Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.467
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(19): e2301458121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38683989

ABSTRACT

Proteins that are kinetically stable are thought to be less prone to both aggregation and proteolysis. We demonstrate that the classical lac system of Escherichia coli can be leveraged as a model system to study this relation. ß-galactosidase (LacZ) plays a critical role in lactose metabolism and is an extremely stable protein that can persist in growing cells for multiple generations after expression has stopped. By attaching degradation tags to the LacZ protein, we find that LacZ can be transiently degraded during lac operon expression but once expression has stopped functional LacZ is protected from degradation. We reversibly destabilize its tetrameric assembly using α-complementation, and show that unassembled LacZ monomers and dimers can either be degraded or lead to formation of aggregates within cells, while the tetrameric state protects against proteolysis and aggregation. We show that the presence of aggregates is associated with cell death, and that these proteotoxic stress phenotypes can be alleviated by attaching an ssrA tag to LacZ monomers which leads to their degradation. We unify our findings using a biophysical model that enables the interplay of protein assembly, degradation, and aggregation to be studied quantitatively in vivo. This work may yield approaches to reversing and preventing protein-misfolding disease states, while elucidating the functions of proteolytic stability in constant and fluctuating environments.


Subject(s)
Escherichia coli , Lac Operon , Proteolysis , beta-Galactosidase , beta-Galactosidase/metabolism , Escherichia coli/metabolism , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/chemistry , Protein Aggregates , Enzyme Stability
2.
Proc Natl Acad Sci U S A ; 121(19): e2322822121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38687784

ABSTRACT

Hydrogels derived from decellularized extracellular matrices (ECM) of animal origin show immense potential for regenerative applications due to their excellent cytocompatibility and biomimetic properties. Despite these benefits, the impact of decellularization protocols on the properties and immunogenicity of these hydrogels remains relatively unexplored. In this study, porcine skeletal muscle ECM (smECM) underwent decellularization using mechanical disruption (MD) and two commonly employed decellularization detergents, sodium deoxycholate (SDC) or Triton X-100. To mitigate immunogenicity associated with animal-derived ECM, all decellularized tissues were enzymatically treated with α-galactosidase to cleave the primary xenoantigen-the α-Gal antigen. Subsequently, the impact of the different decellularization protocols on the resultant hydrogels was thoroughly investigated. All methods significantly reduced total DNA content in hydrogels. Moreover, α-galactosidase treatment was crucial for cleaving α-Gal antigens, suggesting that conventional decellularization methods alone are insufficient. MD preserved total protein, collagen, sulfated glycosaminoglycan, laminin, fibronectin, and growth factors more efficiently than other protocols. The decellularization method impacted hydrogel gelation kinetics and ultrastructure, as confirmed by turbidimetric and scanning electron microscopy analyses. MD hydrogels demonstrated high cytocompatibility, supporting satellite stem cell recruitment, growth, and differentiation into multinucleated myofibers. In contrast, the SDC and Triton X-100 protocols exhibited cytotoxicity. Comprehensive in vivo immunogenicity assessments in a subcutaneous xenotransplantation model revealed MD hydrogels' biocompatibility and low immunogenicity. These findings highlight the significant influence of the decellularization protocol on hydrogel properties. Our results suggest that combining MD with α-galactosidase treatment is an efficient method for preparing low-immunogenic smECM-derived hydrogels with enhanced properties for skeletal muscle regenerative engineering and clinical applications.


Subject(s)
Extracellular Matrix , Hydrogels , Muscle, Skeletal , Animals , Hydrogels/chemistry , Swine , Extracellular Matrix/metabolism , Tissue Engineering/methods , Decellularized Extracellular Matrix/chemistry , Mice , alpha-Galactosidase/immunology , alpha-Galactosidase/metabolism , Deoxycholic Acid/chemistry , Octoxynol/chemistry
3.
Methods ; 222: 10-18, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154527

ABSTRACT

ß-Galactosidase serves as a pivotal biomarker for both cancer and cellular aging. The advancement of fluorescent sensors for tracking ß-galactosidase activity is imperative in the realm of cancer diagnosis. We have designed a near-infrared fluorescent probe (PTA-gal) for the detection of ß-galactosidase in living systems with large Stokes shifts. PTA-gal exhibits remarkable sensitivity and selectivity in detecting ß-galactosidase, producing near-infrared fluorescent signals with a remarkably low detection limit (2.2 × 10-5 U/mL) and a high quantum yield (0.30). Moreover, PTA-gal demonstrates biocompatibility and can effectively detect ß-galactosidase in cancer cells as well as within living animals.


Subject(s)
Fluorescent Dyes , Optical Imaging , Animals , beta-Galactosidase
4.
Am J Physiol Renal Physiol ; 326(1): F120-F134, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37855038

ABSTRACT

As life expectancy continues to rise, age-related diseases are becoming more prevalent. For example, proteinuric glomerular diseases typified by podocyte injury have worse outcomes in the elderly compared with young patients. However, the reasons are not well understood. We hypothesized that injury to nonaged podocytes induces senescence, which in turn augments their aging processes. In primary cultured human podocytes, injury induced by a cytopathic antipodocyte antibody, adriamycin, or puromycin aminonucleoside increased the senescence-related genes CDKN2A (p16INK4a/p14ARF), CDKN2D (p19INK4d), and CDKN1A (p21). Podocyte injury in human kidney organoids was accompanied by increased expression of CDKN2A, CDKN2D, and CDKN1A. In young mice, experimental focal segmental glomerulosclerosis (FSGS) induced by adriamycin and antipodocyte antibody increased the glomerular expression of p16, p21, and senescence-associated ß-galactosidase (SA-ß-gal). To assess the long-term effects of early podocyte injury-induced senescence, we temporally followed young mice with experimental FSGS through adulthood (12 m of age) and middle age (18 m of age). p16 and Sudan black staining were higher at middle age in mice with earlier FSGS compared with age-matched mice that did not get FSGS when young. This was accompanied by lower podocyte density, reduced canonical podocyte protein expression, and increased glomerular scarring. These results are consistent with injury-induced senescence in young podocytes, leading to increased senescence of podocytes by middle age accompanied by lower podocyte lifespan and health span.NEW & NOTEWORTHY Glomerular function is decreased by aging. However, little is known about the molecular mechanisms involved in age-related glomerular changes and which factors could contribute to a worse glomerular aging process. Here, we reported that podocyte injury in young mice and culture podocytes induced senescence, a marker of aging, and accelerates glomerular aging when compared with healthy aging mice.


Subject(s)
Glomerulosclerosis, Focal Segmental , Kidney Diseases , Podocytes , Middle Aged , Humans , Mice , Animals , Aged , Podocytes/metabolism , Glomerulosclerosis, Focal Segmental/metabolism , Kidney Glomerulus/metabolism , Kidney Diseases/metabolism , Aging , Doxorubicin/toxicity , Doxorubicin/metabolism
5.
Mol Microbiol ; 119(3): 312-325, 2023 03.
Article in English | MEDLINE | ID: mdl-36604822

ABSTRACT

Plant mannans are a component of lignocellulose that can have diverse compositions in terms of its backbone and side-chain substitutions. Consequently, the degradation of mannan substrates requires a cadre of enzymes for complete reduction to substituent monosaccharides that can include mannose, galactose, and/or glucose. One bacterium that possesses this suite of enzymes is the Gram-negative saprophyte Cellvibrio japonicus, which has 10 predicted mannanases from the Glycoside Hydrolase (GH) families 5, 26, and 27. Here we describe a systems biology approach to identify and characterize the essential mannan-degrading components in this bacterium. The transcriptomic analysis uncovered significant changes in gene expression for most mannanases, as well as many genes that encode carbohydrate active enzymes (CAZymes) when mannan was actively being degraded. A comprehensive mutational analysis characterized 54 CAZyme-encoding genes in the context of mannan utilization. Growth analysis of the mutant strains found that the man26C, aga27A, and man5D genes, which encode a mannobiohydrolase, α-galactosidase, and mannosidase, respectively, were important for the deconstruction of galactomannan, with Aga27A being essential. Our updated model of mannan degradation in C. japonicus proposes that the removal of galactose sidechains from substituted mannans constitutes a crucial step for the complete degradation of this hemicellulose.


Subject(s)
Cellvibrio , Mannans , Mannans/metabolism , Galactose/metabolism , alpha-Galactosidase/metabolism , beta-Mannosidase/chemistry , beta-Mannosidase/metabolism
6.
Mol Hum Reprod ; 30(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38603629

ABSTRACT

Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders in women of reproductive age, but its pathology has not been fully characterized and the optimal treatment strategy remains unclear. Cellular senescence is a permanent state of cell-cycle arrest that can be induced by multiple stresses. Senescent cells contribute to the pathogenesis of various diseases, owing to an alteration in secretory profile, termed 'senescence-associated secretory phenotype' (SASP), including with respect to pro-inflammatory cytokines. Senolytics, a class of drugs that selectively eliminate senescent cells, are now being used clinically, and a combination of dasatinib and quercetin (DQ) has been extensively used as a senolytic. We aimed to investigate whether cellular senescence is involved in the pathology of PCOS and whether DQ treatment has beneficial effects in patients with PCOS. We obtained ovaries from patients with or without PCOS, and established a mouse model of PCOS by injecting dehydroepiandrosterone. The expression of the senescence markers p16INK4a, p21, p53, γH2AX, and senescence-associated ß-galactosidase and the SASP-related factor interleukin-6 was significantly higher in the ovaries of patients with PCOS and PCOS mice than in controls. To evaluate the effects of hyperandrogenism and DQ on cellular senescence in vitro, we stimulated cultured human granulosa cells (GCs) with testosterone and treated them with DQ. The expression of markers of senescence and a SASP-related factor was increased by testosterone, and DQ reduced this increase. DQ reduced the expression of markers of senescence and a SASP-related factor in the ovaries of PCOS mice and improved their morphology. These results indicate that cellular senescence occurs in PCOS. Hyperandrogenism causes cellular senescence in GCs in PCOS, and senolytic treatment reduces the accumulation of senescent GCs and improves ovarian morphology under hyperandrogenism. Thus, DQ might represent a novel therapy for PCOS.


Subject(s)
Cellular Senescence , Granulosa Cells , Polycystic Ovary Syndrome , Quercetin , Polycystic Ovary Syndrome/metabolism , Polycystic Ovary Syndrome/pathology , Female , Cellular Senescence/drug effects , Humans , Animals , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Granulosa Cells/pathology , Quercetin/pharmacology , Mice , Senescence-Associated Secretory Phenotype , Adult , Dasatinib/pharmacology , Disease Models, Animal , Senotherapeutics/pharmacology , Hyperandrogenism/pathology , Hyperandrogenism/metabolism , Interleukin-6/metabolism , Dehydroepiandrosterone/pharmacology
7.
Mol Genet Metab ; 142(3): 108494, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38820907

ABSTRACT

BACKGROUND: Fabry disease (FD) is characterized by deficient activity of α-galactosidase A (GLA). Consequently, globotriaosylceramide (Gb3) accumulates in various organs, causing cardiac, renal, and cerebrovascular damage. Gene therapies for FD have been investigated in humans. Strong conditioning is required for hematopoietic stem cell-targeted gene therapy (HSC-GT). However, strong conditioning leads to various side effects and should be avoided. In this study, we tested antibody-based conditioning for HSC-GT in wild-type and FD model mice. METHODS: After preconditioning with an antibody-drug conjugate, HSC-GT using a lentiviral vector was performed in wild-type and Fabry model mice. In the wild-type experiment, the EGFP gene was introduced into HSCs and transplanted into preconditioned mice, and donor chimerism and EGFP expression were analyzed. In the FD mouse model, the GLA gene was introduced into HSCs and transplanted into preconditioned Fabry mice. GLA activity and Gb3 accumulation in the organs were analyzed. RESULTS: In the wild-type mouse experiment, when anti-CD45 antibody-drug conjugate was used, the percentage of donor cells at 6 months was 64.5%, and 69.6% of engrafted donor peripheral blood expressed EGFP. When anti-CD117 antibody-drug conjugate and ATG were used, the percentage of donor cells at 6 months was 80.7%, and 73.4% of engrafted donor peripheral blood expressed EGFP. Although large variations in GLA activity among mice were observed in the FD mouse experiment for both preconditioning regimens, Gb3 was significantly reduced in many organs. CONCLUSIONS: Antibody-based preconditioning may be an alternative preconditioning strategy for HSC-GT for treating FD.

8.
J Exp Bot ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38938017

ABSTRACT

Raffinose mitigates plant heat-, drought- and cold- stresses; however, whether raffinose contributes to plant waterlogging tolerance is unknown. The maize zmrafs-1 mutant seedlings lacking raffinose, generate fewer and shorter adventitious root (AR) and are more sensitive to waterlogging stress, while overexpression of ZmRAFS increases raffinose content, stimulates AR formation, and enhances the waterlogging tolerance of maize seedlings. Transcriptome analysis of NS (Null segregant) seedlings compared with that of zmrafs-1, particularly when waterlogged, revealed that the expression of genes related to galactose metabolism and the auxin biosynthetic pathway were upregulated by raffinose. Additionally, Indole-3-acetic acid (IAA) amounts significantly decreased or increased in zmrafs-1 or ZmRAFS-overexpressing seedlings, respectively. Inhibition of the hydrolysis of raffinose by DGJ (1-deoxygalactonojirimycin) decreased the waterlogging tolerance of maize seedlings, decreased the expression of genes encoding proteins related to auxin transport-related genes as well as the IAA level in the seedlings, suggesting that the hydrolysis of raffinose is necessary for maize waterlogging tolerance. These data demonstrate that raffinose catabolism stimulates adventitious root formation via auxin signaling pathway to enhance maize waterlogging tolerance.

9.
Arch Microbiol ; 206(3): 126, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38411730

ABSTRACT

Glyoxylate shunt is an important pathway for microorganisms to survive under multiple stresses. One of its enzymes, malate synthase (encoded by aceB gene), has been widely speculated for its contribution to both the pathogenesis and virulence of various microorganisms. We have previously demonstrated that malate synthase (MS) is required for the growth of Salmonella Typhimurium (S. Typhimurium) under carbon starvation and survival under oxidative stress conditions. The aceB gene is encoded by the acetate operon in S. Typhimurium. We attempted to study the activity of acetate promoter under both the starvation and oxidative stress conditions in a heterologous system. The lac promoter of the pUC19 plasmid was substituted with the putative promoter sequence of the acetate operon of S. Typhimurium upstream to the lacZ gene and transformed the vector construct into E. coli NEBα cells. The transformed cells were subjected to the stress conditions mentioned above. We observed a fourfold increase in the ß-galactosidase activity in these cells resulting from the upregulation of the lacZ gene in the stationary phase of cell growth (nutrient deprived) as compared to the mid-log phase. Following exposure of stationary phase cells to hypochlorite-induced oxidative stress, we further observed a 1.6-fold increase in ß galactosidase activity. These data suggest the induction of promoter activity of the acetate operon under carbon starvation and oxidative stress conditions. Thus, these observations corroborate our previous findings regarding the upregulation of aceB expression under stressful environments.


Subject(s)
Escherichia coli , Salmonella typhimurium , Salmonella typhimurium/genetics , Malate Synthase , Operon , Oxidative Stress/genetics , Acetates , Carbon , Nutrients
10.
J Neurooncol ; 166(1): 143-153, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38117375

ABSTRACT

PURPOSE: Meningiomas are tumours originating from meningothelial cells, the majority belonging to grade 1 according to the World Health Organization classification of the tumours of the Central Nervous System. Factors contributing to the progression to the higher grades (grades 2 and 3) have not been elucidated yet. Senescence has been proposed as a potential mechanism constraining the malignant transformation of tumours. Senescence-associated beta-galactosidase (SA-ß-GAL) and inhibitors of cyclin-dependent kinases p16 and p21 have been suggested as senescence markers. METHODS: We analysed 318 meningiomas of total 343 (178 grade 1, 133 grade 2 and 7 grade 3). Tissue microarrays were constructed and stained immunohistochemically, using antibodies for SA-ß-GAL, p16 and p21. RESULTS: The positive correlation of the tumour grade with the expression of p16 (p = 0.016) and SA-ß-GAL (p = 0.002) was observed. The expression of p16 and SA-ß-GAL was significantly higher in meningiomas grade 2 compared to meningiomas grade 1 (p = 0.006 and p = 0.004, respectively). SA-ß-GAL positivity positively correlated with p16 and p21 in the whole cohort. In grade 2 meningiomas, a positive correlation was only between SA-ß-GAL and p16. Correlations of senescence markers in meningiomas grade 2 were not present. CONCLUSION: Our findings suggest the senescence activation in meningiomas grade 2 as a potential mechanism for the restraining of tumour growth and give hope for applying of promising senolytic therapy.


Subject(s)
Meningeal Neoplasms , Meningioma , Humans , Cellular Senescence/physiology , Oncogenes , beta-Galactosidase/metabolism , Central Nervous System/chemistry , Central Nervous System/metabolism , Cyclin-Dependent Kinase Inhibitor p16/metabolism
11.
J Inherit Metab Dis ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38618884

ABSTRACT

Fabry disease (FD) is an X-linked multiorgan disorder caused by variants in the alpha-galactosidase A gene (GLA). Depending on the variant, disease phenotypes range from benign to life-threatening. More than 1000 GLA variants are known, but a link between genotype and phenotype in FD has not yet been established for all. p.A143T, p.D313Y, and p.S126G are frequent examples of variants of unknown significance (VUS). We have investigated the potential pathogenicity of these VUS combining clinical data with data obtained in human cellular in vitro systems. We have analyzed four different male subject-derived cell types for alpha-galactosidase A enzyme (GLA) activity and intracellular Gb3 load. Additionally, Gb3 load in skin tissue as well as clinical data were studied for correlates of disease manifestations. A reduction of GLA activity was observed in cells carrying p.A143T compared with controls (p < 0.05). In cells carrying the p.D313Y variant, a reduced GLA activity was found only in endothelial cells (p < 0.01) compared with controls. No pathological changes were observed in cells carrying the p.S126G variant. None of the VUS investigated caused intracellular Gb3 accumulation in any cell type. Our data of aberrant GLA activity in cells of p.A143T hemizygotes and overall normal cellular phenotypes in cells of p.D313Y and p.S126G hemizygotes contribute a basic science perspective to the clinically highly relevant discussion on VUS in GLA.

12.
Microb Cell Fact ; 23(1): 170, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867249

ABSTRACT

BACKGROUND: The gram-positive bacterium Bacillus subtilis is widely used for industrial enzyme production. Its ability to secrete a wide range of enzymes into the extracellular medium especially facilitates downstream processing since cell disruption is avoided. Although various heterologous enzymes have been successfully secreted with B. subtilis, the secretion of cytoplasmic enzymes with high molecular weight is challenging. Only a few studies report on the secretion of cytoplasmic enzymes with a molecular weight > 100 kDa. RESULTS: In this study, the cytoplasmic and 120 kDa ß-galactosidase of Paenibacillus wynnii (ß-gal-Pw) was expressed and secreted with B. subtilis SCK6. Different strategies were focused on to identify the best secretion conditions. Tailormade codon-optimization of the ß-gal-Pw gene led to an increase in extracellular ß-gal-Pw production. Consequently, the optimized gene was used to test four signal peptides and two promoters in different combinations. Differences in extracellular ß-gal-Pw activity between the recombinant B. subtilis strains were observed with the successful secretion being highly dependent on the specific combination of promoter and signal peptide used. Interestingly, signal peptides of both the general secretory- and the twin-arginine translocation pathway mediated secretion. The highest extracellular activity of 55.2 ± 6 µkat/Lculture was reached when secretion was mediated by the PhoD signal peptide and expression was controlled by the PAprE promoter. Production of extracellular ß-gal-Pw was further enhanced 1.4-fold in a bioreactor cultivation to 77.5 ± 10 µkat/Lculture with secretion efficiencies of more than 80%. CONCLUSION: For the first time, the ß-gal-Pw was efficiently secreted with B. subtilis SCK6, demonstrating the potential of this strain for secretory production of cytoplasmic, high molecular weight enzymes.


Subject(s)
Bacillus subtilis , Molecular Weight , Paenibacillus , beta-Galactosidase , Bacillus subtilis/genetics , Bacillus subtilis/enzymology , Bacillus subtilis/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/genetics , Paenibacillus/enzymology , Paenibacillus/genetics , Cytoplasm/metabolism , Promoter Regions, Genetic , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/genetics , Protein Sorting Signals
13.
Bioorg Med Chem Lett ; 104: 129727, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582132

ABSTRACT

ß-galactosidase (ß-gal) has high activity in various malignancies, which is suitable for targeted positron emission tomography (PET) imaging. Meanwhile, ß-gal can successfully guide the formation of nanofibers, which enhances the intensity of imaging and extends the imaging time. Herein, we designed a ß-galactosidase-guided self-assembled PET imaging probe [68Ga]Nap-NOTA-1Gal. We envisage that ß-gal could recognize and cleave the target site, bringing about self-assembling to form nanofibers, thereby enhancing the PET imaging effect. The targeting specificity of [68Ga]Nap-NOTA-1Gal for detecting ß-gal activity was examined using the control probe [68Ga]Nap-NOTA-1. Micro-PET imaging showed that tumor regions of [68Ga]Nap-NOTA-1Gal were visible after injection. And the tumor uptake of [68Ga]Nap-NOTA-1Gal was higher than [68Ga]Nap-NOTA-1 at all-time points. Our results demonstrated that the [68Ga]Nap-NOTA-1Gal can be used for the purpose of a new promising PET probe for helping diagnose cancer with high levels of ß-gal activity.


Subject(s)
Molecular Probes , Nanofibers , Neoplasms , beta-Galactosidase , Humans , beta-Galactosidase/analysis , Cell Line, Tumor , Gallium Radioisotopes , Neoplasms/diagnostic imaging , Positron-Emission Tomography/methods
14.
J Fluoresc ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38607528

ABSTRACT

Colorectal cancer was one of the major malignant tumors threatening human health and ß-Gal was recognized as a principal biomarker for primary colorectal cancer. Thus, designing specific and efficient quantitative detection methods for measuring ß-Gal enzyme activity was of great clinical test significance. Herein, an ultrasensitive detection method based on Turn-on fluorescence probe (CS-ßGal) was reported for visualizing the detection of exogenous and endogenous ß-galactosidase enzyme activity. The test method possessed a series of excellent performances, such as a significant fluorescence enhancement (about 11.3-fold), high selectivity as well as superior sensitivity. Furthermore, under the optimal experimental conditions, a relatively low limit of detection down to 0.024 U/mL was achieved for fluorescence titration experiment. It was thanks to the better biocompatibility and low cytotoxicity, CS-ßGal had been triumphantly employed to visual detect endogenous and exogenous ß-Gal concentration variations in living cells with noteworthy anti-interference performance. More biologically significant was the fact that the application of CS-ßGal in BALB/c nude mice was also achieved successfully for monitoring endogenous ß-Gal enzyme activity.

15.
Appl Microbiol Biotechnol ; 108(1): 349, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809317

ABSTRACT

Galacto-oligosaccharides (GOS) are prebiotic compounds that are mainly used in infant formula to mimic bifidogenic effects of mother's milk. They are synthesized by ß-galactosidase enzymes in a trans-glycosylation reaction with lactose. Many ß-galactosidase enzymes from different sources have been studied, resulting in varying GOS product compositions and yields. The in vivo role of these enzymes is in lactose hydrolysis. Therefore, the best GOS yields were achieved at high lactose concentrations up to 60%wt, which require a relatively high temperature to dissolve. Some thermostable ß-glucosidase enzymes from thermophilic bacteria are also capable of using lactose or para nitrophenyl-galactose as a substrate. Here, we describe the use of the ß-glucosidase BglA from Thermotoga maritima for synthesis of oligosaccharides derived from lactose and cellobiose and their detailed structural characterization. Also, the BglA enzyme kinetics and yields were determined, showing highest productivity at higher lactose and cellobiose concentrations. The BglA trans-glycosylation/hydrolysis ratio was higher with 57%wt lactose than with a nearly saturated cellobiose (20%wt) solution. The yield of GOS was very high, reaching 72.1%wt GOS from lactose. Structural elucidation of the products showed mainly ß(1 → 3) and ß(1 → 6) elongating activity, but also some ß(1 → 4) elongation was observed. The ß-glucosidase BglA from T. maritima was shown to be a very versatile enzyme, producing high yields of oligosaccharides, particularly GOS from lactose. KEY POINTS: • ß-Glucosidase of Thermotoga maritima synthesizes GOS from lactose at very high yield. • Thermotoga maritima ß-glucosidase has high activity and high thermostability. • Thermotoga maritima ß-glucosidase GOS contains mainly (ß1-3) and (ß1-6) linkages.


Subject(s)
Cellobiose , Lactose , Oligosaccharides , Thermotoga maritima , beta-Glucosidase , Thermotoga maritima/enzymology , Thermotoga maritima/genetics , Lactose/metabolism , Cellobiose/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/genetics , beta-Glucosidase/chemistry , Kinetics , Oligosaccharides/metabolism , Glycosylation , Hydrolysis , Temperature , Enzyme Stability
16.
J Med Genet ; 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37940383

ABSTRACT

BACKGROUND: Pegunigalsidase alfa is a PEGylated α-galactosidase A enzyme replacement therapy. BALANCE (NCT02795676) assessed non-inferiority of pegunigalsidase alfa versus agalsidase beta in adults with Fabry disease with an annualised estimated glomerular filtration rate (eGFR) slope more negative than -2 mL/min/1.73 m2/year who had received agalsidase beta for ≥1 year. METHODS: Patients were randomly assigned 2:1 to receive 1 mg/kg pegunigalsidase alfa or agalsidase beta every 2 weeks for 2 years. The primary efficacy analysis assessed non-inferiority based on median annualised eGFR slope differences between treatment arms. RESULTS: Seventy-seven patients received either pegunigalsidase alfa (n=52) or agalsidase beta (n=25). At baseline, mean (range) age was 44 (18-60) years, 47 (61%) patients were male, median eGFR was 74.5 mL/min/1.73 m2 and median (range) eGFR slope was -7.3 (-30.5, 6.3) mL/min/1.73 m2/year. At 2 years, the difference between median eGFR slopes was -0.36 mL/min/1.73 m2/year, meeting the prespecified non-inferiority margin. Minimal changes were observed in lyso-Gb3 concentrations in both treatment arms at 2 years. Proportions of patients experiencing treatment-related adverse events and mild or moderate infusion-related reactions were similar in both groups, yet exposure-adjusted rates were 3.6-fold and 7.8-fold higher, respectively, with agalsidase beta than pegunigalsidase alfa. At the end of the study, neutralising antibodies were detected in 7 out of 47 (15%) pegunigalsidase alfa-treated patients and 6 out of 23 (26%) agalsidase beta-treated patients. There were no deaths. CONCLUSIONS: Based on rate of eGFR decline over 2 years, pegunigalsidase alfa was non-inferior to agalsidase beta. Pegunigalsidase alfa had lower rates of treatment-emergent adverse events and mild or moderate infusion-related reactions. TRIAL REGISTRATION NUMBER: NCT02795676.

17.
Mar Drugs ; 22(3)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38535456

ABSTRACT

Floridoside is a galactosyl-glycerol compound that acts to supply UDP-galactose and functions as an organic osmolyte in response to salinity in Rhodophyta. Significantly, the UDP-galactose pool is shared for sulfated cell wall galactan synthesis, and, in turn, affected by thallus development alongside carposporogenesis induced by volatile growth regulators, such as ethylene and methyl jasmonate, in the red seaweed Grateloupia imbricata. In this study, we monitored changes in the floridoside reservoir through gene expression controlling both the galactose pool and glyceride pool under different reproductive stages of G. imbricata and we considered changing salinity conditions. Floridoside synthesis was followed by expression analysis of galactose-1-phosphate uridyltransferase (GALT) as UDP-galactose is obtained from UDP-glucose and glucose-1P, and through α-galactosidase gene expression as degradation of floridoside occurs through the cleavage of galactosyl residues. Meanwhile, glycerol 3-phosphate is connected with the galactoglyceride biosynthetic pathway by glycerol 3-phosphate dehydrogenase (G3PD), monogalactosyl diacylglyceride synthase (MGDGS), and digalactosyl diacylglyceride synthase (DGDGS). The results of our study confirm that low GALT transcripts are correlated with thalli softness to locate reproductive structures, as well as constricting the synthesis of UDP-hexoses for galactan backbone synthesis in the presence of two volatile regulators and methionine. Meanwhile, α-galactosidase modulates expression according to cystocarp maturation, and we found high transcripts in late development stages, as occurred in the presence of methyljasmonate, compared to early stages in ethylene. Regarding the acylglyceride pool, the upregulation of G3PD, MGDGS, and DGDGS gene expression in G. imbricata treated with MEJA supports lipid remodeling, as high levels of transcripts for MGDGS and DGDGS provide membrane stability during late development stages of cystocarps. Similar behavior is assumed in three naturally collected thalli development stages-namely, fertile, fertilized, and fertile-under 65 psu salinity conditions. Low transcripts for α-galactosidase and high for G3PD are reported in infertile and fertilized thalli, which is the opposite to high transcripts for α-galactosidase and low for G3PD encountered in fertile thalli within visible cystocarps compared to each of their corresponding stages in 35 psu. No significant changes are reported for MGDGS and DGDGS. It is concluded that cystocarp and thallus development stages affect galactose and glycerides pools with interwoven effects on cell wall polysaccharides.


Subject(s)
Cyclopentanes , Glycerol/analogs & derivatives , Glycerophosphates , Oxylipins , Rhodophyta , Seaweed , Galactose , alpha-Galactosidase , Galactans , Glucose , Uridine Diphosphate
18.
Skeletal Radiol ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329533

ABSTRACT

Senescent cells play a vital role in the pathogenesis of musculoskeletal (MSK) diseases, such as chronic inflammatory joint disorders, rheumatoid arthritis (RA), and osteoarthritis (OA). Cellular senescence in articular joints represents a response of local cells to persistent stress that leads to cell-cycle arrest and enhanced production of inflammatory cytokines, which in turn perpetuates joint damage and leads to significant morbidities in afflicted patients. It has been recently discovered that clearance of senescent cells by novel "senolytic" therapies can attenuate the chronic inflammatory microenvironment of RA and OA, preventing further disease progression and supporting healing processes. To identify patients who might benefit from these new senolytic therapies and monitor therapy response, there is an unmet need to identify and map senescent cells in articular joints and related musculoskeletal tissues. To fill this gap, new imaging biomarkers are being developed to detect and characterize senescent cells in human joints and musculoskeletal tissues. This review article will provide an overview of these efforts. New imaging biomarkers for senescence cells are expected to significantly improve the specificity of state-of-the-art imaging technologies for diagnosing musculoskeletal disorders.

19.
J Dairy Sci ; 107(6): 3429-3442, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38246536

ABSTRACT

Commercial ß-galactosidases exhibit undesirable kinetic properties regarding substrate affinity (Michaelis-Menten constant [KM] for lactose) and product inhibition (inhibitor constant [Ki] for galactose). An in silico screening of gene sequences was done and identified a putative ß-galactosidase (Paenibacillus wynnii ß-galactosidase, BgaPw) from the psychrophilic bacterium Paenibacillus wynnii. The cultivation of the wild-type P. wynnii strain resulted in very low ß-galactosidase activities of a maximum of 150 nkat per liter of medium with o-nitrophenyl-ß-d-galactopyranoside (oNPGal) as substrate. The recombinant production of BgaPw in Escherichia coli BL21(DE3) increased the yield ∼9,000-fold. Here, a volumetric activity of 1,350.18 ± 11.82 µkatoNPGal/Lculture was achieved in a bioreactor cultivation. The partly purified BgaPw showed a pH optimum at 7.0, a temperature maximum at 40°C, and an excellent stability at 8°C with a half-life of 77 d. Kinetic studies with BgaPw were done in milk or in milk-imitating synthetic buffer (Novo buffer), respectively. Remarkably, the KM value of BgaPw with lactose was as low as 0.63 ± 0.045 mM in milk. It was found that the resulting products of lactose hydrolysis, namely galactose and glucose, did not inhibit the ß-galactosidase activity of BgaPw, but instead showed a striking activating effect in both cases (up to 144%). In a comparison study in milk, lactose was completely hydrolyzed by BgaPw in 72 h at 8°C, whereas 2 other known ß-galactosidases were less powerful and converted only about 90% of lactose in the same time. Finally, the formation of galactooligosaccharides (GOS) was demonstrated with the new BgaPw, starting with pharma-lactose (400 g/L). A GOS production of about 144 g/L was achieved after 24 h (36.0% yield).


Subject(s)
Lactose , Paenibacillus , beta-Galactosidase , beta-Galactosidase/metabolism , beta-Galactosidase/genetics , Paenibacillus/enzymology , Paenibacillus/genetics , Kinetics , Lactose/metabolism , Milk , Animals , Galactose/metabolism , Hydrogen-Ion Concentration
20.
J Dairy Sci ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38670341

ABSTRACT

Yogurt usually contains 5-7% sugar and 3-5% lactose. As ß-galactosidases can hydrolyze lactose and improve sweetness, they have the potential to produce lactose-free (LF) and no-sugar-added (NSA) yogurt. In this study, ß-galactosidase AoBgal35A from Aspergillus oryzae was engineered by site-saturation mutagenesis. Results of 19 variants of T955 residue showed that lactose hydrolysis rate of T955R-AoBgal35A was up to 90.7%, much higher than 78.5% of the wild type. Moreover, the optimal pH of T955R-AoBgal35A was shifted from pH 4.5 to pH 5.5 and the optimal temperature decreased from 60°C to 50°C. The mutant T955R-AoBgal35A was successfully expressed in Komagatella pastoris, which produced extracellularly 4528 U/mL of ß-galactosidase activity. The mutant T955R-AoBgal35A was used to produce LF yogurt. Streptococcus thermophilus counts of LF yogurt increased from 7.9 to 9.5 lg cfu/g, significantly higher than that of the control group (8.9 lg cfu/g). Residual lactose content of LF yogurt was 0.13%, meeting the requirement of "lactose-free" label (<0.5%, GB 28050-2011, China). Furthermore, sugar in yogurt was replaced by whey powder to produce LF-NSA yogurt. The optimal addition content of whey powder was 7.5%. The texture, WHC and titratable acidity of LF and LF-NSA yogurt achieved good stability during the shelf life. Therefore, this study provides an insight for technological implications of ß-galactosidases in the dairy industry.

SELECTION OF CITATIONS
SEARCH DETAIL