Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 944
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neurosci ; 44(9)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38123981

ABSTRACT

Excessive oscillatory activity across basal ganglia (BG) nuclei in the ß frequencies (12-30 Hz) is a hallmark of Parkinson's disease (PD). While the link between oscillations and symptoms remains debated, exaggerated ß oscillations constitute an important biomarker for therapeutic effectiveness in PD. The neuronal mechanisms of ß-oscillation generation however remain unknown. Many existing models rely on a central role of the subthalamic nucleus (STN) or cortical inputs to BG. Contrarily, neural recordings and optogenetic manipulations in normal and parkinsonian rats recently highlighted the central role of the external pallidum (GPe) in abnormal ß oscillations, while showing that the integrity of STN or motor cortex is not required. Here, we evaluate the mechanisms for the generation of abnormal ß oscillations in a BG network model where neuronal and synaptic time constants, connectivity, and firing rate distributions are strongly constrained by experimental data. Guided by a mean-field approach, we show in a spiking neural network that several BG sub-circuits can drive oscillations. Strong recurrent STN-GPe connections or collateral intra-GPe connections drive γ oscillations (>40 Hz), whereas strong pallidostriatal loops drive low-ß (10-15 Hz) oscillations. We show that pathophysiological strengthening of striatal and pallidal synapses following dopamine depletion leads to the emergence of synchronized oscillatory activity in the mid-ß range with spike-phase relationships between BG neuronal populations in-line with experiments. Furthermore, inhibition of GPe, contrary to STN, abolishes oscillations. Our modeling study uncovers the neural mechanisms underlying PD ß oscillations and may thereby guide the future development of therapeutic strategies.


Subject(s)
Parkinson Disease , Subthalamic Nucleus , Rats , Animals , Basal Ganglia/physiology , Globus Pallidus/physiology , Neurons/physiology , Beta Rhythm/physiology
2.
J Neurosci ; 43(35): 6112-6125, 2023 08 30.
Article in English | MEDLINE | ID: mdl-37400253

ABSTRACT

Oscillatory signals propagate in the basal ganglia from prototypic neurons in the external globus pallidus (GPe) to their target neurons in the substantia nigra pars reticulata (SNr), internal pallidal segment, and subthalamic nucleus. Neurons in the GPe fire spontaneously, so oscillatory input signals can be encoded as changes in timing of action potentials within an ongoing spike train. When GPe neurons were driven by an oscillatory current in male and female mice, these spike-timing changes produced spike-oscillation coherence over a range of frequencies extending at least to 100 Hz. Using the known kinetics of the GPe→SNr synapse, we calculated the postsynaptic currents that would be generated in SNr neurons from the recorded GPe spike trains. The ongoing synaptic barrage from spontaneous firing, frequency-dependent short-term depression, and stochastic fluctuations at the synapse embed the input oscillation into a noisy sequence of synaptic currents in the SNr. The oscillatory component of the resulting synaptic current must compete with the noisy spontaneous synaptic barrage for control of postsynaptic SNr neurons, which have their own frequency-dependent sensitivities. Despite this, SNr neurons subjected to synaptic conductance changes generated from recorded GPe neuron firing patterns also became coherent with oscillations over a broad range of frequencies. The presynaptic, synaptic, and postsynaptic frequency sensitivities were all dependent on the firing rates of presynaptic and postsynaptic neurons. Firing rate changes, often assumed to be the propagating signal in these circuits, do not encode most oscillation frequencies, but instead determine which signal frequencies propagate effectively and which are suppressed.SIGNIFICANCE STATEMENT Oscillations are present in all the basal ganglia nuclei, include a range of frequencies, and change over the course of learning and behavior. Exaggerated oscillations are a hallmark of basal ganglia pathologies, and each has a specific frequency range. Because of its position as a hub in the basal ganglia circuitry, the globus pallidus is a candidate origin for oscillations propagating between nuclei. We imposed low-amplitude oscillations on individual globus pallidus neurons at specific frequencies and measured the coherence between the oscillation and firing as a function of frequency. We then used these responses to measure the effectiveness of oscillatory propagation to other basal ganglia nuclei. Propagation was effective for oscillation frequencies as high as 100 Hz.


Subject(s)
Pars Reticulata , Subthalamic Nucleus , Male , Female , Mice , Animals , Basal Ganglia/physiology , Globus Pallidus , Synaptic Potentials , Action Potentials/physiology
3.
J Neurosci ; 43(8): 1281-1297, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36623877

ABSTRACT

Autonomously firing GABAergic neurons in the external globus pallidus (GPe) form a local synaptic network. In slices, most GPe neurons receive a continuous inhibitory synaptic barrage from 1 or 2 presynaptic GPe neurons. We measured the barrage's effect on the firing rate and regularity of GPe neurons in male and female mice using perforated patch recordings. Silencing the firing of parvalbumin-positive (PV+) GPe neurons by activating genetically expressed Archaerhodopsin current increased the firing rate and regularity of PV- neurons. In contrast, silencing Npas1+ GPe neurons with Archaerhodopsin had insignificant effects on Npas1- neuron firing. Blocking spontaneous GABAergic synaptic input with gabazine reproduced the effects of silencing PV+ neuron firing on the firing rate and regularity of Npas1+ neurons and had similar effects on PV+ neuron firing. To simulate the barrage, we constructed conductance waveforms for dynamic clamp based on experimentally measured inhibitory postsynaptic conductance trains from 1 or 2 unitary local connections. The resulting inhibition replicated the effect on firing seen in the intact active network in the slice. We then increased the number of unitary inputs to match estimates of local network connectivity in vivo As few as 5 unitary inputs produced large increases in firing irregularity. The firing rate was also reduced initially, but PV+ neurons exhibited a slow spike-frequency adaptation that partially restored the rate despite sustained inhibition. We conclude that the irregular firing pattern of GPe neurons in vivo is largely due to the ongoing local inhibitory synaptic barrage produced by the spontaneous firing of other GPe neurons.SIGNIFICANCE STATEMENT Functional roles of local axon collaterals in the external globus pallidus (GPe) have remained elusive because of difficulty in isolating local inhibition from other GABAergic inputs in vivo, and in preserving the autonomous firing of GPe neurons and detecting their spontaneous local inputs in slices. We used perforated patch recordings to detect spontaneous local inputs during rhythmic firing. We found that the autonomous firing of single presynaptic GPe neurons produces inhibitory synaptic barrages that significantly alter the firing regularity of other GPe neurons. Our findings suggest that, although GPe neurons receive input from only a few other GPe neurons, each local connection has a large impact on their firing.


Subject(s)
GABAergic Neurons , Globus Pallidus , Mice , Male , Female , Animals , Globus Pallidus/physiology , Axons , Parvalbumins , Nerve Tissue Proteins , Basic Helix-Loop-Helix Transcription Factors
4.
J Neurophysiol ; 132(3): 953-967, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39110516

ABSTRACT

Deep brain stimulation (DBS) of the internal segment of the globus pallidus (GPi) can markedly reduce muscle rigidity in people with Parkinson's disease (PD); however, the mechanisms mediating this effect are poorly understood. Computational modeling of DBS provides a method to estimate the relative contributions of neural pathway activations to changes in outcomes. In this study, we generated subject-specific biophysical models of GPi DBS (derived from individual 7-T MRI), including pallidal efferent, putamenal efferent, and internal capsule pathways, to investigate how activation of neural pathways contributed to changes in forearm rigidity in PD. Ten individuals (17 arms) were tested off medication under four conditions: off stimulation, on clinically optimized stimulation, and on stimulation specifically targeting the dorsal GPi or ventral GPi. Quantitative measures of forearm rigidity, with and without a contralateral activation maneuver, were obtained with a robotic manipulandum. Clinically optimized GPi DBS settings significantly reduced forearm rigidity (P < 0.001), which aligned with GPi efferent fiber activation. The model demonstrated that GPi efferent axons could be activated at any location along the GPi dorsal-ventral axis. These results provide evidence that rigidity reduction produced by GPi DBS is mediated by preferential activation of GPi efferents to the thalamus, likely leading to a reduction in excitability of the muscle stretch reflex via overdriving pallidofugal output.NEW & NOTEWORTHY Subject-specific computational models of pallidal deep brain stimulation, in conjunction with quantitative measures of forearm rigidity, were used to examine the neural pathways mediating stimulation-induced changes in rigidity in people with Parkinson's disease. The model uniquely included internal, efferent and adjacent pathways of the basal ganglia. The results demonstrate that reductions in rigidity evoked by deep brain stimulation were principally mediated by the activation of globus pallidus internus efferent pathways.


Subject(s)
Deep Brain Stimulation , Globus Pallidus , Muscle Rigidity , Parkinson Disease , Humans , Globus Pallidus/physiopathology , Globus Pallidus/physiology , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Muscle Rigidity/physiopathology , Muscle Rigidity/therapy , Male , Female , Middle Aged , Aged , Neural Pathways/physiopathology , Neural Pathways/physiology , Models, Neurological
5.
J Neurophysiol ; 131(5): 914-936, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38596834

ABSTRACT

Two subtypes of striatal spiny projection neurons, iSPNs and dSPNs, whose axons form the "indirect" and "direct" pathways of the basal ganglia, respectively, both make synaptic connections in the external globus pallidus (GPe) but are usually found to have different effects on behavior. Activation of the terminal fields of iSPNs or dSPNs generated compound currents in almost all GPe neurons. To determine whether iSPNs and dSPNs have the same or different effects on pallidal neurons, we studied the unitary synaptic currents generated in GPe neurons by action potentials in single striatal neurons. We used optogenetic excitation to elicit repetitive firing in a small number of nearby SPNs, producing sparse barrages of inhibitory postsynaptic currents (IPSCs) in GPe neurons. From these barrages, we isolated sequences of IPSCs with similar time courses and amplitudes, which presumably arose from the same SPN. There was no difference between the amplitudes of unitary IPSCs generated by the indirect and direct pathways. Most unitary IPSCs were small, but a subset from each pathway were much larger. To determine the effects of these unitary synaptic currents on the action potential firing of GPe neurons, we drove SPNs to fire as before and recorded the membrane potential of GPe neurons. Large unitary potentials from iSPNs and dSPNs perturbed the spike timing of GPe neurons in a similar way. Most SPN-GPe neuron pairs are weakly connected, but a subset of pairs in both pathways are strongly connected.NEW & NOTEWORTHY This is the first study to record the synaptic currents generated by single identified direct or indirect pathway striatal neurons on single pallidal neurons. Each GPe neuron receives synaptic inputs from both pathways. Most striatal neurons generate small synaptic currents that become influential when occurring together, but a few are powerful enough to be individually influential.


Subject(s)
Inhibitory Postsynaptic Potentials , Neurons , Optogenetics , Animals , Mice , Neurons/physiology , Inhibitory Postsynaptic Potentials/physiology , Corpus Striatum/physiology , Corpus Striatum/cytology , Globus Pallidus/physiology , Globus Pallidus/cytology , Action Potentials/physiology , Male , Mice, Inbred C57BL , Female , Neural Pathways/physiology , Synapses/physiology
6.
Neurobiol Dis ; 199: 106581, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936434

ABSTRACT

BACKGROUND: Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) and subthalamic nucleus (STN) is employed for the treatment of dystonia. Pallidal low-frequency oscillations have been proposed as a pathophysiological marker for dystonia. However, the role of subthalamic oscillations and STN-GPi coupling in relation to dystonia remains unclear. OBJECTIVE: We aimed to explore oscillatory activities within the STN-GPi circuit and their correlation with the severity of dystonia and efficacy achieved by DBS treatment. METHODS: Local field potentials were recorded simultaneously from the STN and GPi from 13 dystonia patients. Spectral power analysis was conducted for selected frequency bands from both nuclei, while power correlation and the weighted phase lag index were used to evaluate power and phase couplings between these two nuclei, respectively. These features were incorporated into generalized linear models to assess their associations with dystonia severity and DBS efficacy. RESULTS: The results revealed that pallidal theta power, subthalamic beta power and subthalamic-pallidal theta phase coupling and beta power coupling all correlated with clinical severity. The model incorporating all selected features predicts empirical clinical scores and DBS-induced improvements, whereas the model relying solely on pallidal theta power failed to demonstrate significant correlations. CONCLUSIONS: Beyond pallidal theta power, subthalamic beta power, STN-GPi couplings in theta and beta bands, play a crucial role in understanding the pathophysiological mechanism of dystonia and developing optimal strategies for DBS.


Subject(s)
Deep Brain Stimulation , Dystonia , Globus Pallidus , Subthalamic Nucleus , Humans , Deep Brain Stimulation/methods , Globus Pallidus/physiopathology , Globus Pallidus/physiology , Subthalamic Nucleus/physiopathology , Male , Female , Middle Aged , Adult , Dystonia/therapy , Dystonia/physiopathology , Severity of Illness Index , Aged , Young Adult , Treatment Outcome
7.
Neurobiol Dis ; 190: 106362, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37992783

ABSTRACT

The external segment of the globus pallidus (GPe) has long been considered a homogeneous structure that receives inputs from the striatum and sends processed information to the subthalamic nucleus, composing a relay nucleus of the indirect pathway that contributes to movement suppression. Recent methodological revolution in rodents led to the identification of two distinct cell types in the GPe with different fiber connections. The GPe may be regarded as a dynamic, complex and influential center within the basal ganglia circuitry, rather than a simple relay nucleus. On the other hand, many studies have so far been performed in monkeys to clarify the functions of the basal ganglia in the healthy and diseased states, but have not paid much attention to such classification and functional differences of GPe neurons. In this minireview, we consider the knowledge on the rodent GPe and discuss its impact on the understanding of the basal ganglia circuitry in monkeys.


Subject(s)
Globus Pallidus , Subthalamic Nucleus , Globus Pallidus/metabolism , Corpus Striatum , Basal Ganglia/physiology , Neurons/metabolism , Neural Pathways/physiology
8.
Eur J Neurosci ; 60(9): 6185-6194, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39394889

ABSTRACT

Gilles de la Tourette syndrome (GTS) and dystonia (DYS) are both hyperkinetic movement disorders effectively treated by deep brain stimulation (DBS) of the internal part of the globus pallidus (GPi). In this study, we compared single-neuron activity in the GPi between 18 GTS patients (with an average of 41 cells per patient) and 17 DYS patients (with an average of 54 cells per patient), all of whom underwent bilateral pallidal stimulation surgery, under general anesthesia or while awake at rest. We found no significant differences in GPi neuronal activity characteristics between patients operated on under general anesthesia versus those who were awake, irrespective of their diagnosis (GTS or DYS). We found higher firing rates, firing rate in bursts, pause duration and interspike interval coefficient of variation in GTS patients compared to DYS patients. On the opposite, we found higher number of pauses and bursts frequency in DYS patients. Lastly, we found a higher proportion of GPi oscillatory activities in DYS compared to GTS patients, with predominant activity within the low-frequency band (theta/alpha) in both patient groups. These findings underscore the complex relationship between the different neuronal discharge characteristic such as oscillatory or bursting activity within the GPi in shaping the clinical phenotypes of hyperkinetic disorders. Further research is warranted to deepen our understanding of how neuronal patterns are transmitted within deep brain structures and to develop strategies aimed at normalizing these pathological activities, by refining DBS techniques to enhance treatment efficacy and individual outcomes.


Subject(s)
Deep Brain Stimulation , Globus Pallidus , Neurons , Tourette Syndrome , Humans , Tourette Syndrome/physiopathology , Tourette Syndrome/therapy , Globus Pallidus/physiopathology , Male , Adult , Female , Deep Brain Stimulation/methods , Neurons/physiology , Middle Aged , Young Adult , Adolescent , Action Potentials/physiology , Dystonic Disorders/physiopathology , Dystonic Disorders/therapy
9.
J Neurosci Res ; 102(4): e25328, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651310

ABSTRACT

Although manifesting contrasting phenotypes, Parkinson's disease and dystonia, the two most common movement disorders, can originate from similar pathophysiology. Previously, we demonstrated that lesioning (silencing) of a discrete dorsal region in the globus pallidus (rodent equivalent to globus pallidus externa) in rats and produced parkinsonism, while lesioning a nearby ventral hotspot-induced dystonia. Presently, we injected fluorescent-tagged multi-synaptic tracers into these pallidal hotspots (n = 36 Long Evans rats) and permitted 4 days for the viruses to travel along restricted connecting pathways and reach the motor cortex before sacrificing the animals. Viral injections in the Parkinson's hotspot fluorescent labeled a circumscribed region in the secondary motor cortex, while injections in the dystonia hotspot labeled within the primary motor cortex. Custom probability mapping and N200 staining affirmed the segregation of the cortical territories for Parkinsonism and dystonia to the secondary and primary motor cortices. Intracortical microstimulation localized territories specifically to their respective rostral and caudal microexcitable zones. Parkinsonian features are thus explained by pathological signaling within a secondary motor subcircuit normally responsible for initiation and scaling of movement, while dystonia is explained by abnormal (and excessive) basal ganglia signaling directed at primary motor corticospinal transmission.


Subject(s)
Basal Ganglia , Dystonia , Motor Cortex , Neural Pathways , Parkinsonian Disorders , Rats, Long-Evans , Animals , Motor Cortex/physiopathology , Motor Cortex/pathology , Parkinsonian Disorders/physiopathology , Parkinsonian Disorders/pathology , Rats , Neural Pathways/physiopathology , Dystonia/physiopathology , Dystonia/pathology , Dystonia/etiology , Basal Ganglia/pathology , Male , Globus Pallidus/pathology , Disease Models, Animal
10.
J Neurogenet ; 38(2): 41-45, 2024 Jun.
Article in English | MEDLINE | ID: mdl-39007626

ABSTRACT

Pyruvate Dehydrogenase (PDH) E2 deficiency due to Dihydrolipoamide acetyltransferase (DLAT) mutations is a very rare condition with only nine reported cases to date. We describe a 15-year-old girl with mild intellectual disability, paroxysmal dystonia and bilateral basal ganglia signal abnormalities on brain magnetic resonance imaging (MRI). Additionally, neurophysiological, imaging, metabolic and exome sequencing studies were performed. Routine metabolite testing, and GLUT1 and PRRT2 mutation analysis were negative. A repeat brain MRI revealed 'Eye-of-the-tiger-sign'. Exome sequencing identified homozygous valine to glycine alteration at amino acid position 157 in the DLAT gene. Bioinformatic and family analyses indicated that the alteration was likely pathogenic. Patient's dystonia was responsive to low-dose carbamazepine. On weaning carbamazepine, patient developed hallucinations which resolved after carbamazepine was restarted. PDH E2 deficiency due to DLAT mutation has a more benign course compared to common forms of PDH E1 deficiency due to X-linked PDHA1 mutations. All known cases of PDH E2 deficiency due to DLAT mutations share the features of episodic dystonia and intellectual disability. Our patient's dystonia and hallucinations responded well to low-dose carbamazepine.


Subject(s)
Carbamazepine , Dystonia , Hallucinations , Humans , Female , Adolescent , Dystonia/genetics , Dystonia/drug therapy , Carbamazepine/therapeutic use , Hallucinations/genetics , Hallucinations/drug therapy , Mutation , Dihydrolipoyllysine-Residue Acetyltransferase/genetics , Intellectual Disability/genetics , Intellectual Disability/drug therapy , Anticonvulsants/therapeutic use
11.
Mov Disord ; 2024 Nov 02.
Article in English | MEDLINE | ID: mdl-39487633

ABSTRACT

BACKGROUND: No clinical trials have been reported on the use of focused ultrasound (FUS) for treating cervical dystonia. OBJECTIVE: We aimed to confirm the efficacy and safety of FUS pallidothalamic tractotomy for cervical dystonia. METHODS: This was a prospective, open-label, non-controlled pilot study. The primary outcome was defined as a change in the score for the Toronto Western Spasmodic Torticollis Rating Scale (TWSTRS) from baseline to 6 months after FUS pallidothalamic tractotomy. The secondary outcomes included a change in the neck scale for the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), mood scales including Beck Depression Inventory (BDI), Beck Anxiety Inventory (BAI), Apathy Evaluating Scale (AES), and adverse events. Patients were assessed for TWSTRS, BFMDRS, and adverse events at baseline, 1 week, 1 month, 3 months, and 6 months after treatment. BDI, BAI, and AES were assessed at baseline and 6 months after treatment. RESULTS: Ten patients were enrolled in this study. The mean age of onset of dystonia was 51.6 ± 10.2 years. The TWSTRS at 6 months (29.9 ± 16.0, range: 3-55) was significantly improved by 43.4% (P < 0.001) from baseline. The BFMDRS-Neck scales at 6 months (4.2 ± 2.8) were significantly improved by 38.2% (P < 0.001) from baseline. The BDI, BAI, and AES at 6 months were improved by 23.2%, 10.9%, and 30.3%, respectively from baseline. Reduced hand dexterity in three patients and weight gain in two patients were confirmed at the last evaluation. CONCLUSION: This study suggests that FUS pallidothalamic tractotomy may be an effective treatment option for patients with cervical dystonia. © 2024 International Parkinson and Movement Disorder Society.

12.
Mov Disord ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133053

ABSTRACT

BACKGROUND: Invasive deep brain stimulation (DBS) has been shown to be effective in treating patients with Parkinson's disease (PD), yet its clinical use is limited to patients at the advanced stage of the disease. Transcranial temporal interference stimulation (tTIS) may be a novel nonneurosurgical and safer alternative, yet its therapeutic potential remains unexplored. OBJECTIVE: This pilot study aims to examine the feasibility and safety of tTIS targeting the right globus pallidus internus (GPi) for motor symptoms in patients with PD. METHODS: Twelve participants with mild PD completed this randomized, double-blind, and sham-controlled experiment. Each of them received either 20-minute or sham tTIS of the right GPi. Before and immediately after the stimulation, participants completed the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III) in the "medication-on" state to assess the motor symptoms. The blinding efficacy and side effects were also assessed. RESULTS: tTIS was well tolerated by participants, with only mild, transient adverse effects reported. tTIS significantly reduced MDS-UPDRS-III scores by 6.64 points (14.7%), particularly in bradykinesia (23.5%) and tremor (15.3%). The left side showed more significant alleviation in motor symptoms, particularly bradykinesia, compared to the right side. Participants with severer bradykinesia and tremor before stimulation experienced greater improvement after tTIS. CONCLUSION: This pilot study suggests that the tTIS, as a novel noninvasive DBS approach, is feasible and safe for alleviating motor symptoms in mild PD, especially bradykinesia and tremor. Future larger-scale and more definitive studies are needed to confirm the benefits. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.

13.
Cerebellum ; 23(5): 2060-2081, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38761352

ABSTRACT

Substantial evidence highlights the role of the cerebellum in the pathophysiology of tremor in essential tremor (ET), although its potential involvement in altered movement execution in this condition remains unclear. This study aims to explore potential correlations between the cerebellum and basal ganglia functional connectivity and voluntary movement execution abnormalities in ET, objectively assessed with kinematic techniques. A total of 20 patients diagnosed with ET and 18 healthy subjects were enrolled in this study. Tremor and repetitive finger tapping were recorded using an optoelectronic kinematic system. All participants underwent comprehensive 3T-MRI examinations, including 3D-T1 and blood-oxygen-level dependent (BOLD) sequences during resting state. Morphometric analysis was conducted on the 3D-T1 images, while a seed-based analysis was performed to investigate the resting-state functional connectivity (rsFC) of dorsal and ventral portions of the dentate nucleus and the external and internal segments of the globus pallidus. Finally, potential correlations between rsFC alterations in patients and clinical as well as kinematic scores were assessed. Finger tapping movements were slower in ET than in healthy subjects. Compared to healthy subjects, patients with ET exhibited altered FC of both dentate and globus pallidus with cerebellar, basal ganglia, and cortical areas. Interestingly, both dentate and pallidal FC exhibited positive correlations with movement velocity in patients, differently from that we observed in healthy subjects, indicating the higher the FC, the faster the finger tapping. The findings of this study indicate the possible role of both cerebellum and basal ganglia in the pathophysiology of altered voluntary movement execution in patients with ET.


Subject(s)
Basal Ganglia , Cerebellum , Essential Tremor , Magnetic Resonance Imaging , Movement , Humans , Essential Tremor/physiopathology , Essential Tremor/diagnostic imaging , Female , Male , Basal Ganglia/physiopathology , Basal Ganglia/diagnostic imaging , Cerebellum/physiopathology , Cerebellum/diagnostic imaging , Middle Aged , Aged , Movement/physiology , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Biomechanical Phenomena/physiology , Adult
14.
J Neural Transm (Vienna) ; 131(4): 359-367, 2024 04.
Article in English | MEDLINE | ID: mdl-38456947

ABSTRACT

The different peaks of somatosensory-evoked potentials (SEP) originate from a variety of anatomical sites in the central nervous system. The origin of the median nerve subcortical N18 SEP has been studied under various conditions, but the exact site of its generation is still unclear. While it has been claimed to be located in the thalamic region, other studies indicated its possible origin below the pontomedullary junction. Here, we scrutinized and compared SEP recordings from median nerve stimulation through deep brain stimulation (DBS) electrodes implanted in various subcortical targets. We studied 24 patients with dystonia, Parkinson's disease, and chronic pain who underwent quadripolar electrode implantation for chronic DBS and recorded median nerve SEPs from globus pallidus internus (GPi), subthalamic nucleus (STN), thalamic ventral intermediate nucleus (Vim), and ventral posterolateral nucleus (VPL) and the centromedian-parafascicular complex (CM-Pf). The largest amplitude of the triphasic potential of the N18 complex was recorded in Vim. Bipolar recordings confirmed the origin to be close to Vim electrodes (and VPL/CM-Pf) and less close to STN electrodes. GPi recorded only far-field potentials in unipolar derivation. Recordings from DBS electrodes located in different subcortical areas allow determining the origin of certain subcortical SEP waves more precisely. The subcortical N18 of the median nerve SEP-to its largest extent-is generated ventral to the Vim in the region of the prelemniscal radiation/ zona incerta.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Evoked Potentials, Somatosensory/physiology , Subthalamic Nucleus/physiology , Thalamus/physiology , Parkinson Disease/therapy , Electrodes , Globus Pallidus , Electrodes, Implanted
15.
Eur Arch Psychiatry Clin Neurosci ; 274(2): 445-452, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37507486

ABSTRACT

Opioid addiction is a global problem that has been exacerbated in the USA and Europe by the COVID-19 pandemic. The globus pallidus (GP) plays a prominent neurobiological role in the regulation of behaviour as an output station of the striato-pallidal system. GABAergic large projection neurons are the main neuronal type in the external (EGP) and internal (IGP) parts of the GP, where addiction-specific molecular and functional abnormalities occur. In these neurons, glutamate decarboxylase (GAD) with isoforms GAD 65 and 67 is a key enzyme in GABA synthesis, and experimental studies suggest GAD dysregulation in the GP of heroin addicts. Our study, which was performed on paraffin-embedded brains from the Magdeburg Brain Bank, aimed to investigate abnormalities in the GABAergic function of large GP neurons by densitometric evaluation of their GAD 65/67-immunostained thick dendrites. The study revealed a bilaterally decreased fibres density in the EGP paralleled by the increase in the IGP in 11 male heroin addicts versus 11 healthy controls (significant U-test P values). The analysis of confounding variables found no interference of age, brain volume, and duration of formalin fixation with the results. Our findings suggest a dysregulation of GABAergic activity in the GP of heroin addicts, which is consistent with experimental data from animal models and plays potentially a role in the disturbed function of basal ganglia circuit in opioid addiction.


Subject(s)
Globus Pallidus , Opioid-Related Disorders , Animals , Male , Humans , Heroin , Pandemics , Basal Ganglia
16.
Neurosurg Focus ; 56(6): E16, 2024 06.
Article in English | MEDLINE | ID: mdl-38823054

ABSTRACT

OBJECTIVE: Craniocervical dystonia (CCD) is a common type of segmental dystonia, which is a disabling disease that has been frequently misdiagnosed. Blepharospasm or cervical dystonia is the most usual symptom initially. Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) has been widely used for treating CCD, its clinical outcome has been primarily evaluated in small-scale studies. This research examines the sustained clinical effectiveness of DBS of the GPi in individuals diagnosed with CCD. METHODS: The authors report 24 patients (14 women, 10 men) with refractory CCD who underwent DBS of the GPi between 2016 and 2023. The severity and disability of the dystonia were evaluated using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). The BFMDRS scores were collected preoperatively, 6 months postoperatively, and at the most recent follow-up visit. RESULTS: The mean age at onset was 52.0 ± 11.0 years (range 33-71 years) and the mean disease duration was 63.3 ± 73.3 months (range 7-360 months) (values for continuous variables are expressed as the mean ± SD). The mean follow-up period was 37.5 ± 23.5 months (range 6-84 months). The mean total BFMDRS motor scores at the 3 different time points were 13.3 ± 9.4 preoperatively, 5.0 ± 4.7 (55.3% improvement, p < 0.001) at 6 months, and 4.5 ± 3.6 (56.6% improvement, p < 0.001) at last follow-up. The outcomes were deemed poor in 6 individuals. CONCLUSIONS: Inferences drawn from the findings suggest that DBS of the GPi has long-lasting effectiveness and certain limitations in managing refractory CCD. The expected stability of the clinical outcome is not achieved. Patients with specific types of dystonia might consider targets other than GPi for a more precise therapy.


Subject(s)
Deep Brain Stimulation , Globus Pallidus , Humans , Deep Brain Stimulation/methods , Female , Male , Middle Aged , Adult , Aged , Follow-Up Studies , Treatment Outcome , Torticollis/therapy , Dystonic Disorders/therapy
17.
Dysphagia ; 39(5): 797-807, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38236261

ABSTRACT

Deep brain stimulation (DBS) is a common treatment for motor symptoms of Parkinson disease (PD), a condition associated with increased risk of dysphagia. The effect of DBS on swallowing function has not been comprehensively evaluated using gold-standard imaging techniques, particularly for globus pallidus internus (GPi) DBS. The objective of this retrospective, cross-sectional study was to identify differences in swallowing safety and timing kinematics among PD subjects with and without GPi DBS. We investigated the effects of unilateral and bilateral GPi DBS as well as the relationship between swallowing safety and DBS stimulation parameters, using retrospective analysis of videofluoroscopy recordings (71 recordings from 36 subjects) from electronic medical records. Outcomes were analyzed by surgical status (pre-surgical, unilateral DBS, bilateral DBS). The primary outcome was percent of thin-liquid bolus trials rated as unsafe, with Penetration-Aspiration Scale scores of 3 or higher. Secondary analyses included swallowing timing measures, relationships between swallowing safety and DBS stimulation parameters, and Dynamic Imaging Grade of Swallowing Toxicity ratings. Most subjects swallowed all boluses safely (19/29 in the pre-surgical, 16/26 in the unilateral DBS, and 10/16 in the bilateral DBS conditions). Swallowing safety impairment did not differ among stimulation groups. There was no main effect of stimulation condition on timing metrics, though main effects were found for sex and bolus type. Stimulation parameters were not correlated with swallowing safety. Swallowing efficiency and overall impairment did not differ among conditions. These results provide evidence that GPi DBS does not affect pharyngeal swallowing function. Further, prospective, investigations are needed.


Subject(s)
Deep Brain Stimulation , Deglutition Disorders , Deglutition , Globus Pallidus , Parkinson Disease , Humans , Deep Brain Stimulation/methods , Cross-Sectional Studies , Retrospective Studies , Male , Female , Globus Pallidus/physiopathology , Deglutition Disorders/therapy , Deglutition Disorders/physiopathology , Deglutition Disorders/etiology , Middle Aged , Aged , Deglutition/physiology , Parkinson Disease/therapy , Parkinson Disease/physiopathology , Parkinson Disease/complications , Fluoroscopy/methods
18.
Clin Anat ; 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39076145

ABSTRACT

Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is a standard treatment for Parkinson's disease (PD), with both regions exhibiting similar treatment effectiveness. However, posttreatment neuropsychiatric side effects, such as severe depression, are common, primarily due to the loss of serotonergic cells. Identifying a region with fewer serotonergic neurons could potentially reduce these side effects. This study aimed to quantify the number of serotonergic neurons in the STN and GPi. Both regions were analyzed using hematoxylin and eosin staining and immunohistochemistry. The GPi exhibited a significantly lower number and H-score of serotonergic neurons than the STN. Within the STN, the number and H-score of serotonergic neurons were higher in the medial aspect than in the lateral aspect. Three different types of neurons, large and small, were observed. In STN, large neurons were concentrated in the center and small neurons in the periphery. This distribution was not observed in GPi. In addition, the concentration of the serotonergic neurons is less in GPi. These findings suggest that the GPi may be a safer target region, potentially reducing the incidence of post-DBS depression.

19.
Neuromodulation ; 27(3): 551-556, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37768258

ABSTRACT

BACKGROUND: Novel deep brain stimulation devices can record local field potentials (LFPs), which represent the synchronous synaptic activity of neuronal populations. The clinical relevance of LFPs in patients with dystonia remains unclear. OBJECTIVES: We sought to determine whether chronic LFPs recorded from the globus pallidus internus (GPi) were associated with symptoms of dystonia in children. MATERIALS AND METHODS: Ten patients with heterogeneous forms of dystonia (genetic and acquired) were implanted with neurostimulators that recorded LFP spectral snapshots. Spectra were compared across parent-reported asymptomatic and symptomatic periods, with daily narrowband data superimposed in 24 one-hour bins. RESULTS: Spectral power increased during periods of registered dystonic symptoms: mean increase = 102%, CI: (76.7, 132). Circadian rhythms within the LFP narrowband time series correlated with dystonic symptoms: for delta/theta-waves, correlation = 0.33, CI: (0.18, 0.47) and for alpha waves, correlation = 0.27, CI: (0.14, 0.40). CONCLUSIONS: LFP spectra recorded in the GPi indicate a circadian pattern and are associated with the manifestation of dystonic symptoms.


Subject(s)
Deep Brain Stimulation , Dystonia , Dystonic Disorders , Child , Humans , Globus Pallidus , Dystonia/diagnosis , Dystonia/therapy , Dystonic Disorders/diagnosis , Dystonic Disorders/therapy , Electrodes, Implanted
20.
Neuromodulation ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38597859

ABSTRACT

OBJECTIVE: This study aimed to investigate the long-term efficacy and prognosis of bilateral globus pallidus internus (GPi) deep brain stimulation (DBS) in patients with benign essential blepharospasm (BEB) and complete Meige syndrome, and to search for the best therapeutic subregion within the GPi. MATERIALS AND METHODS: Data were collected for 36 patients with Meige syndrome who underwent bilateral GPi-DBS surgery at our hospital between March 2014 and February 2022. Using the Burk-Fahn-Marsden Dystonia Rating Scale (BFMDRS)-Movement (BFMDRS-M) and BFMDRS-Disability (BFMDRS-D), the severity of the symptoms of patients with complete Meige syndrome was evaluated before surgery and at specific time points after surgery. Patients with BEB were clinically evaluated for the severity of blepharospasm using BFMDRS-M, the Blepharospasm Disability Index (BDI), and Jankovic Rating Scale (JRS). Three-dimensional reconstruction of the GPi-electrode was performed in some patients using the lead-DBS software, and the correlation between GPi subregion volume of tissue activated (VTA) and symptom improvement was analyzed in patients six months after surgery. The follow-up duration ranged from six to 99 months. RESULTS: Compared with preoperative scores, the results of all patients at six months after surgery and final follow-up showed a significant decrease (p < 0.05) in the mean BFMDRS-M score. Among them, the average BFMDRS-M improvement rates in patients with BEB at six months after surgery and final follow-up were 60.3% and 69.7%, respectively, whereas those in patients with complete Meige syndrome were 54.5% and 58.3%, respectively. The average JRS and BDI scores of patients with BEB also decreased significantly (p < 0.05) at six months after surgery and at the final follow-up (JRS improvement: 38.6% and 49.1%, respectively; BDI improvement: 42.6% and 57.4%, respectively). We were unable to identify significantly correlated prognostic factors. There was a significant correlation between GPi occipital VTA and symptom improvement in patients at six months after surgery (r = 0.34, p = 0.025). CONCLUSIONS: Our study suggests that bilateral GPi-DBS is an effective treatment for Meige syndrome, with no serious postoperative complications. The VTA in the GPi subregion may be related to the movement score improvement. In addition, further research is needed to predict patients with poor surgical outcomes.

SELECTION OF CITATIONS
SEARCH DETAIL