Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
J Neuroinflammation ; 20(1): 73, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36918925

ABSTRACT

The past decade has witnessed increasing evidence for a crucial role played by glial cells, notably astrocytes, in Alzheimer's disease (AD). To provide novel insights into the roles of astrocytes in the pathophysiology of AD, we performed a quantitative ultrastructural characterization of their intracellular contents and parenchymal interactions in an aged mouse model of AD pathology, as aging is considered the main risk factor for developing AD. We compared 20-month-old APP-PS1 and age-matched C57BL/6J male mice, among the ventral hippocampus CA1 strata lacunosum-moleculare and radiatum, two hippocampal layers severely affected by AD pathology. Astrocytes in both layers interacted more with synaptic elements and displayed more ultrastructural markers of increased phagolysosomal activity in APP-PS1 versus C57BL6/J mice. In addition, we investigated the ultrastructural heterogeneity of astrocytes, describing in the two examined layers a dark astrocytic state that we characterized in terms of distribution, interactions with AD hallmarks, and intracellular contents. This electron-dense astrocytic state, termed dark astrocytes, was observed throughout the hippocampal parenchyma, closely associated with the vasculature, and possessed several ultrastructural markers of cellular stress. A case study exploring the hippocampal head of an aged human post-mortem brain sample also revealed the presence of a similar electron-dense, dark astrocytic state. Overall, our study provides the first ultrastructural quantitative analysis of astrocytes among the hippocampus in aged AD pathology, as well as a thorough characterization of a dark astrocytic state conserved from mouse to human.


Subject(s)
Alzheimer Disease , Astrocytes , Mice , Humans , Male , Animals , Aged , Infant , Astrocytes/metabolism , Mice, Inbred C57BL , Alzheimer Disease/pathology , Brain/metabolism , Hippocampus/metabolism , Mice, Transgenic , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
2.
J Neuroinflammation ; 19(1): 235, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167544

ABSTRACT

A diverse heterogeneity of microglial cells was previously described in Alzheimer's disease (AD) pathology, including dark microglia, a state characterized by ultrastructural markers of cellular stress. To provide novel insights into the roles of dark microglia during aging in the context of AD pathology, we performed a quantitative density and ultrastructural analysis of these cells using high-throughput scanning electron microscopy in the ventral hippocampus CA1 stratum lacunosum-moleculare of 20-month-old APP-PS1 vs C57BL/6J male mice. The density of dark microglia was significantly higher in APP-PS1 vs C57BL/6J mice, with these cells accounting for nearly half of all microglia observed near amyloid-beta (Aß) plaques. This dark microglial state interacted more with dystrophic neurites compared to other APP-PS1 microglia and possessed glycogen granules, associated with a metabolic shift toward glycolysis, which provides the first ultrastructural evidence of their presence in microglia. Dark microglia were further observed in aging human post-mortem brain samples showing similar ultrastructural features as in mouse. Overall, our results provide a quantitative ultrastructural characterization of a microglial state associated with cellular stress (i.e., dark microglia) that is primarily restricted near Aß plaques and dystrophic neurites. The presence of this microglial state in the aging human post-mortem brain is further revealed.


Subject(s)
Alzheimer Disease , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/metabolism , Disease Models, Animal , Glycogen/metabolism , Humans , Infant , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Plaque, Amyloid/pathology
3.
Eur J Neurosci ; 54(8): 6864-6881, 2021 10.
Article in English | MEDLINE | ID: mdl-32492218

ABSTRACT

Mapping the molecular composition of individual excitatory synapses across the mouse brain reveals high synapse diversity with each brain region showing a distinct composition of synapse types. As a first step towards systematic mapping of synapse diversity across the human brain, we have labelled and imaged synapses expressing the excitatory synapse protein PSD95 in twenty human brain regions, including 13 neocortical, two subcortical, one hippocampal, one cerebellar and three brainstem regions, in four phenotypically normal individuals. We quantified the number, size and intensity of individual synaptic puncta and compared their regional distributions. We found that each region showed a distinct signature of synaptic puncta parameters. Comparison of brain regions showed that cortical and hippocampal structures are similar, and distinct from those of cerebellum and brainstem. Comparison of synapse parameters from human and mouse brain revealed conservation of parameters, hierarchical organization of brain regions and network architecture. This work illustrates the feasibility of generating a systematic single-synapse resolution atlas of the human brain, a potentially significant resource in studies of brain health and disease.


Subject(s)
Brain , Synapses , Animals , Brain/metabolism , Disks Large Homolog 4 Protein/metabolism , Hippocampus/metabolism , Humans , Mice , Synapses/metabolism , Transcription Factors
4.
Adv Exp Med Biol ; 978: 169-183, 2017.
Article in English | MEDLINE | ID: mdl-28523546

ABSTRACT

Major depressive disorder (MDD) is a multifactorial disease, weakly linked to multiple genetic risk factors. In contrast to that, environmental factors and "gene × environment" interaction between specific risk genes and environmental factors, such as severe or early stress exposure, have been strongly linked to MDD vulnerability. Stressors can act on the interface between an organism and the environment, the epigenome. The molecular foundation for the impact of stressors on the risk to develop MDD is based on the hormonal stress response itself: the glucocorticoid receptor (GR, encoded by NR3C1). NR3C1 can directly interact with the epigenome in the cell nucleus. Besides DNA methylation, histone modifications have been reported to be crucial targets for the interaction with the stress response system. Here, we review critical findings on the impact of the most relevant histone modifications, i.e. histone acetylation and methylation, in the context of MDD and related animal models. We discuss new treatment options which have been based on these findings, including histone deacetylase inhibitors (HDACis) and drugs targeting specific histone marks, closely linked to psychiatric disease. In this context we talk about contemporary and future approaches required to fully understand (1) the epigenetics of stress-related disease and (2) the mode of action of potential MDD drugs targeting histone modifications. This includes harnessing the unprecedented potentials of genome-wide analysis of the epigenome and transcriptome, in a cell type-specific manner, and the use of epigenome editing technologies to clearly link epigenetic marks on specific genomic loci to functional relevance.


Subject(s)
Depressive Disorder, Major/genetics , Epigenesis, Genetic/genetics , Histone Code/genetics , Histone Code/physiology , Animals , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Brain/metabolism , Brain/pathology , DNA Methylation , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/metabolism , Depressive Disorder, Major/physiopathology , Disease Models, Animal , Forecasting , Histone Code/drug effects , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hypothalamo-Hypophyseal System/physiopathology , Mice , Nerve Tissue Proteins/metabolism , Pituitary-Adrenal System/physiopathology , Protein Processing, Post-Translational/drug effects , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/physiology , Rodentia , Stress, Physiological/genetics , Stress, Physiological/physiology , Stress, Psychological/genetics , Stress, Psychological/metabolism
5.
Psychiatry Clin Neurosci ; 71(10): 663-672, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28675555

ABSTRACT

RNA sequencing (RNA-Seq), a revolutionary tool for transcriptome profiling, is becoming increasingly important for neuroscientists in studying the transcriptional landscape of the human brain. Studies using this next-generation sequencing technique have already revealed novel insights into the complexity of neurons in the human brain and pathogenesis of complex neurological diseases. In clinical neuroscience, RNA-Seq provides exciting opportunities for improving diagnosis and treatment of neurological diseases by facilitating the development of pharmacotherapies able to modulate gene expression. Furthermore, integrative whole genome sequencing and transcriptome sequencing can provide additional information for the functional role of mutated genes, prioritization of variants, and intron/exon splicing. This review describes the current state of RNA-Seq studies in neuropsychiatric disorders using post-mortem human brains, a brief survey of best practices for experimental design and sequencing data analysis, and the challenges associated with its application in the human brain.


Subject(s)
Brain/metabolism , Mental Disorders/genetics , Sequence Analysis, RNA/methods , Gene Expression Profiling/methods , Humans , Research Design , Statistics as Topic/methods , Whole Genome Sequencing/methods
6.
Neuropathol Appl Neurobiol ; 42(6): 573-87, 2016 10.
Article in English | MEDLINE | ID: mdl-26526972

ABSTRACT

AIMS: CLARITY is a novel technique which enables three-dimensional visualization of immunostained tissue for the study of circuitry and spatial interactions between cells and molecules in the brain. In this study, we aimed to compare methodological differences in the application of CLARITY between rodent and large human post mortem brain samples. In addition, we aimed to investigate if this technique could be used to visualize Lewy pathology in a post mortem Parkinson's brain. METHODS: Rodent and human brain samples were clarified and immunostained using the passive version of the CLARITY technique. Samples were then immersed in different refractive index matching media before mounting and visualizing under a confocal microscope. RESULTS: We found that tissue clearing speed using passive CLARITY differs according to species (human vs. rodents), brain region and degree of fixation (fresh vs. formalin-fixed tissues). Furthermore, there were advantages to using specific refractive index matching media. We have applied this technique and have successfully visualized Lewy body inclusions in three dimensions within the nucleus basalis of Meynert, and the spatial relationship between monoaminergic fibres and Lewy pathologies among nigrostriatal fibres in the midbrain without the need for physical serial sectioning of brain tissue. CONCLUSIONS: The effective use of CLARITY on large samples of human tissue opens up many potential avenues for detailed pathological and morphological studies.


Subject(s)
Brain/pathology , Histocytological Preparation Techniques/methods , Imaging, Three-Dimensional/methods , Lewy Bodies/pathology , Animals , Humans , Mice , Mice, Inbred C57BL , Parkinson Disease/pathology , Rats , Rats, Sprague-Dawley
7.
Neuropathol Appl Neurobiol ; 42(7): 621-638, 2016 12.
Article in English | MEDLINE | ID: mdl-27424496

ABSTRACT

AIMS: Neurogenesis in the postnatal human brain occurs in two neurogenic niches; the subventricular zone (SVZ) in the wall of the lateral ventricles and the subgranular zone (SGZ) of the hippocampus. The extent to which this physiological process continues into adulthood is an area of ongoing research. This study aimed to characterize markers of cell proliferation and assess the efficacy of antibodies used to identify neurogenesis in both neurogenic niches of the human brain. METHODS: Cell proliferation and neurogenesis were simultaneously examined in the SVZ and SGZ of 23 individuals aged 0.2-59 years, using immunohistochemistry and immunofluorescence in combination with unbiased stereology. RESULTS: There was a marked decline in proliferating cells in both neurogenic niches in early infancy with levels reaching those seen in the adjacent parenchyma by 4 and 1 year of age, in the SVZ and SGZ, respectively. Furthermore, the phenotype of these proliferating cells in both niches changed with age. In infants, proliferating cells co-expressed neural progenitor (epidermal growth factor receptor), immature neuronal (doublecortin and beta III tubulin) and oligodendrocytic (Olig2) markers. However, after 3 years of age, microglia were the only proliferating cells found in either niche or in the adjacent parenchyma. CONCLUSIONS: This study demonstrates a marked decline in neurogenesis in both neurogenic niches in early childhood, and that the sparse proliferating cells in the adult brain are largely microglia.


Subject(s)
Aging , Brain/cytology , Brain/growth & development , Neurogenesis , Adolescent , Adult , Brain/physiology , Cell Proliferation , Child , Child, Preschool , Female , Hippocampus/cytology , Hippocampus/physiology , Humans , Immunohistochemistry , Infant , Male , Middle Aged , Neural Stem Cells/cytology , Neural Stem Cells/physiology , Third Ventricle/cytology , Third Ventricle/physiology , Young Adult
8.
Acta Neuropathol Commun ; 12(1): 83, 2024 05 31.
Article in English | MEDLINE | ID: mdl-38822428

ABSTRACT

Human brain experimental models recapitulating age- and disease-related characteristics are lacking. There is urgent need for human-specific tools that model the complex molecular and cellular interplay between different cell types to assess underlying disease mechanisms and test therapies. Here we present an adapted ex vivo organotypic slice culture method using human post-mortem brain tissue cultured at an air-liquid interface to also study brain white matter. We assessed whether these human post-mortem brain slices recapitulate the in vivo neuropathology and if they are suitable for pathophysiological, experimental and pre-clinical treatment development purposes, specifically regarding leukodystrophies. Human post-mortem brain tissue and cerebrospinal fluid were obtained from control, psychiatric and leukodystrophy donors. Slices were cultured up to six weeks, in culture medium with or without human cerebrospinal fluid. Human post-mortem organotypic brain slice cultures remained viable for at least six weeks ex vivo and maintained tissue structure and diversity of (neural) cell types. Supplementation with cerebrospinal fluid could improve slice recovery. Patient-derived organotypic slice cultures recapitulated and maintained known in vivo neuropathology. The cultures also showed physiologic multicellular responses to lysolecithin-induced demyelination ex vivo, indicating their suitability to study intrinsic repair mechanisms upon injury. The slice cultures were applicable for various experimental studies, as multi-electrode neuronal recordings. Finally, the cultures showed successful cell-type dependent transduction with gene therapy vectors. These human post-mortem organotypic brain slice cultures represent an adapted ex vivo model suitable for multifaceted studies of brain disease mechanisms, boosting translation from human ex vivo to in vivo. This model also allows for assessing potential treatment options, including gene therapy applications. Human post-mortem brain slice cultures are thus a valuable tool in preclinical research to study the pathomechanisms of a wide variety of brain diseases in living human tissue.


Subject(s)
Brain , Organ Culture Techniques , Humans , Brain/pathology , Brain/metabolism , Male , Female , Aged , Middle Aged , Neurons/metabolism , Neurons/pathology , White Matter/pathology , White Matter/metabolism
9.
Biomolecules ; 13(2)2023 01 25.
Article in English | MEDLINE | ID: mdl-36830603

ABSTRACT

Astrocytic-secreted matricellular proteins have been shown to influence various aspects of synaptic function. More recently, they have been found altered in animal models of psychiatric disorders such as drug addiction. Hevin (also known as Sparc-like 1) is a matricellular protein highly expressed in the adult brain that has been implicated in resilience to stress, suggesting a role in motivated behaviors. To address the possible role of hevin in drug addiction, we quantified its expression in human postmortem brains and in animal models of alcohol abuse. Hevin mRNA and protein expression were analyzed in the postmortem human brain of subjects with an antemortem diagnosis of alcohol use disorder (AUD, n = 25) and controls (n = 25). All the studied brain regions (prefrontal cortex, hippocampus, caudate nucleus and cerebellum) in AUD subjects showed an increase in hevin levels either at mRNA or/and protein levels. To test if this alteration was the result of alcohol exposure or indicative of a susceptibility factor to alcohol consumption, mice were exposed to different regimens of intraperitoneal alcohol administration. Hevin protein expression was increased in the nucleus accumbens after withdrawal followed by a ethanol challenge. The role of hevin in AUD was determined using an RNA interference strategy to downregulate hevin expression in nucleus accumbens astrocytes, which led to increased ethanol consumption. Additionally, ethanol challenge after withdrawal increased hevin levels in blood plasma. Altogether, these results support a novel role for hevin in the neurobiology of AUD.


Subject(s)
Alcoholism , Adult , Mice , Humans , Animals , Brain/metabolism , RNA, Messenger/metabolism , Alcohol Drinking , Ethanol
10.
Neuron ; 94(6): 1085-1100.e6, 2017 Jun 21.
Article in English | MEDLINE | ID: mdl-28641108

ABSTRACT

Subcellular resolution imaging of the whole brain and subsequent image analysis are prerequisites for understanding anatomical and functional brain networks. Here, we have developed a very high-speed serial-sectioning imaging system named FAST (block-face serial microscopy tomography), which acquires high-resolution images of a whole mouse brain in a speed range comparable to that of light-sheet fluorescence microscopy. FAST enables complete visualization of the brain at a resolution sufficient to resolve all cells and their subcellular structures. FAST renders unbiased quantitative group comparisons of normal and disease model brain cells for the whole brain at a high spatial resolution. Furthermore, FAST is highly scalable to non-human primate brains and human postmortem brain tissues, and can visualize neuronal projections in a whole adult marmoset brain. Thus, FAST provides new opportunities for global approaches that will allow for a better understanding of brain systems in multiple animal models and in human diseases.


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Microscopy, Fluorescence/methods , Neuroimaging/methods , Tomography/methods , Aged, 80 and over , Animals , Brain/anatomy & histology , Callithrix , Female , Humans , Male , Mice , Microscopy/methods , Neurites
11.
Front Neuroanat ; 11: 31, 2017.
Article in English | MEDLINE | ID: mdl-28428746

ABSTRACT

In the brain, D-amino acid oxidase (DAO/DAAO) mainly oxidizes D-serine, a co-agonist of the N-methyl-D-aspartate (NMDA) receptors. Thus, DAO can regulate the function of NMDA receptors via D-serine breakdown. Furthermore, DAO activator (DAOA)/G72 has been reported as both DAOA and repressor. The co-expression of DAO and DAOA genes and proteins in the human brain is not yet elucidated. The aim of this study was to understand the regional and age span distribution of DAO and DAOA (mRNA and protein) in a concomitant manner. We determined DAO and DAOA mRNA and protein expression across six brain regions in normal human post-mortem brain samples (16 weeks of gestation to 91 years) using quantitative real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. We found higher expression of DAO mRNA in the cerebellum, whereas lower expression of DAO protein in the cerebellum compared to the other brain regions studied, which suggests post-transcriptional regulation. We detected DAOA protein but not DAOA mRNA in all brain regions studied, suggesting a tightly regulated expression. To understand this regulation at the transcriptional level, we analyzed DNA methylation levels at DAO and DAOA CpG sites in the cerebellum and frontal cortex of control human post-mortem brain obtained from Gene Expression Omnibus datasets. Indeed, DAO and DAOA CpG sites in the cerebellum were significantly more methylated than those in the frontal cortex. While investigating lifespan effects, we found that DAO mRNA levels were positively correlated with age <2 years in the cerebellum and amygdala. We also detected a significant positive correlation (controlled for age) between DAO and DAOA protein in all of the brain regions studied except for the frontal cortex. In summary, DAO and DAOA expression in the human brain are both age and brain region dependent.

SELECTION OF CITATIONS
SEARCH DETAIL