ABSTRACT
INTRODUCTION: A noncoding variant (rs35349669) within INPP5D, a lipid and protein phosphatase restricted to microglia in the brain, is linked to increased susceptibility to Alzheimer's disease (AD). While Inpp5d is well-studied in amyloid pathology, its role in tau pathology remains unclear. METHODS: PS19 Tauopathy mice were crossed with Inpp5d-haplodeficient (Inpp5d+/-) mice to examine the impact of Inpp5d in tau pathology. RESULTS: Increased INPP5D expression correlated positively withâ¯phospho-Tau AT8 in PS19 mice. Inpp5d haplodeficiency mitigated hyperphosphorylated tau levels (AT8, AT180, AT100, and PHF1) and motor deficits in PS19 mice. Transcriptomic analysis revealed an up-regulation of genes associatedâ¯with immune response and cell migration. DISCUSSION: Our findings define an association between INPP5D expression and tau pathology in PS19 mice. Alleviation in hyperphosphorylated tau, motor deficits, and transcriptomics changes in haplodeficient-Inpp5d PS19 mice indicate that modulation in INPP5D expression may provide therapeutic potential for mitigating tau pathology and improving motor deficits. HIGHLIGHTS: The impact of Inpp5d in the context of tau pathology was studied in the PS19 mouse model. INPP5D expression is associated with tau pathology. Reduced Inpp5d expression in PS19 mice improved motor functions and decreased total and phospho-Tau levels. Inpp5d haplodeficiency in PS19 mice modulates gene expression patterns linked to immune response and cell migration. These data suggest that inhibition of Inpp5d may be a therapeutic approach in tauopathies.
Subject(s)
Disease Models, Animal , Mice, Transgenic , Tauopathies , tau Proteins , Animals , Mice , Brain/pathology , Brain/metabolism , Phosphorylation , tau Proteins/metabolism , Tauopathies/pathology , Tauopathies/metabolism , Tauopathies/geneticsABSTRACT
INTRODUCTION: Inpp5d is genetically associated with Alzheimer's disease risk. Loss of Inpp5d alters amyloid pathology in models of amyloidosis. Inpp5d is expressed predominantly in microglia but its function in brain is poorly understood. METHODS: We performed single-cell RNA sequencing to study the effect of Inpp5d loss on wild-type mouse brain transcriptomes. RESULTS: Loss of Inpp5d has sex-specific effects on the brain transcriptome. Affected genes are enriched for multiple neurodegeneration terms. Network analyses reveal a gene co-expression module centered around Inpp5d in female mice. Inpp5d loss alters Pleotrophin (PTN), Prosaposin (PSAP), and Vascular Endothelial Growth Factor A (VEGFA) signaling probability between cell types. DISCUSSION: Our data suggest that the normal function of Inpp5d is entangled with mechanisms involved in neurodegeneration. We report the effect of Inpp5d loss without pathology and show that this has dramatic effects on gene expression. Our study provides a critical reference for researchers of neurodegeneration, allowing separation of disease-specific changes mediated by Inpp5d in disease from baseline effects of Inpp5d loss. HIGHLIGHTS: Loss of Inpp5d has different effects in male and female mice. Genes dysregulated by Inpp5d loss relate to neurodegeneration. Total loss of Inpp5d in female mice collapses a conserved gene co-expression module. Loss of microglial Inpp5d affects the transcriptome of other cell types.
Subject(s)
Transcriptome , Animals , Female , Male , Mice , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Disease Models, Animal , Microglia/metabolism , Neuroglia/metabolism , Sex FactorsABSTRACT
Current hypothesis of Alzheimer's disease (AD) postulates that amyloid ß (Aß) deposition in the brain causes tau inclusion in neurons and leads to cognitive decline. The discovery of the genetic association between triggering receptor expressed on myeloid cells 2 (TREM2) with increased AD risk points to a causal link between microglia and AD pathogenesis, and revealed a crucial role of TREM2-dependent clustering of microglia around amyloid plaques that prevents Aß toxicity to facilitate tau deposition near the plaques. Here we review the physiological and pathological roles of another AD risk gene expressed in microglia, inositol polyphosphate-5-polyphosphatase D (INPP5D), which encodes a phosphoinositide phosphatase. Evidence suggests that its risk polymorphisms alter the expression level and/or function of INPP5D, while concomitantly affecting tau levels in cerebrospinal fluids. In ß-amyloidosis mice, INPP5D was upregulated upon Aß deposition and negatively regulated the microglial clustering toward amyloid plaques. INPP5D seems to exert its function by acting antagonistically at downstream of the TREM2 signaling pathway, suggesting that it is a novel regulator of the protective barrier by microglia. Further studies to elucidate INPP5D's role in AD may help in developing new therapeutic targets for AD treatment.
Subject(s)
Alzheimer Disease , Animals , Mice , Acid Anhydride Hydrolases/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Microglia/pathology , Plaque, Amyloid/pathologyABSTRACT
INTRODUCTION: Inositol polyphosphate-5-phosphatase (INPP5D) is a microglia-enriched lipid phosphatase in the central nervous system. A non-coding variant (rs35349669) in INPP5D increases the risk for Alzheimer's disease (AD), and elevated INPP5D expression is associated with increased plaque deposition. INPP5D negatively regulates signaling via several microglial cell surface receptors, including triggering receptor expressed on myeloid cells 2 (TREM2); however, the impact of INPP5D inhibition on AD pathology remains unclear. METHODS: We used the 5xFAD mouse model of amyloidosis to assess how Inpp5d haplodeficiency regulates amyloid pathogenesis. RESULTS: Inpp5d haplodeficiency perturbs the microglial intracellular signaling pathways regulating the immune response, including phagocytosis and clearing of amyloid beta (Aß). It is important to note that Inpp5d haploinsufficiency leads to the preservation of cognitive function. Spatial transcriptomic analysis revealed that pathways altered by Inpp5d haploinsufficiency are related to synaptic regulation and immune cell activation. CONCLUSION: These data demonstrate that Inpp5d haplodeficiency enhances microglial functions by increasing plaque clearance and preserves cognitive abilities in 5xFAD mice. Inhibition of INPP5D is a potential therapeutic strategy for AD.
Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid/metabolism , Microglia/metabolism , Plaque, Amyloid/pathology , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Disease Models, Animal , Mice, TransgenicABSTRACT
INTRODUCTION: The inositol polyphosphate-5-phosphatase D (INPP5D) gene encodes a dual-specificity phosphatase that can dephosphorylate both phospholipids and phosphoproteins. Single nucleotide polymorphisms in INPP5D impact risk for developing late onset sporadic Alzheimer's disease (LOAD). METHODS: To assess the consequences of inducible Inpp5d knockdown in microglia of APPKM670/671NL /PSEN1Δexon9 (PSAPP) mice, we injected 3-month-old Inpp5dfl/fl /Cx3cr1CreER/+ and PSAPP/Inpp5dfl/fl /Cx3cr1CreER/+ mice with either tamoxifen (TAM) or corn oil (CO) to induce recombination. RESULTS: At age 6 months, we found that the percent area of 6E10+ deposits and plaque-associated microglia in Inpp5d knockdown mice were increased compared to controls. Spatial transcriptomics identified a plaque-specific expression profile that was extensively altered by Inpp5d knockdown. DISCUSSION: These results demonstrate that conditional Inpp5d downregulation in the PSAPP mouse increases plaque burden and recruitment of microglia to plaques. Spatial transcriptomics highlighted an extended gene expression signature associated with plaques and identified CST7 (cystatin F) as a novel marker of plaques. HIGHLIGHTS: Inpp5d knockdown increases plaque burden and plaque-associated microglia number. Spatial transcriptomics identifies an expanded plaque-specific gene expression profile. Plaque-induced gene expression is altered by Inpp5d knockdown in microglia. Our plaque-associated gene signature overlaps with human Alzheimer's disease gene networks.
Subject(s)
Alzheimer Disease , Mice , Humans , Animals , Infant , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Microglia/metabolism , Mice, Transgenic , Plaque, Amyloid/metabolism , Disease Models, Animal , Amyloid beta-Peptides/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolismABSTRACT
INTRODUCTION: Mutations in INPP5D, which encodes for the SH2-domain-containing inositol phosphatase SHIP-1, have recently been linked to an increased risk of developing late-onset Alzheimer's disease. While INPP5D expression is almost exclusively restricted to microglia in the brain, little is known regarding how SHIP-1 affects neurobiology or neurodegenerative disease pathogenesis. METHODS: We generated and investigated 5xFAD Inpp5dfl/fl Cx3cr1Ert2Cre mice to ascertain the function of microglial SHIP-1 signaling in response to amyloid beta (Aß)-mediated pathology. RESULTS: SHIP-1 deletion in microglia led to substantially enhanced recruitment of microglia to Aß plaques, altered microglial gene expression, and marked improvements in neuronal health. Further, SHIP-1 loss enhanced microglial plaque containment and Aß engulfment when compared to microglia from Cre-negative 5xFAD Inpp5dfl/fl littermate controls. DISCUSSION: These results define SHIP-1 as a pivotal regulator of microglial responses during Aß-driven neurological disease and suggest that targeting SHIP-1 may offer a promising strategy to treat Alzheimer's disease. HIGHLIGHTS: Inpp5d deficiency in microglia increases plaque-associated microglia numbers. Loss of Inpp5d induces activation and phagocytosis transcriptional pathways. Plaque encapsulation and engulfment by microglia are enhanced with Inpp5d deletion. Genetic ablation of Inpp5d protects against plaque-induced neuronal dystrophy.
Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Amyloid beta-Peptides/metabolism , Alzheimer Disease/pathology , Microglia/metabolism , Mice, Transgenic , Neurodegenerative Diseases/pathology , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Risk Factors , Plaque, Amyloid/pathology , Disease Models, AnimalABSTRACT
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, robust microgliosis, neuroinflammation, and neuronal loss. Genome-wide association studies recently highlighted a prominent role for microglia in late-onset AD (LOAD). Specifically, inositol polyphosphate-5-phosphatase (INPP5D), also known as SHIP1, is selectively expressed in brain microglia and has been reported to be associated with LOAD. Although INPP5D is likely a crucial player in AD pathophysiology, its role in disease onset and progression remains unclear. We performed differential gene expression analysis to investigate INPP5D expression in AD and its association with plaque density and microglial markers using transcriptomic (RNA-Seq) data from the Accelerating Medicines Partnership for Alzheimer's Disease (AMP-AD) cohort. We also performed quantitative real-time PCR, immunoblotting, and immunofluorescence assays to assess INPP5D expression in the 5xFAD amyloid mouse model. Differential gene expression analysis found that INPP5D expression was upregulated in LOAD and positively correlated with amyloid plaque density. In addition, in 5xFAD mice, Inpp5d expression increased as the disease progressed, and selectively in plaque-associated microglia. Increased Inpp5d expression levels in 5xFAD mice were abolished entirely by depleting microglia with the colony-stimulating factor receptor-1 antagonist PLX5622. Our findings show that INPP5D expression increases as AD progresses, predominantly in plaque-associated microglia. Importantly, we provide the first evidence that increased INPP5D expression might be a risk factor in AD, highlighting INPP5D as a potential therapeutic target. Moreover, we have shown that the 5xFAD mouse model is appropriate for studying INPP5D in AD.
Subject(s)
Alzheimer Disease/genetics , Microglia/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Plaque, Amyloid/genetics , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Animals , Female , Humans , Male , Mice , Mice, Transgenic , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Plaque, Amyloid/metabolism , RNA, Messenger/metabolism , RNA-SeqABSTRACT
BACKGROUND: Solid pseudopapillary neoplasms of the pancreas (SPN) are rare tumors affecting mainly women. They show an activating mutation in CTNNB1, the gene for ß-catenin, and consequently an overactivation of the Wnt/ß-catenin pathway. This signaling pathway is implied in the pathogenesis of various aggressive tumors, including pancreatic adenocarcinomas (PDAC). Despite this, SPN are characterized by an unusually benign clinical course. Attempts to explain this lack of malignancy have led to the discovery of an aberrant expression of the transcription factor FLI1 in SPN. METHODS: In 42 primary pancreatic tumors the RNA-expression of the FLI1 targets DKK1, INPP5D, IGFBP3 and additionally two members of the Wnt/ß-catenin pathway, namely BCL9 and BCL9L, was investigated using quantitative real time PCR. Expression of these genes was evaluated in SPN (n = 18), PDAC (n = 12) and the less aggressive intraductal papillary mucinous neoplasm IPMN (n = 12) and compared to normal pancreatic tissue. Potential differences between the tumor entities were evaluated using students t-test. RESULTS: The results demonstrated a differential RNA-expression of BCL9L with a lack of expression in SPN (p < 0.001), RNA levels similar to normal tissue in IPMN and increased expression in PDAC (p < 0.04). Further, overexpression of the cyclin D1 inhibitor INPP5D in IPMN (p < 0.0001) was found. PDAC, on the other hand, showed the highest expression of IGFBP3 (p < 0.00001) with the gene still being significantly overexpressed in IPMN (p < 0.001). Nevertheless the difference in expression was significant between PDAC and IPMN (p < 0.05) and IGFBP3 RNA levels were significantly higher in PDAC and IPMN than in SPN (p < 0.0001 and p < 0.02, resp.). CONCLUSIONS: This study demonstrates a significantly decreased expression of the ß-catenin stabilizing gene BCL9L in SPN as a first clue to the possible reasons for the astonishingly benign behavior of this entity. In contrast, high expression of the gene was detected in PDAC supporting the connection between BCL9L expression and tumor malignancy in pancreas neoplasias. IPMN, accordingly, showed intermediate expression of BCL9L, but instead demonstrated a high expression of the cyclin D1 inhibitor INPP5D, possibly contributing to the better prognosis of this neoplasia compared to PDAC.
Subject(s)
Adenocarcinoma, Mucinous/genetics , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Papillary/genetics , DNA-Binding Proteins/genetics , Pancreatic Neoplasms/genetics , Transcription Factors/genetics , Female , Gene Regulatory Networks , Humans , Male , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Prognosis , Proto-Oncogene Protein c-fli-1/genetics , beta Catenin/genetics , Pancreatic NeoplasmsABSTRACT
Anaplastic lymphoma kinase (ALK) gene fusion is a classic driver mutation in non-small cell lung cancer (NSCLC); however, ALK double-fusion variants in NSCLC have rarely been reported. In this study, we reported a case with extremely uncommon ALK double-fusion variants. A 32-year-old female diagnosed with lung adenocarcinoma, who had developed multiple intrapulmonary and brain metastases, experienced worsening of her condition despite undergoing prior chemotherapy. Subsequent testing using next-generation sequencing (NGS) detected the presence of PLEKHA7-ALK and INPP5D-ALK double-fusion. The prescription of alectinib revealed potent efficacy and resulted in an increase in the survival rate. This case presented two uncommon and concomitant ALK fusion partners in NSCLC; more importantly, the INPP5D-ALK subtype has not been reported, therefore this study broadens the spectrum of ALK double-fusion variants and provides insight into the use of ALK inhibitors for the treatment of NSCLC in patients with double ALK fusions.
ABSTRACT
OBJECTIVES: This study aims to explore the role of lncRNA TMPO-AS1 in ischemic stroke and corresponding mechanism. METHODS: Adult male C57BL/6 J mice were subjected to a middle cerebral artery occlusion (MCAO) model of ischemic stroke, then TMPO-AS1 shRNA lentivirus were injected into ipsilateral striatum of mice. The neurological score and cerebral infarction volume were evaluatedHypoxia/glucose deprivation/reoxygenation (OGD/R)-induced BV2 cells were transfected with TMPO-AS1 shRNA (sh-TMPO-AS1) or together with pcDNA-INPP5D, as well as transfected with sh-PU.1 or together with pcDNA-INPP5D, then TMPO-AS1 level, the expression of PU.1 and INPP5D proteins, the secretion of inflammatory factors (TNF-α, IL-6 and IL-1ß), the levels of iNOS, CD68,Arg1 and CD206 mRNA were detected. RIP and PNA-pull down assays were used to detect the binding of TMPO-AS1 and PU.1, luciferase reporter gene and chromatin immunoprecipitation (ChIP) assays were used to detect the binding activity of PU.1 and INPP5D. RESULTS: TMPO-AS1 level was increased in peripheral blood of ischemic stroke patients , brain tissues of MCAO/R model mice and OGD/R-induced BV2 cells. TMPO-AS1 interference inhibited the inflammation of OGD/R-induced BV2 cells. TMPO-AS1 also enhanced the nuclear accumulation of PU.1 by binding to the transcription factor PU.1, and promoted the transcriptional activation of INPP5D. The anti-inflammatory effects of TMPO-AS1 interference were reversed by INPP5D overexpression. In addition, TMPO-AS1 interference improved the infarct volume of MCAO mice, and improved sensorimotor and cognitive functions. CONCLUSION: INPP5D underexpression mediated by TMPO-AS1-PU.1 complex alleviated neuroinflammation after ischemic stroke.
Subject(s)
Ischemic Stroke , MicroRNAs , Stroke , Animals , Male , Mice , Infarction, Middle Cerebral Artery/metabolism , Mice, Inbred C57BL , MicroRNAs/metabolism , Neuroinflammatory Diseases , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , RNA, Small Interfering , Stroke/metabolismABSTRACT
Recent genetic studies on Alzheimer's disease (AD) have brought microglia under the spotlight, as loci associated with AD risk are enriched in genes expressed in microglia. Several of these genes have been recognized for their central roles in microglial functions. Increasing evidence suggests that SHIP1, the protein encoded by the AD-associated gene INPP5D, is an important regulator of microglial phagocytosis and immune response. A recent study from our group identified SHIP1 as a negative regulator of the NLRP3 inflammasome in human iPSC-derived microglial cells (iMGs). In addition, we found evidence for a connection between SHIP1 activity and inflammasome activation in the AD brain. The NLRP3 inflammasome is a multiprotein complex that induces the secretion of pro-inflammatory cytokines as part of innate immune responses against pathogens and endogenous damage signals. Previously published studies have suggested that the NLRP3 inflammasome is activated in AD and contributes to AD-related pathology. Here, we provide an overview of the current understanding of the microglial NLRP3 inflammasome in the context of AD-related inflammation. We then review the known intracellular functions of SHIP1, including its role in phosphoinositide signaling, interactions with microglial phagocytic receptors such as TREM2 and evidence for its intersection with NLRP3 inflammasome signaling. Through rigorous examination of the intricate connections between microglial signaling pathways across several experimental systems and postmortem analyses, the field will be better equipped to tailor newly emerging therapeutic strategies targeting microglia in neurodegenerative diseases.
Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , Inflammasomes/metabolism , Microglia/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Brain/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolismABSTRACT
INTRODUCTION: The risk of developing Alzheimer's disease is associated with genes involved in microglial function. Inositol polyphosphate-5-phosphatase (INPP5D), which encodes Src homology 2 (SH2) domain-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is a risk gene expressed in microglia. Because SHIP1 binds receptor immunoreceptor tyrosine-based inhibitory motifs (ITIMs), competes with kinases, and converts PI(3,4,5)P3 to PI(3,4)P2, it is a negative regulator of microglia function. Validated inhibitors are needed to evaluate SHIP1 as a potential therapeutic target. METHODS: We identified inhibitors and screened the enzymatic domain of SHIP1. A protein construct containing two domains was used to evaluate enzyme inhibitor potency and selectivity versus SHIP2. Inhibitors were tested against a construct containing all ordered domains of the human and mouse proteins. A cellular thermal shift assay (CETSA) provided evidence of target engagement in cells. Phospho-AKT levels provided further evidence of on-target pharmacology. A high-content imaging assay was used to study the pharmacology of SHIP1 inhibition while monitoring cell health. Physicochemical and absorption, distribution, metabolism, and excretion (ADME) properties were evaluated to select a compound suitable for in vivo studies. RESULTS: SHIP1 inhibitors displayed a remarkable array of activities and cellular pharmacology. Inhibitory potency was dependent on the protein construct used to assess enzymatic activity. Some inhibitors failed to engage the target in cells. Inhibitors that were active in the CETSA consistently destabilized the protein and reduced pAKT levels. Many SHIP1 inhibitors were cytotoxic either at high concentration due to cell stress or they potently induced cell death depending on the compound and cell type. One compound activated microglia, inducing phagocytosis at concentrations that did not result in significant cell death. A pharmacokinetic study demonstrated brain exposures in mice upon oral administration. DISCUSSION: 3-((2,4-Dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine activated primary mouse microglia and demonstrated exposures in mouse brain upon oral dosing. Although this compound is our recommended chemical probe for investigating the pharmacology of SHIP1 inhibition at this time, further optimization is required for clinical studies. Highlights: Cellular thermal shift assay (CETSA) and signaling (pAKT) assays were developed to provide evidence of src homology 2 (SH2) domain-contaning inositol phosphatase 1 (SHIP1) target engagement and on-target activity in cellular assays.A phenotypic high-content imaging assay with simultaneous measures of phagocytosis, cell number, and nuclear intensity was developed to explore cellular pharmacology and monitor cell health.SHIP1 inhibitors demonstrate a wide range of activity and cellular pharmacology, and many reported inhibitors are cytotoxic.The chemical probe 3-((2,4-dichlorobenzyl)oxy)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl) pyridine is recommended to explore SHIP1 pharmacology.
ABSTRACT
The single nucleotide polymorphisms rs35349669 and rs10933431 within Inositol Polyphosphate-5-Phosphatase D (INPP5D) are strongly associated with Alzheimer's Disease risk. To better understand INPP5D expression in the brain, we investigated INPP5D isoform expression as a function of rs35349669 and rs10933431, as well as Alzheimer's disease neuropathology, by qPCR and isoform-specific primers. In addition, INPP5D allelic expression imbalance was evaluated relative to rs1141328 within exon 1. Expression of INPP5D isoforms associated with transcription start sites in exon 1 and intron 14 was increased in individuals with high Alzheimer's disease neuropathology. In addition, a novel variant with 47bp lacking from exon 12 increased expression in Alzheimer's Disease brains, accounting for 13% of total INPP5D expression, and was found to undergo nonsense-mediated decay. Although inter-individual variation obscured a possible polymorphism effect on INPP5D isoform expression as measured by qPCR, rs35349669 was associated with rs1141328 allelic expression imbalance, suggesting that rs35349669 is significantly associated with full-length INPP5D isoform expression. In summary, expression of INPP5D isoforms with start sites in exon 1 and intron 14 are increased in brains with high Alzheimer's Disease neuropathology, a novel isoform lacking the phosphatase domain was significantly increased with the disease, and the polymorphism rs35349669 correlates with allele-specific full-length INPP5D expression.
Subject(s)
Alzheimer Disease , Brain , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases , Humans , Alleles , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Brain/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Polymorphism, Single Nucleotide , Protein Isoforms/genetics , Protein Isoforms/metabolismABSTRACT
The vascular hypothesis of Alzheimer's disease (AD) has proposed the involvement of brain hypoperfusion in AD pathogenesis, where cognitive decline and dysfunction result from dwindling cerebral blood flow (CBF). Based on the vascular hypothesis of Alzheimer's disease, we focused on exploring how genetic factors influence AD pathogenesis via the cerebrovascular system. To investigate the role of CBF endophenotypes in AD pathogenesis, we performed a targeted genetic analysis of 258 subjects from the Alzheimer's Disease Neuroimaging Initiative cohort to examine associations between 4033 single-nucleotide polymorphisms of 24 AD genes and CBF measures in 4 brain regions. A novel association with CBF measure in the left angular gyrus was identified in an INPP5D single-nucleotide polymorphism (i.e., rs61068452; p = 1.48E-7; corrected p = 2.39E-3). The gene-based analysis discovered both INPP5D and CD2AP associated with the left angular gyrus CBF. Further analyses on nonoverlapping samples revealed that rs61068452-G was associated with lower CSF t-tau/Aß1-42 ratio. Our findings suggest a protective role of rs61068452-G in an AD-relevant cerebrovascular endophenotype, which has the potential to provide novel insights for better mechanistic understanding of AD.
Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Cerebrovascular Circulation/genetics , Endophenotypes , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Polymorphism, Single Nucleotide , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides/cerebrospinal fluid , Female , Humans , Male , Neuroimaging , Parietal Lobe/blood supply , Peptide Fragments/cerebrospinal fluid , tau Proteins/cerebrospinal fluidABSTRACT
Chronic inflammation is a major contributor to obesity-related renal damage. Recent studies have demonstrated that microRNA (miR)-155 is closely associated with hyperglycemia-induced nephropathy, but whether renal miR-155 participates in the inflammatory response and development of obesity-related nephropathy is unknown. In present study, we investigated the pathophysiological role of renal miR-155 in palmitic acid (PA)-treated endothelial cell and high-fat-diet (HFD)-fed mouse models by specific miR-155 sponge. Mice fed with HFD exhibited higher levels of renal miR-155, which positively correlated with urine microalbumin and blood urea nitrogen. In vitro study, mouse renal vascular endothelial cells stimulated with PA also showed higher miR-155 levels, accompanied with increased inflammatory response. Suppression of renal miR-155 effectively attenuated HFD-induced renal structural damages and dysfunction. MiR-155 sponge treatment also significantly decreased NF-κB signaling and downstream gene expression in vitro and in vivo. The obesity-increased macrophage infiltration and lipotoxicity was decreased in mouse kidney after miR-155 sponge treatment. Mechanistically, miR-155 directly targeted 3'-UTR of SHIP1/INPP5D and suppressed its expression in vitro and in vivo, whereas silence of SHIP1/INPP5D abolished the renal protective benefits of miR-155 sponge in obese mice. Taken together, present findings for the first time provided evidence for the potential role of miR-155 in obesity-related nephropathy and clarified that SHIP1/NF-κB signaling was a potential molecular mechanism.
Subject(s)
Inflammation/complications , Kidney Diseases/etiology , MicroRNAs/physiology , Obesity/complications , Animals , Cell Movement , Diet, High-Fat , Inflammation/etiology , Macrophages/pathology , Mice , MicroRNAs/metabolism , MicroRNAs/pharmacology , NF-kappa B/antagonists & inhibitors , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/antagonists & inhibitors , Signal Transduction/drug effectsABSTRACT
In our previous study, we observed a severe reduction in the Src homology 2-containing-inositol-phosphatase-1 (SHIP1) protein in a subpopulation of subjects from a small adult Crohn's Disease (CD) cohort. This pilot study had been undertaken since we had previously demonstrated that engineered deficiency of SHIP1 in mice results in a spontaneous and severe CD-like ileitis. Here, we extend our analysis of SHIP1 expression in peripheral blood mononuclear cells in a second much larger adult Inflammatory Bowel Disease (IBD) cohort, comprised of both CD and Ulcerative Colitis patients, to assess contribution of SHIP1 to the pathogenesis of human IBD. SHIP1 protein and mRNA levels were evaluated from blood samples obtained from IBD subjects seen at UCSF/SFVA, and compared to healthy control samples. Western blot analyses revealed that ~15% of the IBD subjects are severely SHIP1-deficient, with less than 10% of normal SHIP1 protein present in PBMC. Further analyses by flow cytometry and sequencing were performed on secondary samples obtained from the same subjects. Pan-hematolymphoid SHIP1 deficiency was a stable phenotype and was not due to coding changes in the INPP5D gene. A very strong association between SHIP1 deficiency and the presence of a novel SHIP1:ATG16L1 fusion transcript was seen. Similar to SHIP1-deficient mice, SHIP1-deficient subjects had reduced numbers of circulating CD4+ T cell numbers. Finally, SHIP1-deficient subjects with CD had a history of severe disease requiring multiple surgeries. These studies reveal that the SHIP1 protein is crucial for normal T cell homeostasis in both humans and mice, and that it is also a potential therapeutic and/or diagnostic target in human IBD.
Subject(s)
Inflammatory Bowel Diseases/etiology , Lymphocyte Count , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/deficiency , T-Lymphocytes/immunology , Alleles , Animals , Autophagy-Related Proteins/genetics , Biomarkers , Computational Biology/methods , Crohn Disease/blood , Crohn Disease/diagnosis , Crohn Disease/etiology , Crohn Disease/metabolism , Disease Models, Animal , Disease Susceptibility , Exons , Gene Expression Profiling , Gene Expression Regulation , Humans , Inflammatory Bowel Diseases/blood , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Mice , Mice, Transgenic , Mutation , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Proteasome Endopeptidase Complex/metabolism , Severity of Illness Index , T-Lymphocytes/metabolism , Exome SequencingABSTRACT
Inositol polyphosphate-5-phosphatase (INPP5D) was reported to be associated with Alzheimer's disease (AD) through modulating the inflammatory process and immune response. A recent genome-wide association study discovered a new locus single nucleotide polymorphism (SNP, rs35349669) of INPP5D which was significantly associated with susceptibility to late-onset Alzheimer's disease (LOAD) in Caucasians. In this study, we investigated the relations between the INPP5D polymorphism rs35349669 and LOAD in Han Chinese population comprising 984 LOAD cases and 1352 healthy controls being matched for age and gender. Our results showed no obvious differences in the genotypic or allelic distributions of rs35349669 polymorphism between LOAD cases and healthy controls (genotype: p = 0.167; allele: p = 0.094). Additionally, when these data were stratified by APOEε4 status, there are still no evident differences in the genotypic or allelic distributions in APOEε4 carriers (p > 0.05). Furthermore, meta-analysis of 81964 individuals confirmed that rs35349669 was significantly associated with the risk for LOAD (OR=1.08, 95%CI=1.06-1.11), but the results remained negative in Chinese subgroup (OR=0.77, 95%CI=0.53-1.13). Overall, the current evidence did not indicate that INPP5D rs35349669 polymorphism play a role in the genetic predisposition to LOAD in Chinese population.
Subject(s)
Alzheimer Disease/genetics , Genetic Predisposition to Disease/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Aged , Aged, 80 and over , Alleles , Alzheimer Disease/ethnology , Asian People/genetics , China , Female , Gene Frequency , Genetic Predisposition to Disease/ethnology , Genotype , Humans , Male , Polymorphism, Single NucleotideABSTRACT
The herbicide linuron (LIN) is an endocrine disruptor with an anti-androgenic mode of action. The objectives of this study were to (1) improve knowledge of androgen and anti-androgen signaling in the teleostean ovary and to (2) assess the ability of gene networks and machine learning to classify LIN as an anti-androgen using transcriptomic data. Ovarian explants from vitellogenic fathead minnows (FHMs) were exposed to three concentrations of either 5α-dihydrotestosterone (DHT), flutamide (FLUT), or LIN for 12h. Ovaries exposed to DHT showed a significant increase in 17ß-estradiol (E2) production while FLUT and LIN had no effect on E2. To improve understanding of androgen receptor signaling in the ovary, a reciprocal gene expression network was constructed for DHT and FLUT using pathway analysis and these data suggested that steroid metabolism, translation, and DNA replication are processes regulated through AR signaling in the ovary. Sub-network enrichment analysis revealed that FLUT and LIN shared more regulated gene networks in common compared to DHT. Using transcriptomic datasets from different fish species, machine learning algorithms classified LIN successfully with other anti-androgens. This study advances knowledge regarding molecular signaling cascades in the ovary that are responsive to androgens and anti-androgens and provides proof of concept that gene network analysis and machine learning can classify priority chemicals using experimental transcriptomic data collected from different fish species.
Subject(s)
Androgen Antagonists/pharmacology , Endocrine Disruptors/pharmacology , Gene Regulatory Networks/drug effects , Linuron/pharmacology , Receptors, Androgen/drug effects , Water Pollutants, Chemical/pharmacology , Animals , Artificial Intelligence , Cyprinidae , Dihydrotestosterone/pharmacology , Estradiol/biosynthesis , Female , Flutamide/pharmacology , Gene Expression Profiling , Ovary/drug effects , Signal Transduction , Support Vector MachineABSTRACT
MicroRNAs (miRNAs), a family of small nonprotein-coding RNAs, play a critical role in posttranscriptional gene regulation by acting as adaptors for the miRNA-induced silencing complex to inhibit gene expression by targeting mRNAs for translational repression and/or cleavage. miR-155-5p and miR-155-3p are processed from the B-cell Integration Cluster (BIC) gene (now designated, MIR155 host gene or MIR155HG). MiR-155-5p is highly expressed in both activated B- and T-cells and in monocytes/macrophages. MiR-155-5p is one of the best characterized miRNAs and recent data indicate that miR-155-5p plays a critical role in various physiological and pathological processes such as hematopoietic lineage differentiation, immunity, inflammation, viral infections, cancer, cardiovascular disease, and Down syndrome. In this review we summarize the mechanisms by which MIR155HG expression can be regulated. Given that the pathologies mediated by miR-155-5p result from the over-expression of this miRNA it may be possible to therapeutically attenuate miR-155-5p levels in the treatment of several pathological processes.