Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 19.642
Filter
Add more filters

Publication year range
1.
Cell ; 181(2): 396-409.e26, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32220308

ABSTRACT

Decades after the motor homunculus was first proposed, it is still unknown how different body parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. Using multi-unit recordings, we studied how face, head, arm, and leg movements are represented in the hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to traditional expectations, we found strong representation of all movements and a partially "compositional" neural code that linked together all four limbs. The code consisted of (1) a limb-coding component representing the limb to be moved and (2) a movement-coding component where analogous movements from each limb (e.g., hand grasp and toe curl) were represented similarly. Compositional coding might facilitate skill transfer across limbs, and it provides a useful framework for thinking about how the motor system constructs movement. Finally, we leveraged these results to create a whole-body intracortical brain-computer interface that spreads targets across all limbs.


Subject(s)
Frontal Lobe/physiology , Motor Cortex/anatomy & histology , Motor Cortex/physiology , Adult , Brain Mapping , Frontal Lobe/anatomy & histology , Human Body , Humans , Motor Cortex/metabolism , Movement/physiology
2.
Mol Cell ; 84(14): 2618-2633.e10, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39025073

ABSTRACT

The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.


Subject(s)
Apoptosis Regulatory Proteins , Cell Cycle Proteins , Fanconi Anemia Complementation Group A Protein , Fanconi Anemia , RNA Splicing , Splicing Factor U2AF , Humans , BRCA1 Protein/metabolism , BRCA1 Protein/genetics , BRCA2 Protein/metabolism , BRCA2 Protein/genetics , DNA Repair , Endodeoxyribonucleases , Exons , Fanconi Anemia/genetics , Fanconi Anemia/metabolism , Fanconi Anemia Complementation Group A Protein/genetics , Fanconi Anemia Complementation Group A Protein/metabolism , HEK293 Cells , HeLa Cells , Protein Binding , RNA Precursors/metabolism , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction , Spliceosomes/metabolism , Spliceosomes/genetics , Splicing Factor U2AF/metabolism , Splicing Factor U2AF/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism
3.
Physiol Rev ; 104(3): 983-1020, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38385888

ABSTRACT

Humans use their fingers to perform a variety of tasks, from simple grasping to manipulating objects, to typing and playing musical instruments, a variety wider than any other species. The more sophisticated the task, the more it involves individuated finger movements, those in which one or more selected fingers perform an intended action while the motion of other digits is constrained. Here we review the neurobiology of such individuated finger movements. We consider their evolutionary origins, the extent to which finger movements are in fact individuated, and the evolved features of neuromuscular control that both enable and limit individuation. We go on to discuss other features of motor control that combine with individuation to create dexterity, the impairment of individuation by disease, and the broad extent of capabilities that individuation confers on humans. We comment on the challenges facing the development of a truly dexterous bionic hand. We conclude by identifying topics for future investigation that will advance our understanding of how neural networks interact across multiple regions of the central nervous system to create individuated movements for the skills humans use to express their cognitive activity.


Subject(s)
Biological Evolution , Fingers , Humans , Biomechanical Phenomena , Fingers/physiology , Motor Skills/physiology , Movement/physiology , Neurobiology , Psychomotor Performance/physiology
4.
Immunity ; 54(10): 2231-2244.e6, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34555337

ABSTRACT

RNA interference (RNAi) is the major antiviral mechanism in plants and invertebrates, but the absence of detectable viral (v)siRNAs in mammalian cells upon viral infection has questioned the functional relevance of this pathway in mammalian immunity. We designed a series of peptides specifically targeting enterovirus A71 (EV-A71)-encoded protein 3A, a viral suppressor of RNAi (VSR). These peptides abrogated the VSR function of EV-A71 in infected cells and resulted in the accumulation of vsiRNAs and reduced viral replication. These vsiRNAs were functional, as evidenced by RISC-loading and silencing of target RNAs. The effects of VSR-targeting peptides (VTPs) on infection with EV-A71 as well as another enterovirus, Coxsackievirus-A16, were ablated upon deletion of Dicer1 or AGO2, core components of the RNAi pathway. In vivo, VTP treatment protected mice against lethal EV-A71 challenge, with detectable vsiRNAs. Our findings provide evidence for the functional relevance of RNAi in mammalian immunity and present a therapeutic strategy for infectious disease.


Subject(s)
Antiviral Agents/pharmacology , Enterovirus Infections/virology , RNA, Viral/antagonists & inhibitors , Animals , Chlorocebus aethiops , Enterovirus A, Human , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Peptides/pharmacology , RNA Interference , RNA, Small Interfering/antagonists & inhibitors , Vero Cells , Virus Replication/drug effects
5.
Development ; 150(3)2023 02 15.
Article in English | MEDLINE | ID: mdl-36620995

ABSTRACT

The transcription factor HAND2 plays essential roles during cardiogenesis. Hand2 endocardial deletion (H2CKO) results in tricuspid atresia or double inlet left ventricle with accompanying intraventricular septum defects, hypo-trabeculated ventricles and an increased density of coronary lumens. To understand the regulatory mechanisms of these phenotypes, single cell transcriptome analysis of mouse E11.5 H2CKO hearts was performed revealing a number of disrupted endocardial regulatory pathways. Using HAND2 DNA occupancy data, we identify several HAND2-dependent enhancers, including two endothelial enhancers for the shear-stress master regulator KLF2. A 1.8 kb enhancer located 50 kb upstream of the Klf2 TSS imparts specific endothelial/endocardial expression within the vasculature and endocardium. This enhancer is HAND2-dependent for ventricular endocardium expression but HAND2-independent for Klf2 vascular and valve expression. Deletion of this Klf2 enhancer results in reduced Klf2 expression within ventricular endocardium. These data reveal that HAND2 functions within endocardial gene regulatory networks including shear-stress response.


Subject(s)
Endocardium , Gene Regulatory Networks , Animals , Mice , Endocardium/metabolism , Gene Expression Regulation, Developmental , Morphogenesis/genetics , Transcription Factors/metabolism
6.
J Neurosci ; 44(4)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38050100

ABSTRACT

What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e., remapping). We used a complex finger task to explore whether this observed remapping in amputees involves recruiting more neural resources to support the intact hand to meet greater motor control demands. Using basic fMRI analysis, we found that only amputees had more ipsilateral activity when motor demand increased; however, this did not match any noticeable improvement in their behavioral task performance. More advanced multivariate fMRI analyses showed that amputees had stronger and more typical representation-relative to controls' contralateral hand representation-compared with one-handers. This suggests that in amputees, both hand areas work together more collaboratively, potentially reflecting the intact hand's efference copy. One-handers struggled to learn difficult finger configurations, but this did not translate to differences in univariate or multivariate activity relative to controls. Additional white matter analysis provided conclusive evidence that the structural connectivity between the two hand areas did not vary across groups. Together, our results suggest that enhanced activity in the missing hand territory may not reflect intact hand function. Instead, we suggest that plasticity is more restricted than generally assumed and may depend on the availability of homologous pathways acquired early in life.


Subject(s)
Amputees , Brain Mapping , Male , Humans , Female , Brain Mapping/methods , Hand , Amputation, Surgical , Task Performance and Analysis , Magnetic Resonance Imaging/methods , Functional Laterality
7.
J Neurosci ; 44(21)2024 May 22.
Article in English | MEDLINE | ID: mdl-38589229

ABSTRACT

Hand movements are associated with modulations of neuronal activity across several interconnected cortical areas, including the primary motor cortex (M1) and the dorsal and ventral premotor cortices (PMd and PMv). Local field potentials (LFPs) provide a link between neuronal discharges and synaptic inputs. Our current understanding of how LFPs vary in M1, PMd, and PMv during contralateral and ipsilateral movements is incomplete. To help reveal unique features in the pattern of modulations, we simultaneously recorded LFPs in these areas in two macaque monkeys performing reach and grasp movements with either the right or left hand. The greatest effector-dependent differences were seen in M1, at low (≤13 Hz) and γ frequencies. In premotor areas, differences related to hand use were only present in low frequencies. PMv exhibited the greatest increase in low frequencies during instruction cues and the smallest effector-dependent modulation during movement execution. In PMd, δ oscillations were greater during contralateral reach and grasp, and ß activity increased during contralateral grasp. In contrast, ß oscillations decreased in M1 and PMv. These results suggest that while M1 primarily exhibits effector-specific LFP activity, premotor areas compute more effector-independent aspects of the task requirements, particularly during movement preparation for PMv and production for PMd. The generation of precise hand movements likely relies on the combination of complementary information contained in the unique pattern of neural modulations contained in each cortical area. Accordingly, integrating LFPs from premotor areas and M1 could enhance the performance and robustness of brain-machine interfaces.


Subject(s)
Functional Laterality , Hand Strength , Macaca mulatta , Motor Cortex , Psychomotor Performance , Animals , Motor Cortex/physiology , Hand Strength/physiology , Male , Psychomotor Performance/physiology , Functional Laterality/physiology , Movement/physiology , Hand/physiology
8.
J Neurosci ; 44(22)2024 May 29.
Article in English | MEDLINE | ID: mdl-38641408

ABSTRACT

When performing movements in rapid succession, the brain needs to coordinate ongoing execution with the preparation of an upcoming action. Here we identify the processes and brain areas involved in this ability of online preparation. Human participants (both male and female) performed pairs of single-finger presses or three-finger chords in rapid succession, while 7T fMRI was recorded. In the overlap condition, they could prepare the second movement during the first response and in the nonoverlap condition only after the first response was completed. Despite matched perceptual and movement requirements, fMRI revealed increased brain activity in the overlap condition in regions along the intraparietal sulcus and ventral visual stream. Multivariate analyses suggested that these areas are involved in stimulus identification and action selection. In contrast, the dorsal premotor cortex, known to be involved in planning upcoming movements, showed no discernible signs of heightened activity. This observation suggests that the bottleneck during simultaneous action execution and preparation arises at the level of stimulus identification and action selection, whereas movement planning in the premotor cortex can unfold concurrently with the execution of a current action without requiring additional neural activity.


Subject(s)
Brain Mapping , Magnetic Resonance Imaging , Psychomotor Performance , Humans , Male , Female , Adult , Psychomotor Performance/physiology , Brain Mapping/methods , Young Adult , Movement/physiology , Reaction Time/physiology , Photic Stimulation/methods , Brain/physiology , Brain/diagnostic imaging
9.
J Neurosci ; 44(19)2024 May 08.
Article in English | MEDLINE | ID: mdl-38508711

ABSTRACT

In the study of bodily awareness, the predictive coding theory has revealed that our brain continuously modulates sensory experiences to integrate them into a unitary body representation. Indeed, during multisensory illusions (e.g., the rubber hand illusion, RHI), the synchronous stroking of the participant's concealed hand and a fake visible one creates a visuotactile conflict, generating a prediction error. Within the predictive coding framework, through sensory processing modulation, prediction errors are solved, inducing participants to feel as if touches originated from the fake hand, thus ascribing the fake hand to their own body. Here, we aimed to address sensory processing modulation under multisensory conflict, by disentangling somatosensory and visual stimuli processing that are intrinsically associated during the illusion induction. To this aim, we designed two EEG experiments, in which somatosensory- (SEPs; Experiment 1; N = 18; F = 10) and visual-evoked potentials (VEPs; Experiment 2; N = 18; F = 9) were recorded in human males and females following the RHI. Our results show that, in both experiments, ERP amplitude is significantly modulated in the illusion as compared with both control and baseline conditions, with a modality-dependent diametrical pattern showing decreased SEP amplitude and increased VEP amplitude. Importantly, both somatosensory and visual modulations occur in long-latency time windows previously associated with tactile and visual awareness, thus explaining the illusion of perceiving touch at the sight location. In conclusion, we describe a diametrical modulation of somatosensory and visual processing as the neural mechanism that allows maintaining a stable body representation, by restoring visuotactile congruency under the occurrence of multisensory conflicts.


Subject(s)
Electroencephalography , Evoked Potentials, Somatosensory , Evoked Potentials, Visual , Illusions , Visual Perception , Humans , Male , Female , Adult , Visual Perception/physiology , Evoked Potentials, Somatosensory/physiology , Young Adult , Illusions/physiology , Evoked Potentials, Visual/physiology , Touch Perception/physiology , Photic Stimulation/methods , Conflict, Psychological , Somatosensory Cortex/physiology , Body Image
10.
Dev Biol ; 514: 78-86, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38880275

ABSTRACT

The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.


Subject(s)
Heart , Integrases , Positive Regulatory Domain I-Binding Factor 1 , Animals , Mice , Heart/embryology , Integrases/metabolism , Integrases/genetics , Positive Regulatory Domain I-Binding Factor 1/genetics , Positive Regulatory Domain I-Binding Factor 1/metabolism , MEF2 Transcription Factors/genetics , MEF2 Transcription Factors/metabolism , Mice, Transgenic , Gene Expression Regulation, Developmental/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Knock-In Techniques
11.
J Cell Sci ; 136(6)2023 03 15.
Article in English | MEDLINE | ID: mdl-36727484

ABSTRACT

Exocytosis is a fundamental cellular process by which cells secrete cargos from their apical membrane into the extracellular lumen. Cargo release proceeds in sequential steps that depend on coordinated assembly and organization of an actin cytoskeletal network. Here, we identified the conserved actin-crosslinking protein Swip-1 as a novel regulator controlling exocytosis of glue granules in the Drosophila salivary gland. Real-time imaging revealed that Swip-1 is simultaneously recruited with F-actin onto secreting granules in proximity to the apical membrane. We observed that Swip-1 is rapidly cleared at the point of secretory vesicle fusion and colocalizes with actomyosin network around the fused vesicles. Loss of Swip-1 function impairs secretory cargo expulsion, resulting in strongly delayed secretion. Thus, our results uncover a novel role of Swip-1 in secretory vesicle compression and expulsion of cargo during regulated exocytosis. Remarkably, this function neither requires Ca2+ binding nor dimerization of Swip-1. Our data rather suggest that Swip-1 regulates actomyosin activity upstream of Rho-GTPase signaling to drive proper vesicle membrane crumpling and expulsion of cargo.


Subject(s)
Actins , Drosophila , Animals , Drosophila/metabolism , Actins/metabolism , Actomyosin/metabolism , Exocytosis/physiology , Secretory Vesicles/metabolism , Salivary Glands/metabolism
12.
J Virol ; 98(2): e0135823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38226810

ABSTRACT

Hand, foot, and mouth disease (HFMD) is caused by more than 20 pathogenic enteroviruses belonging to the Picornaviridae family and Enterovirus genus. Since the introduction of the enterovirus-71 (EV71) vaccine in 2016, the number of HFMD cases caused by EV71 has decreased. However, cases of infections caused by other enteroviruses, such as coxsackievirus A6 (CA6) and coxsackievirus A10, have been increasing accordingly. In this study, we used a clinical isolate of CA6 to establish an intragastric infection mouse model using 7-day-old mice to mimic the natural transmission route, by which we investigated the differential gene expression profiles associated with virus infection and pathogenicity. After intragastric infection, mice exhibited hind limb paralysis symptoms and weight loss, similar to those reported for EV71 infection in mice. The skeletal muscle was identified as the main site of virus replication, with a peak viral load reaching 2.31 × 107 copies/mg at 5 dpi and increased infiltration of inflammatory cells. RNA sequencing analysis identified differentially expressed genes (DEGs) after CA6 infection. DEGs in the blood, muscle, brain, spleen, and thymus were predominantly enriched in immune system responses, including pathways such as Toll-like receptor signaling and PI3K-Akt signaling. Our study has unveiled the genes involved in the host immune response during CA6 infection, thereby enhancing our comprehension of the pathological mechanism of HFMD.IMPORTANCEThis study holds great significance for the field of hand, foot, and mouth disease (HFMD). It not only delves into the disease's etiology, transmission pathways, and severe complications but also establishes a novel mouse model that mimics the natural coxsackievirus A6 infection process, providing a pivotal platform to delve deeper into virus replication and pathogenic mechanisms. Additionally, utilizing RNA-seq technology, it unveils the dynamic gene expression changes during infection, offering valuable leads for identifying novel therapeutic drug targets. This research has the potential to enhance our understanding of HFMD, offering fresh perspectives for disease prevention and treatment and positively impacting children's health worldwide.


Subject(s)
Enterovirus Infections , Enterovirus , Hand, Foot and Mouth Disease , Animals , Child , Humans , Mice , Antibodies, Viral , Disease Models, Animal , Enterovirus/pathogenicity , Enterovirus/physiology , Enterovirus A, Human , Enterovirus Infections/pathology , Enterovirus Infections/virology , Gene Expression , Hand, Foot and Mouth Disease/genetics , Phosphatidylinositol 3-Kinases , Virulence
13.
Cereb Cortex ; 34(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38771243

ABSTRACT

Variability in brain structure is associated with the capacity for behavioral change. However, a causal link between specific brain areas and behavioral change (such as motor learning) has not been demonstrated. We hypothesized that greater gray matter volume of a primary motor cortex (M1) area active during a hand motor learning task is positively correlated with subsequent learning of the task, and that the disruption of this area blocks learning of the task. Healthy participants underwent structural MRI before learning a skilled hand motor task. Next, participants performed this learning task during fMRI to determine M1 areas functionally active during this task. This functional ROI was anatomically constrained with M1 boundaries to create a group-level "Active-M1" ROI used to measure gray matter volume in each participant. Greater gray matter volume in the left hemisphere Active-M1 ROI was related to greater motor learning in the corresponding right hand. When M1 hand area was disrupted with repetitive transcranial stimulation (rTMS), learning of the motor task was blocked, confirming its causal link to motor learning. Our combined imaging and rTMS approach revealed greater cortical volume in a task-relevant M1 area is causally related to learning of a hand motor task in healthy humans.


Subject(s)
Gray Matter , Hand , Learning , Magnetic Resonance Imaging , Motor Cortex , Transcranial Magnetic Stimulation , Humans , Motor Cortex/physiology , Motor Cortex/diagnostic imaging , Male , Female , Hand/physiology , Learning/physiology , Adult , Young Adult , Gray Matter/physiology , Gray Matter/diagnostic imaging , Motor Skills/physiology , Brain Mapping , Functional Laterality/physiology
14.
Cereb Cortex ; 34(4)2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38642106

ABSTRACT

The spatial coding of tactile information is functionally essential for touch-based shape perception and motor control. However, the spatiotemporal dynamics of how tactile information is remapped from the somatotopic reference frame in the primary somatosensory cortex to the spatiotopic reference frame remains unclear. This study investigated how hand position in space or posture influences cortical somatosensory processing. Twenty-two healthy subjects received electrical stimulation to the right thumb (D1) or little finger (D5) in three position conditions: palm down on right side of the body (baseline), hand crossing the body midline (effect of position), and palm up (effect of posture). Somatosensory-evoked potentials (SEPs) were recorded using electroencephalography. One early-, two mid-, and two late-latency neurophysiological components were identified for both fingers: P50, P1, N125, P200, and N250. D1 and D5 showed different cortical activation patterns: compared with baseline, the crossing condition showed significant clustering at P1 for D1, and at P50 and N125 for D5; the change in posture showed a significant cluster at N125 for D5. Clusters predominated at centro-parietal electrodes. These results suggest that tactile remapping of fingers after electrical stimulation occurs around 100-125 ms in the parietal cortex.


Subject(s)
Touch Perception , Touch , Humans , Touch/physiology , Fingers/physiology , Touch Perception/physiology , Hand/physiology , Electroencephalography , Somatosensory Cortex
15.
Annu Rev Psychol ; 75: 269-293, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38236652

ABSTRACT

Magic is an art form that has fascinated humans for centuries. Recently, the techniques used by magicians to make their audience experience the impossible have attracted the attention of psychologists, who, in just a couple of decades, have produced a large amount of research regarding how these effects operate, focusing on the blind spots in perception and roadblocks in cognition that magic techniques exploit. Most recently, this investigation has given a pathway to a new line of research that uses magic effects to explore the cognitive abilities of nonhuman animals. This new branch of the scientific study of magic has already yielded new evidence illustrating the power of magic effects as a psychological tool for nonhuman animals. This review aims to give a thorough overview of the research on both the human and nonhuman perception of magic effects by critically illustrating the most prominent works of both fields of inquiry.


Subject(s)
Cognition , Magic , Humans , Magic/history , Magic/psychology , Attention
16.
Cell Mol Life Sci ; 81(1): 303, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008099

ABSTRACT

Vitamin C (VC) serves as a pivotal nutrient for anti-oxidation process, metabolic responses, and stem cell differentiation. However, its precise contribution to placenta development and gestation remains obscure. Here, we demonstrated that physiological levels of VC act to stabilize Hand1, a key bHLH transcription factor vital for the development trajectory of trophoblast giant cell (TGC) lineages, thereby promoting the differentiation of trophoblast stem cells into TGC. Specifically, VC administration inactivated c-Jun N-terminal kinase (JNK) signaling, which directly phosphorylates Hand1 at Ser48, triggering the proteasomal degradation of Hand1. Conversely, a loss-of-function mutation at Ser48 on Hand1 not only significantly diminished both intrinsic and VC-induced stabilization of Hand1 but also underscored the indispensability of this residue. Noteworthy, the insufficiency of VC led to severe defects in the differentiation of diverse TGC subtypes and the formation of labyrinth's vascular network in rodent placentas, resulting in failure of maintenance of pregnancy. Importantly, VC deficiency, lentiviral knockdown of JNK or overexpression of Hand1 mutants in trophectoderm substantially affected the differentiation of primary and secondary TGC in E8.5 mouse placentas. Thus, these findings uncover the significance of JNK inactivation and consequential stabilization of Hand1 as a hitherto uncharacterized mechanism controlling VC-mediated placentation and perhaps maintenance of pregnancy.


Subject(s)
Ascorbic Acid , Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , JNK Mitogen-Activated Protein Kinases , Placentation , Trophoblasts , Animals , Female , Pregnancy , Ascorbic Acid/pharmacology , Ascorbic Acid/metabolism , Placentation/genetics , Mice , JNK Mitogen-Activated Protein Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/genetics , Cell Differentiation/drug effects , Trophoblasts/metabolism , Trophoblasts/drug effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Placenta/metabolism , Phosphorylation , Humans , Mice, Inbred C57BL
17.
Proc Natl Acad Sci U S A ; 119(12): e2122903119, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35294291

ABSTRACT

Stable precision grips using the fingertips are a cornerstone of human hand dexterity. However, our fingers become unstable sometimes and snap into a hyperextended posture. This is because multilink mechanisms like our fingers can buckle under tip forces. Suppressing this instability is crucial for hand dexterity, but how the neuromuscular system does so is unknown. Here we show that people rely on the stiffness from muscle contraction for finger stability. We measured buckling time constants of 50 ms or less during maximal force application with the index finger­quicker than feedback latencies­which suggests that muscle-induced stiffness may underlie stability. However, a biomechanical model of the finger predicts that muscle-induced stiffness cannot stabilize at maximal force unless we add springs to stiffen the joints or people reduce their force to enable cocontraction. We tested this prediction in 38 volunteers. Upon adding stiffness, maximal force increased by 34 ± 3%, and muscle electromyography readings were 21 ± 3% higher for the finger flexors (mean ± SE). Muscle recordings and mathematical modeling show that adding stiffness offloads the demand for muscle cocontraction, thus freeing up muscle capacity for fingertip force. Hence, people refrain from applying truly maximal force unless an external stabilizing stiffness allows their muscles to apply higher force without losing stability. But more stiffness is not always better. Stiff fingers would affect the ability to adapt passively to complex object geometries and precisely regulate force. Thus, our results show how hand function arises from neurally tuned muscle stiffness that balances finger stability with compliance.


Subject(s)
Fingers , Hand Strength , Biomechanical Phenomena , Electromyography , Fingers/physiology , Hand Strength/physiology , Humans , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Posture
18.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35046030

ABSTRACT

Purposeful motor actions depend on the brain's representation of the body, called the body schema, and disorders of the body schema have been reported to show motor deficits. The body schema has been assumed for almost a century to be a common body representation supporting all types of motor actions, and previous studies have considered only a single motor action. Although we often execute multiple motor actions, how the body schema operates during such actions is unknown. To address this issue, I developed a technique to measure the body schema during multiple motor actions. Participants made simultaneous eye and reach movements to the same location of 10 landmarks on their hand. By analyzing the internal configuration of the locations of these points for each of the eye and reach movements, I produced maps of the mental representation of hand shape. Despite these two movements being simultaneously directed to the same bodily location, the resulting hand map (i.e., a part of the body schema) was much more distorted for reach movements than for eye movements. Furthermore, the weighting of visual and proprioceptive bodily cues to build up this part of the body schema differed for each effector. These results demonstrate that the body schema is organized as multiple effector-specific body representations. I propose that the choice of effector toward one's body can determine which body representation in the brain is observed and that this visualization approach may offer a new way to understand patients' body schema.


Subject(s)
Body Image , Adult , Eye Movements , Female , Human Body , Humans , Male , Motor Activity , Movement , Psychomotor Performance , Visual Perception , Young Adult
19.
Nano Lett ; 24(17): 5277-5283, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38624178

ABSTRACT

As tactile force sensing has become increasingly significant in the field of machine haptics, achieving multidimensional force sensing remains a challenge. We propose a 3D flexible force sensor that consists of an axisymmetric hemispherical protrusion and four equally sized quarter-circle electrodes. By simulating the device using a force and electrical field model, it has been found that the magnitude and direction of the force can be expressed through the voltage relationship of the four electrodes when the magnitude of the shear force remains constant and its direction varies within 0-360°. The experimental results show that a resolution of 15° can be achieved in the range 0-90°. Additionally, we installed the sensor on a robotic hand, enabling it to perceive the magnitude and direction of touch and grasp actions. Based on this, the designed 3D flexible tactile force sensor provides valuable insights for multidimensional force detection and applications.

20.
Dev Dyn ; 253(2): 215-232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37551791

ABSTRACT

BACKGROUND: The bHLH transcription factor HAND2 plays important roles in the development of the embryonic heart, face, limbs, and sympathetic and enteric nervous systems. To define how and when HAND2 regulates these developmental systems, requires understanding the transcriptional regulation of Hand2. RESULTS: Remarkably, Hand2 is flanked by an extensive upstream gene desert containing a potentially diverse enhancer landscape. Here, we screened the regulatory interval 200 kb proximal to Hand2 for putative enhancers using evolutionary conservation and histone marks in Hand2-expressing tissues. H3K27ac signatures across embryonic tissues pointed to only two putative enhancer regions showing deep sequence conservation. Assessment of the transcriptional enhancer potential of these elements using transgenic reporter lines uncovered distinct in vivo enhancer activities in embryonic stomach and limb mesenchyme, respectively. Activity of the identified stomach enhancer was restricted to the developing antrum and showed expression within the smooth muscle and enteric neurons. Surprisingly, the activity pattern of the limb enhancer did not overlap Hand2 mRNA but consistently yielded a defined subectodermal anterior expression pattern within multiple transgenic lines. CONCLUSIONS: Together, these results start to uncover the diverse regulatory potential inherent to the Hand2 upstream regulatory interval.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Transcription Factors , Animals , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation , Animals, Genetically Modified , Genomics , Stomach , Enhancer Elements, Genetic , Gene Expression Regulation, Developmental
SELECTION OF CITATIONS
SEARCH DETAIL