Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.944
Filter
Add more filters

Publication year range
1.
Cell ; 187(17): 4656-4673.e28, 2024 Aug 22.
Article in English | MEDLINE | ID: mdl-38942013

ABSTRACT

The ability of proteins and RNA to coalesce into phase-separated assemblies, such as the nucleolus and stress granules, is a basic principle in organizing membraneless cellular compartments. While the constituents of biomolecular condensates are generally well documented, the mechanisms underlying their formation under stress are only partially understood. Here, we show in yeast that covalent modification with the ubiquitin-like modifier Urm1 promotes the phase separation of a wide range of proteins. We find that the drop in cellular pH induced by stress triggers Urm1 self-association and its interaction with both target proteins and the Urm1-conjugating enzyme Uba4. Urmylation of stress-sensitive proteins promotes their deposition into stress granules and nuclear condensates. Yeast cells lacking Urm1 exhibit condensate defects that manifest in reduced stress resilience. We propose that Urm1 acts as a reversible molecular "adhesive" to drive protective phase separation of functionally critical proteins under cellular stress.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Stress, Physiological , Ubiquitins , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Ubiquitins/metabolism , Biomolecular Condensates/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Hydrogen-Ion Concentration , Stress Granules/metabolism
2.
Cell ; 181(4): 818-831.e19, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32359423

ABSTRACT

Cells sense elevated temperatures and mount an adaptive heat shock response that involves changes in gene expression, but the underlying mechanisms, particularly on the level of translation, remain unknown. Here we report that, in budding yeast, the essential translation initiation factor Ded1p undergoes heat-induced phase separation into gel-like condensates. Using ribosome profiling and an inĀ vitro translation assay, we reveal that condensate formation inactivates Ded1p and represses translation of housekeeping mRNAs while promoting translation of stress mRNAs. Testing a variant of Ded1p with altered phase behavior as well as Ded1p homologs from diverse species, we demonstrate that Ded1p condensation is adaptive and fine-tuned to the maximum growth temperature of the respective organism. We conclude that Ded1p condensation is an integral part of an extended heat shock response that selectively represses translation of housekeeping mRNAs to promote survival under conditions of severe heat stress.


Subject(s)
DEAD-box RNA Helicases/metabolism , Gene Expression Regulation, Fungal/genetics , Protein Biosynthesis/genetics , Saccharomyces cerevisiae Proteins/metabolism , DEAD-box RNA Helicases/physiology , Gene Expression/genetics , Genes, Essential/genetics , Heat-Shock Proteins/metabolism , Heat-Shock Response/genetics , RNA, Messenger/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/physiology
3.
Cell ; 174(6): 1492-1506.e22, 2018 09 06.
Article in English | MEDLINE | ID: mdl-30173914

ABSTRACT

The assembly of phase-separated structures is thought to play an important role in development and disease, but little is known about the regulation and function of phase separation under physiological conditions. We showed that during C.Ā elegans embryogenesis, PGL granules assemble via liquid-liquid phase separation (LLPS), and their size and biophysical properties determine their susceptibility to autophagic degradation. The receptor SEPA-1 promotes LLPS of PGL-1/-3, while the scaffold protein EPG-2 controls the size of PGL-1/-3 compartments and converts them into less dynamic gel-like structures. Under heat-stress conditions, mTORC1-mediated phosphorylation of PGL-1/-3 is elevated and PGL-1/-3 undergo accelerated phase separation, forming PGL granules that are resistant to autophagic degradation. Significantly, accumulation of PGL granules is an adaptive response to maintain embryonic viability during heat stress. We revealed that mTORC1-mediated LLPS of PGL-1/-3 acts as a switch-like stress sensor, coupling phase separation to autophagic degradation and adaptation to stress during development.


Subject(s)
Autophagy , Caenorhabditis elegans Proteins/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Arginine/metabolism , Caenorhabditis elegans/growth & development , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Embryo, Nonmammalian/metabolism , Embryonic Development , Larva/metabolism , Mechanistic Target of Rapamycin Complex 1/genetics , Methylation , Mutagenesis, Site-Directed , Phosphorylation , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Processing, Post-Translational , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Signal Transduction , Temperature
4.
Mol Cell ; 84(17): 3320-3335.e7, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39173636

ABSTRACT

Stress granules (SGs) are conserved reversible cytoplasmic condensates enriched with aggregation-prone proteins assembled in response to various stresses. How plants regulate SG dynamics is unclear. Here, we show that 26S proteasome is a stable component of SGs, promoting the overall clearance of SGs without affecting the molecular mobility of SG components. Increase in either temperature or duration of heat stress reduces the molecular mobility of SG marker proteins and suppresses SG clearance. Heat stress induces dramatic ubiquitylation of SG components and enhances the activities of SG-resident proteasomes, allowing the degradation of SG components even during the assembly phase. Their proteolytic activities enable the timely disassembly of SGs and secure the survival of plant cells during the recovery from heat stress. Therefore, our findings identify the cellular process that de-couples macroscopic dynamics of SGs from the molecular dynamics of its constituents and highlights the significance of the proteasomes in SG disassembly.


Subject(s)
Arabidopsis , Heat-Shock Response , Proteasome Endopeptidase Complex , Ubiquitination , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/enzymology , Proteolysis , Stress Granules/metabolism , Stress Granules/genetics , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Cytoplasmic Granules/metabolism
5.
EMBO J ; 43(3): 437-461, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38228917

ABSTRACT

Plants are often exposed to recurring adverse environmental conditions in the wild. Acclimation to high temperatures entails transcriptional responses, which prime plants to better withstand subsequent stress events. Heat stress (HS)-induced transcriptional memory results in more efficient re-induction of transcription upon recurrence of heat stress. Here, we identified CDK8 and MED12, two subunits of the kinase module of the transcription co-regulator complex, Mediator, as promoters of heat stress memory and associated histone modifications in Arabidopsis. CDK8 is recruited to heat-stress memory genes by HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2). Like HSFA2, CDK8 is largely dispensable for the initial gene induction upon HS, and its function in transcriptional memory is thus independent of primary gene activation. In addition to the promoter and transcriptional start region of target genes, CDK8 also binds their 3'-region, where it may promote elongation, termination, or rapid re-initiation of RNA polymerase II (Pol II) complexes during transcriptional memory bursts. Our work presents a complex role for the Mediator kinase module during transcriptional memory in multicellular eukaryotes, through interactions with transcription factors, chromatin modifications, and promotion of Pol II efficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Heat-Shock Response/genetics , Heat Shock Transcription Factors/metabolism , Transcriptional Activation , Nucleotidyltransferases/metabolism , Mediator Complex/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism
6.
EMBO J ; 42(24): e113595, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37937667

ABSTRACT

Plants often experience recurrent stressful events, for example, during heat waves. They can be primed by heat stress (HS) to improve the survival of more severe heat stress conditions. At certain genes, sustained expression is induced for several days beyond the initial heat stress. This transcriptional memory is associated with hyper-methylation of histone H3 lysine 4 (H3K4me3), but it is unclear how this is maintained for extended periods. Here, we determined histone turnover by measuring the chromatin association of HS-induced histone H3.3. Genome-wide histone turnover was not homogenous; in particular, H3.3 was retained longer at heat stress memory genes compared to HS-induced non-memory genes during the memory phase. While low nucleosome turnover retained H3K4 methylation, methylation loss did not affect turnover, suggesting that low nucleosome turnover sustains H3K4 methylation, but not vice versa. Together, our results unveil the modulation of histone turnover as a mechanism to retain environmentally mediated epigenetic modifications.


Subject(s)
Histones , Nucleosomes , Histones/genetics , Histones/metabolism , Nucleosomes/genetics , Chromatin/genetics , Heat-Shock Response/genetics , Epigenesis, Genetic
7.
Trends Biochem Sci ; 47(10): 824-838, 2022 10.
Article in English | MEDLINE | ID: mdl-35660289

ABSTRACT

Climate change is increasingly affecting the quality of life of organisms on Earth. More frequent, extreme, and lengthy heat waves are contributing to the sixth mass extinction of complex life forms in the Earth's history. From an anthropocentric point of view, global warming is a major threat to human health because it also compromises crop yields and food security. Thus, achieving agricultural productivity under climate change calls for closer examination of the molecular mechanisms of heat-stress resistance in model and crop plants. This requires a better understanding of the mechanisms by which plant cells can sense rising temperatures and establish effective molecular defenses, such as molecular chaperones and thermoprotective metabolites, as reviewed here, to survive extreme diurnal variations in temperature and seasonal heat waves.


Subject(s)
Hot Temperature , Quality of Life , Climate Change , Heat-Shock Response , Humans
8.
Proc Natl Acad Sci U S A ; 120(4): e2209831120, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36669112

ABSTRACT

We recently reported transposon mutagenesis as a significant driver of spontaneous mutations in the human fungal pathogen Cryptococcus deneoformans during murine infection. Mutations caused by transposable element (TE) insertion into reporter genes were dramatically elevated at high temperatures (37Ā° vs. 30Ā°) inĀ vitro, suggesting that heat stress stimulates TE mobility in the Cryptococcus genome. To explore the genome-wide impact of TE mobilization, we generated transposon accumulation lines by inĀ vitro passage of C. deneoformans strain XL280α for multiple generations at both 30Ā° and at the host-relevant temperature of 37Ā°. Utilizing whole-genome sequencing, we identified native TE copies and mapped multiple de novo TE insertions in these lines. Movements of the T1 DNA transposon occurred at both temperatures with a strong bias for insertion between gene-coding regions. By contrast, the Tcn12 retrotransposon integrated primarily within genes and movement occurred exclusively at 37Ā°. In addition, we observed a dramatic amplification in copy number of the Cnl1 (CryptococcusĀ neoformans LINE-1) retrotransposon in subtelomeric regions under heat-stress conditions. Comparing TE mutations to other sequence variations detected in passaged lines, the increase in genomic changes at elevated temperatures was primarily due to mobilization of the retroelements Tcn12 and Cnl1. Finally, we found multiple TE movements (T1, Tcn12, and Cnl1) in the genomes of single C. deneoformans isolates recovered from infected mice, providing evidence that mobile elements are likely to facilitate microevolution and rapid adaptation during infection.


Subject(s)
Cryptococcosis , Cryptococcus neoformans , Humans , Animals , Mice , Retroelements/genetics , Cryptococcus neoformans/genetics , Cryptococcosis/genetics , Genome , Heat-Shock Response/genetics , DNA Transposable Elements/genetics
9.
Proc Natl Acad Sci U S A ; 120(42): e2305427120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812703

ABSTRACT

As heatwaves become more frequent, intense, and longer-lasting due to climate change, the question of breaching thermal limits becomes pressing. A wet-bulb temperature (Tw) of 35 Ā°C has been proposed as a theoretical upper limit on human abilities to biologically thermoregulate. But, recent-empirical-research using human subjects found a significantly lower maximum Tw at which thermoregulation is possible even with minimal metabolic activity. Projecting future exposure to this empirical critical environmental limit has not been done. Here, using this more accurate threshold and the latest coupled climate model results, we quantify exposure to dangerous, potentially lethal heat for future climates at various global warming levels. We find that humanity is more vulnerable to moist heat stress than previously proposed because of these lower thermal limits. Still, limiting warming to under 2 Ā°C nearly eliminates exposure and risk of widespread uncompensable moist heatwaves as a sharp rise in exposure occurs at 3 Ā°C of warming. Parts of the Middle East and the Indus River Valley experience brief exceedances with only 1.5 Ā°C warming. More widespread, but brief, dangerous heat stress occurs in a +2 Ā°C climate, including in eastern China and sub-Saharan Africa, while the US Midwest emerges as a moist heat stress hotspot in a +3 Ā°C climate. In the future, moist heat extremes will lie outside the bounds of past human experience and beyond current heat mitigation strategies for billions of people. While some physiological adaptation from the thresholds described here is possible, additional behavioral, cultural, and technical adaptation will be required to maintain healthy lifestyles.


Subject(s)
Global Warming , Heat Stress Disorders , Humans , Climate Change , Temperature , Heat-Shock Response , Hot Temperature
10.
J Biol Chem ; 300(8): 107547, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38992441

ABSTRACT

RNA thermometers are temperature-sensing non-coding RNAs that regulate the expression of downstream genes. A well-characterized RNA thermometer motif discovered in bacteria is the ROSE-like element (repression of heat shock gene expression). ATP-binding cassette (ABC) transporters are a superfamily of transmembrane proteins that harness ATP hydrolysis to facilitate the export and import of substrates across cellular membranes. Through structure-guided bioinformatics, we discovered that ROSE-like RNA thermometers are widespread upstream of ABC transporter genes in bacteria. X-ray crystallography, biochemistry, and cellular assays indicate that these RNA thermometers are functional regulatory elements. This study expands the known biological role of RNA thermometers to these key membrane transporters.


Subject(s)
ATP-Binding Cassette Transporters , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/chemistry , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/chemistry , Crystallography, X-Ray , Escherichia coli/metabolism , Escherichia coli/genetics
11.
J Biol Chem ; 300(8): 107553, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39002672

ABSTRACT

The plasma membrane (PM) is constantly exposed to various stresses from the extracellular environment, such as heat and oxidative stress. These stresses often cause the denaturation of membrane proteins and destabilize PM integrity, which is essential for normal cell viability and function. For maintenance of PM integrity, most eukaryotic cells have the PM quality control (PMQC) system, which removes damaged membrane proteins by endocytosis. Removal of damaged proteins from the PM by ubiquitin-mediated endocytosis is a key mechanism for the maintenance of PM integrity, but the importance of the early endosome in the PMQC system is still not well understood. Here we show that key proteins in early/sorting endosome function, Vps21p (yeast Rab5), Vps15p (phosphatidylinositol-3 kinase subunit), and Vps3p/8p (CORVET complex subunits), are involved in maintaining PM integrity. We found that Vps21p-enriched endosomes change the localization in the vicinity of the PM in response to heat stress and then rapidly fuse and form the enlarged compartments to efficiently transport Can1p to the vacuole. Additionally, we show that the deubiquitinating enzyme Doa4p is also involved in the PM integrity and its deletion causes the mislocalization of Vps21p to the vacuolar lumen. Interestingly, in cells lacking Doa4p or Vps21p, the amounts of free ubiquitin are decreased, and overexpression of ubiquitin restored defective cargo internalization in vps9Δ cells, suggesting that defective PM integrity in vps9Δ cells is caused by lack of free ubiquitin.


Subject(s)
Cell Membrane , Endocytosis , Endosomes , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , rab5 GTP-Binding Proteins , Endocytosis/physiology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , rab5 GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , Cell Membrane/metabolism , Endosomes/metabolism , Heat-Shock Response/physiology , Vacuoles/metabolism , Vacuoles/genetics , Hot Temperature , Ubiquitin/metabolism , rab GTP-Binding Proteins
12.
Plant J ; 117(6): 1656-1675, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38055844

ABSTRACT

With global warming and climate change, abiotic stresses often simultaneously occur. Combined salt and heat stress was a common phenomenon that was severe, particularly in arid/semi-arid lands. We aimed to reveal the systematic responsive mechanisms of tomato genotypes with different salt/heat susceptibilities to combined salt and heat stress. Morphological and physiological responses of salt-tolerant/sensitive and heat-tolerant/sensitive tomatoes at control, heat, salt and combined stress were investigated. Based on leaf Fv /Fm and H2 O2 content, samples from tolerant genotype at the four treatments for 36 h were taken for transcriptomics and metabolomics. We found that plant height, dry weight and net photosynthetic rate decreased while leaf Na+ concentration increased in all four genotypes under salt and combined stress than control. Changes in physiological indicators such as photosynthetic parameters and defence enzyme activities in tomato under combined stress were regulated by the expression of relevant genes and the accumulation of key metabolites. We screened five key pathways in tomato responding to a combination of salt and heat stress, such as oxidative phosphorylation (map00190). Synergistic regulation at morphological, physiological, transcriptional and metabolic levels in tomato plants was induced by combined stress. Heat stress was considered as a dominant stressor for tomato plants under the current combined stress. The oxidative phosphorylation pathway played a key role in tomato in response to combined stress, where tapped key genes (e.g. alternative oxidase, Aox1a) need further functional analysis. Our study will provide a valuable resource important for studying stress combination and improving tomato tolerance.


Subject(s)
Solanum lycopersicum , Solanum lycopersicum/genetics , Heat-Shock Response/genetics , Stress, Physiological , Photosynthesis , Plant Leaves/metabolism
13.
Plant J ; 117(6): 1702-1715, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38334712

ABSTRACT

Potatoes (Solanum tuberosum L.) are a fundamental staple for millions of people worldwide. They provide essential amino acids, vitamins, and starch - a vital component of the human diet, providing energy and serving as a source of fiber. Unfortunately, global warming is posing a severe threat to this crop, leading to significant yield losses, and thereby endangering global food security. Industrial agriculture traditionally relies on excessive nitrogen (N) fertilization to boost yields. However, it remains uncertain whether this is effective in combating heat-related yield losses of potato. Therefore, our study aimed to investigate the combinatory effects of heat stress and N fertilization on potato tuber formation. We demonstrate that N levels and heat significantly impact tuber development. The combination of high N and heat delays tuberization, while N deficiency initiates early tuberization, likely through starvation-induced signals, independent of SELF-PRUNING 6A (SP6A), a critical regulator of tuberization. We also found that high N levels in combination with heat reduce tuber yield rather than improve it. However, our study revealed that SP6A overexpression can promote tuberization under these inhibiting conditions. By utilizing the excess of N for accumulating tuber biomass, SP6A overexpressing plants exhibit a shift in biomass distribution towards the tubers. This results in an increased yield compared to wild-type plants. Our results highlight the role of SP6A overexpression as a viable strategy for ensuring stable potato yields in the face of global warming. As such, our findings provide insights into the complex factors impacting potato crop productivity.


Subject(s)
Solanum tuberosum , Humans , Temperature , Nitrogen/metabolism , Fertilization , Plant Tubers , Plant Proteins/genetics , Plant Proteins/metabolism
14.
Plant J ; 117(6): 1642-1655, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38315509

ABSTRACT

Plants growing under natural conditions experience high light (HL) intensities that are often accompanied by elevated temperatures. These conditions could affect photosynthesis, reduce yield, and negatively impact agricultural productivity. The combination of different abiotic challenges creates a new type of stress for plants by generating complex environmental conditions that often exceed the impact of their individual parts. Transcription factors (TFs) play a key role in integrating the different molecular signals generated by multiple stress conditions, orchestrating the acclimation response of plants to stress. In this study, we show that the TF WRKY48 negatively controls the acclimation of Arabidopsis thaliana plants to a combination of HL and heat stress (HL + HS), and its expression is attenuated by jasmonic acid under HL + HS conditions. Using comparative physiological and transcriptomic analyses between wild-type and wrky48 mutants, we further demonstrate that under control conditions, WRKY48 represses the expression of a set of transcripts that are specifically required for the acclimation of plants to HL + HS, hence its suppression during the HL + HS stress combination contributes to plant survival under these conditions. Accordingly, mutants that lack WRKY48 are more resistant to HL + HS, and transgenic plants that overexpress WRKY48 are more sensitive to it. Taken together, our findings reveal that WRKY48 is a negative regulator of the transcriptomic response of Arabidopsis to HL + HS and provide new insights into the complex regulatory networks of plant acclimation to stress combination.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Heat-Shock Response , Transcription Factors/genetics , Transcription Factors/metabolism , Arabidopsis/metabolism , Acclimatization , Light , Plants/metabolism , Gene Expression Regulation, Plant , Stress, Physiological
15.
Plant J ; 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133822

ABSTRACT

UV-B radiation can induce the accumulation of many secondary metabolites, including flavonoids, in plants to protect them from oxidative damage. BRI1-EMS-SUPPRESSOR1 (BES1) has been shown to mediate the biosynthesis of flavonoids in response to UV-B. However, the detailed mechanism by which it acts still needs to be further elucidated. Here, we revealed that UV-B significantly inhibited the transcription of multiple transcription factor genes in tobacco, including NtMYB27, which was subsequently shown to be a repressor of flavonoids synthesis in tobacco. We further demonstrated that NtBES1 directly binds to the E-box motifs present in the promoter of NtMYB27 to mediate its transcriptional repression upon UV-B exposure. The UV-B-repressed NtMYB27 could bind to the ACCT-containing element (ACE) in the promoters of Nt4CL and NtCHS and served as a modulator that promoted the biosynthesis of lignin and chlorogenic acid (CGA) but inhibited the accumulation of flavonoids in tobacco. The expression of NtMYB27 was also significantly repressed by heat stress, suggesting its putative roles in regulating heat-induced flavonoids accumulation. Taken together, our results revealed the role of NtBES1 and NtMYB27 in regulating the synthesis of flavonoids during the plant response to UV-B radiation in tobacco.

16.
Plant J ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39383391

ABSTRACT

Basic helix-loop-helix (bHLH) proteins comprise one of the largest families of transcription factors in plants, which play roles in plant development, secondary metabolism, and the response to biotic/abiotic stresses. However, the roles of bHLH proteins in thermotolerance are largely unknown. Herein, we identified a heat-inducible member of the bHLH family in lily (Lilium longiflorum), named LlbHLH87, which plays a role in thermotolerance. LlbHLH87 was rapidly induced by transient heat stress, and its encoded protein was localized to the nucleus, exhibiting transactivation activity in both yeast and plant cells. Overexpression of LlbHLH87 in Arabidopsis enhanced basal thermotolerance, while silencing of LlbHLH87 in lily reduced basal thermotolerance. Further analysis showed that LlbHLH87 bound to the promoters of HEAT STRESS TRANSCRIPTION FACTOR A2 (LlHSFA2) and ETHYLENE-INSENSITIVE 3 (LlEIN3) to directly activate their expression. In addition, LlbHLH87 interacted with itself and with SPATULA (LlSPT) protein. LlSPT was activated by extended heat stress and its protein competed for the homologous interaction of LlbHLH87, which reduced the transactivation ability of LlbHLH87 for target genes. Compared with that observed under LlbHLH87 overexpression alone, co-overexpression of LlbHLH87 and LlSPT reduced the basal thermotolerance of lily to sudden heat shock, but improved its thermosensitivity to prolonged heat stress treatment. Overall, our data demonstrated that LlbHLH87 regulates thermotolerance via activation of LlEIN3 and LlHSFA2, along with an antagonistic interaction with LlSPT.

17.
Plant J ; 119(2): 658-675, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38678590

ABSTRACT

Heat stress poses a significant threat to maize, especially when combined with drought. Recent research highlights the potential of water replenishment to ameliorate grain weight loss. However, the mitigating mechanisms of heat in drought stress, especially during the crucial early grain-filling stage, remain poorly understood. We investigated the mechanism for mitigating heat in drought stress by water replenishment from the 12th to the 32nd days after silking in a controlled greenhouse experiment (Exp. I) and field trial (Exp. II). A significant reduction in grain weight was observed in heat stress compared to normal conditions. When water replenishment was applied to increase soil water content (SWC) under heat stress, the grain yield exhibited a notable increase ranging from 28.4 to 76.9%. XY335 variety was used for transcriptome sequencing to analyze starch biosynthesis and amino acid metabolisms in Exp. I. With water replenishment, the transcripts of genes responsible for trehalose 6-phosphate phosphates (TPP), alpha-trehalase (TRE), ADP-glcpyrophosphorylase, and starch synthase activity were stimulated. Additionally, the expression of genes encoding TPP and TRE contributed to an enhanced conversion of trehalose to glucose. This led to the conversion of sucrose from glucose-1-phosphate to ADP-glucose and ADP-glucose to amylopectin, ultimately increasing starch production by 45.1%. Water replenishment to boost SWC during heat stress also elevated the levels of essential amino acids in maize, including arginine, serine, tyrosine, leucine, glutamic acid, and methionine, providing valuable support to maize plants in adversity. Field trials further validated the positive impact of water replenishment on SWC, resulting in a notable increase in grain yield ranging from 7.1 to 9.2%. This study highlights the vital importance of adapting to abiotic stress and underscores the necessity of developing strategies to counteract its adverse effects on crop yield.


Subject(s)
Amino Acids , Droughts , Sucrose , Water , Zea mays , Zea mays/genetics , Zea mays/physiology , Zea mays/metabolism , Amino Acids/metabolism , Water/metabolism , Sucrose/metabolism , Edible Grain/physiology , Edible Grain/genetics , Hot Temperature , Gene Expression Regulation, Plant , Heat-Shock Response/physiology
18.
Plant J ; 117(6): 1873-1892, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38168757

ABSTRACT

Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.


Subject(s)
Climate Change , Droughts , Heat-Shock Response , Crops, Agricultural/genetics , Plant Development , Stress, Physiological/genetics
19.
Article in English | MEDLINE | ID: mdl-39189870

ABSTRACT

Understanding physiological mechanisms of tolerance to heat exposure, and potential ways to improve such tolerance, is increasingly important in the context of ongoing climate change. We discuss the concept of heat tolerance in humans and experimental models (primarily rodents), including intracellular mechanisms and improvements in tolerance with heat acclimation.

20.
EMBO J ; 40(17): e105043, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34287990

ABSTRACT

Tudor staphylococcal nuclease (TSN; also known as Tudor-SN, p100, or SND1) is a multifunctional, evolutionarily conserved regulator of gene expression, exhibiting cytoprotective activity in animals and plants and oncogenic activity in mammals. During stress, TSN stably associates with stress granules (SGs), in a poorly understood process. Here, we show that in the model plant Arabidopsis thaliana, TSN is an intrinsically disordered protein (IDP) acting as a scaffold for a large pool of other IDPs, enriched for conserved stress granule components as well as novel or plant-specific SG-localized proteins. While approximately 30% of TSN interactors are recruited to stress granules de novo upon stress perception, 70% form a protein-protein interaction network present before the onset of stress. Finally, we demonstrate that TSN and stress granule formation promote heat-induced activation of the evolutionarily conserved energy-sensing SNF1-related protein kinase 1 (SnRK1), the plant orthologue of mammalian AMP-activated protein kinase (AMPK). Our results establish TSN as a docking platform for stress granule proteins, with an important role in stress signalling.


Subject(s)
Cytoplasmic Granules/metabolism , Intrinsically Disordered Proteins/metabolism , Protein Interaction Maps , Arabidopsis , Arabidopsis Proteins/metabolism , Binding Sites , Heat-Shock Response , Intrinsically Disordered Proteins/chemistry , Protein Binding , Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL