caprylate) from diverse biowaste has emerged as a potential economic and environmental technology for a sustainable society. The present mini review summarizes the research utilizing various synthetic or real waste-derived substrates available for MCCA production. Additionally, the microbial characteristics of the CE process are surveyed and discussed. Considering that a large proportion of recalcitrantly biodegradable biowaste and residues cannot be further utilized by CE systems and remain to be treated and disposed, we propose here a loop concept of bioconversion of biowaste to MCCAs making full use of the biowaste with zero emission. This could make possible an alternative technology for synthesis of value-added products from a wide range of biowaste, or even non-biodegradable waste (such as, plastics and rubbers). Meanwhile, the remaining scientific questions, unsolved problems, application potential and possible developments for this technology are discussed.


Subject(s)
Medical Waste Disposal/methods , Caproates , Caprylates , Carboxylic Acids
8.
Food Res Int ; 190: 114628, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945581

ABSTRACT

Aromatic compounds serve as the primary source of floral and fruity aromas in sauce-flavor (Maotai flavor) baijiu, constituting the skeleton components of its flavor profile. Nevertheless, the formation mechanism of these compounds and key aroma-producing enzymes in sauce-flavor Daqu (fermentation agent, SFD) remain elusive. Here, we combined metagenomics, metaproteomics, metabolomics, and key enzyme activity to verify the biosynthesis pathway of aromatic compounds and to identify key enzymes, genes, and characteristic microorganisms in SFD. The results showed that the later period of fermentation was critical for the generation of aromatic compounds in SFD. In-situ verification was conducted on the potential key enzymes and profiles in various metabolites, providing comprehensive evidence for the main synthetic pathways of aromatic compounds in SFD. Notably, our results showed that primary amine oxidase (PrAO) and aldehyde dehydrogenase (ALDH) emerged as two key enzymes promoting aromatic compound synthesis. Additionally, two potential key functional genes regulating aromatics generation were identified during SFD fermentation through correlation analysis between proteins and relevant metabolites, coupled with in vitro amplification test. Furthermore, original functional strains (Aspergillus flavus-C10 and Aspergillus niger-IN2) exhibiting high PrAO and ALDH production were successfully isolated from SFD, thus validating the results of metagenomics and metaproteomics analyses. This study comprehensively elucidates the pathway of aromatic compound formation in SFD at the genetic, proteomic, enzymatic, and metabolomic levels, providing new ideas for the investigation of key flavor substances in baijiu. Additionally, these findings offer valuable insights into the regulatory mechanisms of aromatic compounds generation.


Subject(s)
Fermentation , Flavoring Agents , Flavoring Agents/metabolism , Odorants/analysis , Proteomics , Aspergillus niger/enzymology , Aspergillus niger/genetics , Aspergillus niger/metabolism , Aspergillus flavus/enzymology , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Metagenomics , Metabolomics , Fermented Foods/microbiology
9.
Sci Total Environ ; 950: 175382, 2024 Nov 10.
Article in English | MEDLINE | ID: mdl-39127210

ABSTRACT

Green manure is a crucial strategy for increasing cereal yield and mitigating environmental burden while reducing chemical N fertilizer. To effectively tackle climate change, finding ways to reduce nitrous oxide (N2O) emissions from green manuring systems is vital. Herein, field and 15N labeled microcosm experiments were arranged to investigate the effect and mechanisms of green manuring and zeolite application on N2O emission. Both experiments comprised four treatments: conventional chemical N (N100), 70 % chemical N (N70), N70 with green manure (N70 + CV), and N70 + CV combined with zeolite (N70 + CV + Z). Compared with N100, both N70 + CV and N70 + CV + Z maintained maize yield, cumulative N2O emissions decreased by 37.7 % and 34.9 % in N70 + CV + Z in 2022-yr and 2023-yr, and by 12.8 % in N70 + CV in 2022-yr. Moreover, the reduction of N2O emission primarily occurred after incorporating green manure. The N100 and N70 + CV demonstrated a similar transformed proportion of chemical N to N2O (i.e., 4.9 % and 4.7 %) while reducing it to 2.7 % in N70 + CV + Z. Additionally, a mere 0.7 % of green manure N was transformed to N2O in both N70 + CV and N70 + CV + Z treatments. Compared with N100, both N70 + CV and N70 + CV + Z decreased the relative abundances of ammonia oxidation microbes, increased denitrifier and the ratios of (nirK + nirS)/nosZ and norBC/nosZ. Furthermore, compared with N70 + CV, N70 + CV + Z decreased the relative abundances of N2O-producer and the ratios of (nirK + nirS)/nosZ and norBC/nosZ in denitrification. These findings revealed that the reduction of N2O emissions resulting from green manure replaced chemical N was mainly due to weakened nitrification, while zeolite reduced N2O emissions attributed to enhanced conversion of N2O to N2. Moreover, certain key N-cycling functional bacteria, such as Phycisphaerae, Rubrobacteria, and Thermoflexia, were positively correlated with N2O emission. In contrast, Dehalococcoidia, Gammaproteobacteria, and Betaproteobacteria were negatively correlated with N2O emission. This investigation uncovered the underlying mechanisms for effectively reducing N2O emissions through green manuring combined with zeolite.


Subject(s)
Manure , Nitrogen , Nitrous Oxide , Zea mays , Zeolites , Nitrous Oxide/analysis , Nitrogen/analysis , Air Pollutants/analysis , Agriculture/methods , Fertilizers/analysis , Soil Microbiology
10.
Food Res Int ; 177: 113865, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38225131

ABSTRACT

Laotan Suancai, a Chinese traditional fermented vegetable, possesses a unique flavor that depends on the fermentative microbiota. However, the drivers of microbial succession and the correlation between flavor and active microbiota remain unclear. A total of 21 characteristic flavor metabolites were identified in Laotan Suancai by metabolomics, including 8 sulfides, 6 terpenes, 3 organic acids, 2 isothiocyanates, 1 ester, and 1 pyrazine. Metatranscriptome analysis revealed variations in the active microbiota at different stages of fermentation, and further analysis indicated that organic acids were the primary drivers of microbial succession. Additionally, we reconstructed the metabolic network responsible for the formation of characteristic flavor compounds and identified Companilactobacillus alimentarius, Weissella cibaria, Lactiplantibacillus plantarum, and Loigolactobacillus coryniformis as the core functional microbes involved in flavor development. This study contributed to profoundly understanding the relationship between the active microbiota and flavor quality formation, as well as the targeted selection of starters with flavor regulation abilities.


Subject(s)
Microbiota , Volatile Organic Compounds , Fermentation , Bacteria/genetics , Bacteria/metabolism , Microbiota/physiology , Metabolomics , Volatile Organic Compounds/metabolism
11.
Sci Total Environ ; 867: 161402, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36638996

ABSTRACT

Soil microbial communities are usually regarded as one of the key players in the global element cycling. Moreover, an important consequence of oil contamination altering the structure of microbial communities is likely to result in an increased carbon emission. However, understanding of the complex interactions between environmental factors and biological communities is clearly lagging behind. Here it showed that the flux of carbon emissions increased in oil-contaminated soils, up to 13.64 g C·(kg soil)-1·h-1. This phenomenon was mainly driven by the enrichment of rare degrading microorganisms (e.g., Methylosinus, Marinobacter, Pseudomonas, Alcanivorax, Yeosuana, Halomonas and Microbulbifer) in the aerobic layer, rather than the anaerobic layer, which is more conducive to methane formation. In addition, petroleum hydrocarbons and environmental factors are equally important in shaping the structure of microbial communities (the ecological stability) and functional traits (e.g., fatty acid metabolism, lipid metabolism and amino acid metabolism) due to the different ecological sensitivities of microorganisms. Thus, it can be believed that the variability of rare hydrocarbon degrading microorganisms is of greater concern than changes in dominant microorganisms in oil-contaminated soil. Undoubtedly, this study could reveal the unique characterization of bacterial communities that mediate carbon emission and provide evidence for understanding the conversion from carbon stores to carbon gas release in oil-contaminated soils.


Subject(s)
Microbiota , Petroleum , Soil Pollutants , Carbon/metabolism , Soil Microbiology , Soil Pollutants/analysis , Hydrocarbons/metabolism , Petroleum/metabolism , Soil , Carbon Cycle , Biodegradation, Environmental
12.
Food Chem X ; 19: 100778, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37780303

ABSTRACT

Msalais is a traditional wine produced from naturally fermented boiled local grape juice in China. It has characteristic dried fruit and caramel odors, mainly attributed to aromatic compounds, such as furaneol and 5-methylfurfural. However, it is unclear how microbes involved in the natural fermentation of Msalais contribute to this characteristic aroma. Here, we analyzed the Msalais-fermenting microbes and aromatic compounds formed during natural Msalais fermentation by using high-throughput sequencing and gas chromatography-mass spectrometry, respectively. The analysis revealed that Saccharomyces cerevisiae, Kazachstania humilis, Lactobacillus plantarum, and Lactobacillus farraginis are the dominant and key functional species that produce high amounts of furaneol and 5-methylfurfural during Msalais fermentation. Of these, K. humilis and L. farraginis are rarely detected during regular wine fermentation. The identified functional species could be used to control typical aromatic characteristics of Msalais.

13.
J Hazard Mater ; 458: 131993, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37423134

ABSTRACT

The limited bioavailability of polycyclic aromatic hydrocarbons (PAHs) in soils poses a challenge for their biodegradation. We hypotheses soapwort (Saponaria officinalis L.) as a factory in-situ providing biosurfactant, which could effectively promote the BaP removal by exogenous or native functional microbes. Rhizo-box and microcosm experiments were conducted to analyze the phyto-microbial remediation mechanism of soapwort, a plant that excretes biosurfactants known as saponins, and combined with two exogenous strains (P. chrysosporium and/or B. subtilis) for benzo[a]pyrene (BaP)-contaminated soils. The results revealed that the natural attenuation treatment (CK) BaP achieved only a 15.90% BaP removal rate after 100 days. In contrast, soapwort (SP), soapwort-bacteria (SPB), soapwort-fungus (SPF), soapwort- bacteria - fungus (SPM) mediated rhizosphere soils treatments yielded removal rates of 40.48%, 42.42%, 52.37%, and 62.57%, respectively. The analysis of the microbial community structure suggested that soapwort stimulated the introduction and native functional microorganisms, such as Rhizobiales, Micrococcales, and Clostridiales, which contributed to BaP removal via metabolic pathways. Furthermore, the efficient BaP removal was attributed to saponins, amino acids, and carbohydrates, which facilitated mobilization, solubilization of BaP, and microbial activity. In conclusion, our study highlights the potential of soapwort and specific microbial strains to effectively remediate PAH-contaminated soils.


Subject(s)
Microbiota , Polycyclic Aromatic Hydrocarbons , Saponaria , Saponins , Soil Pollutants , Benzo(a)pyrene/metabolism , Soil Pollutants/metabolism , Soil/chemistry , Saponaria/metabolism , Soil Microbiology , Biodegradation, Environmental , Polycyclic Aromatic Hydrocarbons/analysis
14.
Front Microbiol ; 14: 1138877, 2023.
Article in English | MEDLINE | ID: mdl-36910204

ABSTRACT

Introduction: The main goal of tobacco fermentation technology is to minimize the alkaloid content while improving flavor substance content. Methods: This study revealed the microbial community structure and their metabolic functions during cigar leaf fermentation by high-throughput sequencing and correlation analysis, and evaluated the fermentation performance of functional microbes based on in vitro isolation and bioaugmentation fermentation. Results: The relative abundance of Staphylococcus and Aspergillus increased first but then decreased during the fermentation, and would occupy the dominant position of bacterial and fungal communities, respectively, on the 21st day. Correlation analysis predicted that Aspergillus, Staphylococcus and Filobasidium could contribute to the formation of saccharide compounds, Bacillus might have degradation effects on nitrogenous substances. In particular, Candida, as a co-occurring taxa and biomarker in the later stage of fermentation, could not only degrade nitrogenous substrates and synthesize flavor substances, but also contribute to maintaining the stability of microbial community. Moreover, based on in vitro isolation and bioaugmentation inoculation, it was found that Candida parapsilosis and Candida metapsilosis could significantly reduce the alkaloids content and increase the content of flavor components in tobacco leaves. Discussion: This study found and validated the critical role of Candida in the fermentation of cigar tobacco leaves through high-throughput sequencing and bioaugmentation inoculation, which would help guide the development of microbial starters and directional regulation of cigar tobacco quality.

15.
Huan Jing Ke Xue ; 44(3): 1768-1779, 2023 Mar 08.
Article in Zh | MEDLINE | ID: mdl-36922237

ABSTRACT

To clarify the effects of non-rhizosphere/rhizosphere soil functional microbes (nitrifiers, denitrifiers, and phosphorus-solubilizing microorganisms) on lemon yield and quality, the lemon fruit and non-rhizosphere/rhizosphere soil were selected as subjects. To explore the correlation between non-rhizosphere/rhizosphere soil functional microbes and lemon yield and quality under a chemical fertilizer reduction substitute with organic fertilizer, traditional fruit quality determination and multiple molecular techniques were used. The results showed that:① 30% chemical fertilizer reduction substitute with organic fertilizer increased the nitrification intensity and phosphatase activity but effectively controlled the denitrifying enzyme activity. ② The chemical fertilizer reduction substitute with organic fertilizer significantly decreased the abundances of nitrifiers and nirS/nirK-harboring denitrifiers and significantly increased the abundances of nosZ-harboring denitrifier and phoD-harboring microorganisms. However, the diversities of functional microbial community structure did not have clear regularity under chemical fertilizer reduction substitute with organic fertilizer. ③ Compared with that under the application of chemical fertilizer and organic fertilizer alone, lemon yield and quality were the highest under the 30% reduction of chemical fertilizer substitute with organic fertilizer. ④ Nitrogen and its related microbes significantly affected lemon yield through internal and external quality. Phosphorus and its related microbes affected lemon yield mainly through internal quality. In addition, the influence factors of non-rhizosphere soil and rhizosphere soil on lemon intrinsic quality were obviously different. Altogether, these results showed that the 30% reduction of chemical fertilizer substitute with organic fertilizer significantly affected soil nitrogen and phosphorus functional microorganisms and further improved lemon yield and quality.


Subject(s)
Fertilizers , Soil , Humans , Soil/chemistry , Fertilizers/analysis , Soil Microbiology , Nitrogen/analysis , Phosphorus
16.
Front Microbiol ; 13: 976206, 2022.
Article in English | MEDLINE | ID: mdl-36003925

ABSTRACT

Microorganisms play essential roles in flavor formation during soy sauce fermentation. Different soy sauce fermentation types significantly affect flavor formation. However, comparisons of microbial communities and metabolites between different fermentation types have been little studied. Here, we investigated variation in microbial communities, metabolite profiles, and metabolic pathways during Japanese-type (JP) and Cantonese-type (CP) fermentation. Free amino acids and volatile compound profiles varied significantly between fermentation types, with JP samples containing higher contents of esters (39.84%; p < 0.05), alcohols (44.70%; p < 0.05) in the 120 d fermentation samples. Volatile compound profiles varied significantly between fermentation types, with JP samples containing higher contents of esters, alcohols, and free amino acids (p < 0.05). Metagenomic analysis indicated that both JP and CP communities were dominated by Tetragenococcus, Staphylococcus, Weissella (bacteria), and Aspergillus (fungi), but the two communities varied differently over time. Tetragenococcus drastically increased in abundance throughout the fermentation (from 0.02 to 59.2%) in JP fermentation, whereas Tetragenococcus (36.7%) and Staphylococcus (29.7%) dominated at 120 d of fermentation in CP fermentation. Metagenomic functional profiles revealed that the abundances of most genes involved with carbohydrate, amino acid, and lipid metabolism exhibited significant differences between fermentation types (p < 0.05) during the middle to late fermentation stages. Furthermore, predicted metabolic pathways for volatile substance biosynthesis differed between JP and CP fermentation, likely explaining the differences in flavor metabolite profiles. In addition, most of the genes associated with flavor generation were affiliated with Tetragenococcus, Weissella, Staphylococcus, Bacillus, and Aspergillus, suggesting that these microbes play important roles in flavor production during soy sauce fermentation. This study significantly improves our understanding of microbial functions and their metabolic roles in flavor formation during different soy sauce fermentation processes.

17.
Bioresour Technol ; 350: 126917, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35231599

ABSTRACT

In this study, we explored the pathways and mechanisms of nitrogen (N) transformation driven by functional microbes carrying key genes in an ex situ fermentation system (EFS). Temperature and N content were found to be the most important factors driving variation in bacterial and fungal communities, respectively; Bacillus became the most abundant bacteria and Batrachochytrium became the most abundant fungi. Co-occurrence network analysis showed that some bacteria including Halomonas, Truepera, and Gemmatimonas species carry genes that promote mineralization, nitrification, dissimilatory/assimilatory nitrate reduction, denitrification, anammox reactions, and N fixation. The maximum rate of total mineralization reached 136.60 µg N g-1 d-1. Functional microbes promoted various N conversion processes at different rates in the EFS, with levels increasing by at least 0.23 µg N g-1 d-1. These results provide a theoretical basis for feasible optimization measures to address N loss during fermentation.


Subject(s)
Denitrification , Nitrogen , Fermentation , Nitrification , Nitrogen/metabolism , Oxidation-Reduction
18.
Bioresour Technol ; 347: 126364, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34838634

ABSTRACT

The rapid start-up and stable operation of the single-stage partial nitritation-anammox (PNA) process remains a challenge in practical applications. An integrated investigation of nitrogen removal performance, sludge characteristics, activity and abundance, and microbial dynamics was implemented for 360 days via an airlift internal circulation reactor. During long-term operation, the reactor realized a stable dissolved oxygen (DO) partition and cultivated granular sludge. The nitrogen removal rate increased from 0.15 kg-N/m3/d to 1.24 kg-N/m3/d, and a high nitrogen removal efficiency of 82.6% was obtained. A stable DO partition further accelerated the bioreaction rates and enhanced the activity of functional microbes. The activities of ammonia oxidation and anammox reached 1.21 g-N/g-VSS/d and 1.43 g-N/g-VSS/d, respectively. Sludge granulation efficiently enriched the abundances of Candidatus Brocadia (7.4%) and Nitrosomonas (5.2%). These results demonstrated that efficient DO partition and stable culture of granular sludge could enhance the synergy of functional microbes for autotrophic nitrogen removal.


Subject(s)
Ammonium Compounds , Denitrification , Anaerobic Ammonia Oxidation , Bioreactors , Nitrogen , Oxidation-Reduction , Oxygen , Sewage
19.
Bioresour Technol ; 361: 127750, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35944867

ABSTRACT

Partial nitritation-anammox (PNA) deteriorates easily and is difficult to recover. After an airlift inner-circulation partition bioreactor was impacted by low NH4+-N wastewater containing organic matter, Nitrospira and Denitratisoma propagated rapidly, granular sludge disintegrated, and the total nitrogen removal efficiency (TNRE) decreased from 68.27 % to 5.97 %. This study used a unique strategy to recover deteriorated single-stage PNA systems and explored the mechanism of rapid performance recovery. The TNRE of the system recovered up to 61.77 % in 43 days. The high nitrogen loading rate and hydraulic shear force from the airlift caused the sludge in the reactor to granulate again. The microbial community structure recovered, with a decrease in the abundance of Nitrospira (0.05 %) and enrichment of Candidatus Brocadia (8.82 %). A favorable synergy among functional microbes in the reactor was thus re-established, promoting the rapid recovery of the nitrogen removal performance. This study provides a feasible recovery strategy for PNA processes.


Subject(s)
Ammonium Compounds , Sewage , Anaerobic Ammonia Oxidation , Bacteria , Bioreactors , Denitrification , Nitrogen , Oxidation-Reduction , Wastewater
20.
Plants (Basel) ; 11(10)2022 May 13.
Article in English | MEDLINE | ID: mdl-35631730

ABSTRACT

Both atmospheric nitrogen (N) deposition and soil microbial legacy (SML) can affect plant performance, the activity of soil N-cycling functional microbes and the relative abundance of N-cycling functional genes (NCFGs). In the grassland vegetation successional process, how the interaction of SML and N deposition affects the performance of dominant grass and NCFGs remains unclear. Therefore, we planted Leymus chinensis, a dominant grass in the Songnen grassland, in the soil taken from the early, medium, late, and stable successional stages. We subjected the plants to soil sterilization and N addition treatments and measured the plant traits and NCFG abundances (i.e., nifH, AOB amoA, nirS, and nirK). Our results showed the biomass and ramet number of L. chinensis in sterilized soil were significantly higher than those in non-sterilized soil, indicating that SML negatively affects the growth of L. chinensis. However, N addition increased the plant biomass and the AOB amoA gene abundance only in sterilized soils, implying that SML overrode the N addition effects because SML buffered the effects of increasing soil N availability on NCFGs. Therefore, we emphasize the potential role of SML in assessing the effects of N deposition on dominant plant performance and NCFGs in the grassland vegetation succession.

SELECTION OF CITATIONS
SEARCH DETAIL