Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Publication year range
1.
Arch Toxicol ; 98(9): 3137-3153, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38995349

ABSTRACT

Genetic toxicity testing assesses the potential of compounds to cause DNA damage. There are many genetic toxicology screening assays designed to assess the DNA damaging potential of chemicals in early drug development aiding the identification of promising drugs that have low-risk potential for causing genetic damage contributing to cancer risk in humans. Despite this, in vitro tests generate a high number of misleading positives, the consequences of which can lead to unnecessary animal testing and/or the abandonment of promising drug candidates. Understanding chemical Mode of Action (MoA) is vital to identifying the true genotoxic potential of substances and, therefore, the risk translation into the clinic. Here we demonstrate a simple, robust protocol for staining fixed, human-lymphoblast p53 proficient TK6 cells with antibodies against É£H2AX, p53 and pH3S28 along with DRAQ5™ DNA staining that enables analysis of un-lysed cells via microscopy approaches such as imaging flow cytometry. Here, we used the Cytek® Amnis® ImageStream®X Mk II which provides a high-throughput acquisition platform with the sensitivity of flow cytometry and spatial morphological information associated with microscopy. Using the ImageStream manufacturer's software (IDEAS® 6.2), a masking strategy was developed to automatically detect and quantify micronucleus events (MN) and characterise biomarker populations. The gating strategy developed enables the generation of a template capable of automatically batch processing data files quantifying cell-cycle, MN, É£H2AX, p53 and pH3 populations simultaneously. In this way, we demonstrate how a multiplex system enables DNA damage assessment alongside MN identification using un-lysed cells on the imaging flow cytometry platform. As a proof-of-concept, we use the tool chemicals carbendazim and methyl methanesulphonate (MMS) to demonstrate the assay's ability to correctly identify clastogenic or aneugenic MoAs using the biomarker profiles established.


Subject(s)
Biomarkers , DNA Damage , Flow Cytometry , Micronucleus Tests , Tumor Suppressor Protein p53 , Micronucleus Tests/methods , Humans , Flow Cytometry/methods , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Biomarkers/metabolism , Cell Line , Mutagens/toxicity , Image Cytometry/methods , Histones/metabolism
2.
Cytometry A ; 95(5): 555-564, 2019 05.
Article in English | MEDLINE | ID: mdl-30985067

ABSTRACT

Pseudomonas aeruginosa is a Gram-negative bacterium that is abundant in the environment and water systems, with strains that cause serious infections, especially in patients with compromised immune systems. In times of stress or as part of its natural life cycle, P. aeruginosa can adopt a viable but not culturable (VBNC) state, which renders it undetectable by current conventional food and water testing methods and makes it highly resistant to antibiotic treatment. Specific conditions can resuscitate these coccoid VBNC P. aeruginosa cells, which returns them to their active, virulent rod-shaped form. Underreporting the VBNC cells of P. aeruginosa by standard culture-based methods in water distribution systems may therefore pose serious risks to public health. As such, being able to accurately detect and quantify the presence of VBNC P. aeruginosa, especially in a hospital setting, is of critical importance. Herein, we describe a method to analyze VBNC P. aeruginosa using imaging flow cytometry. With this technique, we can accurately distinguish between active and VBNC forms. We also show here that association of VBNC P. aeruginosa with Acanthamoeba polyphaga results in resuscitation of P. aeruginosa to an active form within 2 h. Our approach could provide an alternative, reliable detection method of VBNC P. aeruginosa when coupled with species-specific staining. Most importantly, our experiments demonstrate that the coculture with amoebae can lead to a resuscitation of P. aeruginosa of culturable morphology after only 2 h, indicating that VBNC P. aeruginosa could potentially resuscitate in piped water (healthcare) environments colonized with amoebae. © 2019 International Society for Advancement of Cytometry.


Subject(s)
Acanthamoeba/microbiology , Image Cytometry , Pseudomonas aeruginosa/physiology , Acanthamoeba/ultrastructure , Green Fluorescent Proteins/metabolism , Microbial Viability , Phagocytosis , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/ultrastructure , Trophozoites/physiology
3.
Methods ; 134-135: 41-49, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29122725

ABSTRACT

The endocytosis and trafficking of ricin in mammalian cells is an important area of research for those producing ricin anti-toxins and other ricin therapeutics. Ricin trafficking is usually observed by fluorescence microscopy techniques. This gives good resolution and leads to a detailed understanding of the internal movement of ricin within cells. However, microscopy techniques are often hampered by complex analysis and quantification techniques, and the inability to look at ricin trafficking in large populations of cells. In these studies we have directly labelled ricin and assessed if its trafficking can be observed using Imaging Flow Cytometry (IFC) both to the cytoplasmic region of cells and specifically to the Golgi apparatus. Using IDEAS® data analysis software the specific fluorescence location of the ricin within the cells was analysed. Then, using cytoplasmic masking techniques to quantify the number of cells with endocytosed cytoplasmic ricin or cells with Golgi-associated ricin, kinetic endocytosis curves were generated. Here we present, to the authors' knowledge, the first example of using imaging flow cytometry for evaluating the subcellular transport of protein cargo, using the trafficking of ricin toxin in lung cells as a model.


Subject(s)
Endocytosis/genetics , Flow Cytometry/methods , Microscopy, Fluorescence/methods , Ricin/metabolism , A549 Cells , Biological Transport/genetics , Cytosol/metabolism , Epithelial Cells/metabolism , Humans , Protein Transport/genetics
4.
Methods ; 134-135: 11-19, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29198814

ABSTRACT

Mitochondria, the powerhouse of the cell, are known to remodel their membrane structures through the process of fusion or fission. Studies have indicated that T cells adopt different energy metabolic phenotypes, namely oxidative phosphorylation and glycolysis depending on whether they are naïve, effector and memory T cells. It has recently been shown that changes in mitochondrial morphology dictate T cell fate via regulation of their metabolism. Our keen interest in T cell function and metabolism led us to explore and establish a method to study mitochondria in live T cells through a novel high content approach called Imaging Flow Cytometry (IFC). The focus of our current study was on developing a protocol to standardize the concentration of MitoTracker Green FM dye to observe mitochondria in live T cells using IFC. We began the study by using widefield microscopy to confirm the localisation of MitoTracker Green FM labelled mitochondria in live T cells. This was followed by testing various concentrations of the dye to achieve a similar labelling pattern using IFC while eliminating false positive or negative staining. The optimization of the method used to label the mitochondria by IFC for analysis included standardisation of a number of important parameters such as dye concentration, voltage, fluorescence intensity values for acquisition and processing. IFC could potentially be a powerful method to study T cells in a relatively high throughput manner.


Subject(s)
Flow Cytometry/methods , Microscopy, Confocal/methods , Mitochondrial Dynamics/immunology , T-Lymphocytes/cytology , Aldehydes/chemistry , Animals , Mice , Mitochondria/immunology , Mitochondria/metabolism , T-Lymphocytes/immunology
5.
Cytometry A ; 93(7): 706-726, 2018 07.
Article in English | MEDLINE | ID: mdl-30118149

ABSTRACT

The in vitro micronucleus (MN) assay is a well-established test for evaluating genotoxicity and cytotoxicity. The use of manual microscopy to perform the assay can be laborious and often suffers from user subjectivity and interscorer variability. Automated methods including slide-scanning microscopy and conventional flow cytometry have been developed to eliminate scorer bias and improve throughput. However, these methods possess several limitations such as lack of cytoplasmic visualization using slide-scanning microscopy and the inability to visually confirm the legitimacy of MN or storage of image data for re-evaluation using flow cytometry. The ImageStreamX® MK II (ISX) imaging flow cytometer has been demonstrated to overcome all of these limitations. The ISX combines the speed, statistical robustness, and rare event capture capability of conventional flow cytometry with high resolution fluorescent imagery of microscopy and possesses the ability to store all collected image data. This paper details the methodology developed to perform the in vitro MN assay in human lymphoblastoid TK6 cells on the ISX. High resolution images of micronucleated mono- and bi-nucleated cells as well as polynucleated cells can be acquired at a high rate of capture. All images can then be automatically identified, categorized and enumerated in the data analysis software that accompanies the ImageStream, allowing for the scoring of both genotoxicity and cytotoxicity. The results demonstrate that statistically significant increases in MN frequency when compared with solvent controls can be detected at varying levels of cytotoxicity following exposure to well-known aneugens and clastogens. This work demonstrates a fully automated method for performing the in vitro micronucleus assay on the ISX imaging flow cytometry platform. © 2018 The Author. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.


Subject(s)
Coloring Agents/pharmacology , Flow Cytometry/instrumentation , Image Processing, Computer-Assisted/methods , Micronucleus Tests/instrumentation , Automation , Cell Nucleus/drug effects , Coloring Agents/chemistry , Cytokinesis/drug effects , DNA Damage/drug effects , Flow Cytometry/methods , Humans , Micronucleus Tests/methods
6.
Methods ; 112: 147-156, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27263026

ABSTRACT

The use of multispectral imaging flow cytometry has been gaining popularity due to its quantitative power, high throughput capabilities, multiplexing potential and its ability to acquire images of every cell. Autophagy is a process in which dysfunctional organelles and cellular components that accumulate during growth and differentiation are degraded via the lysosome and recycled. During autophagy, cytoplasmic LC3 is processed and recruited to the autophagosomal membranes; the autophagosome then fuses with the lysosome to form the autolysosome. Therefore, cells undergoing autophagy can be identified by visualizing fluorescently labeled LC3 puncta and/or the co-localization of fluorescently labeled LC3 and lysosomal markers. Multispectral imaging flow cytometry is able to collect imagery of large numbers of cells and assess autophagy in an objective, quantitative, and statistically robust manner. This review will examine the four predominant methods that have been used to measure autophagy via multispectral imaging flow cytometry.


Subject(s)
Autophagy/genetics , Flow Cytometry/methods , Image Cytometry/methods , Microtubule-Associated Proteins/genetics , Staining and Labeling/methods , Antibodies/chemistry , Autophagosomes/drug effects , Autophagosomes/metabolism , Autophagy/drug effects , Carbocyanines , Chloroquine/pharmacology , Flow Cytometry/instrumentation , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Image Cytometry/instrumentation , Jurkat Cells , Lysosomal Membrane Proteins/genetics , Lysosomal Membrane Proteins/metabolism , Lysosomes/drug effects , Lysosomes/metabolism , Microtubule-Associated Proteins/metabolism
7.
Methods ; 112: 9-17, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27461256

ABSTRACT

Data analysis in imaging flow cytometry incorporates elements of flow cytometry together with other aspects of morphological analysis of images. A crucial early step in this analysis is the creation of a mask to distinguish the portion of the image upon which further examination of specified features can be performed. Default masks are provided by the manufacturer of the imaging flow cytometer but additional custom masks can be created by the individual user for specific applications. Flawed or inaccurate masks can have a substantial negative impact on the overall analysis of a sample, thus great care must be taken to ensure the accuracy of masks. Here we discuss various types of masks and cite examples of their use. Furthermore we provide our insight for how to approach selecting and assessing the optimal mask for a specific analysis.


Subject(s)
Data Anonymization , Flow Cytometry/methods , Image Cytometry/methods , Image Interpretation, Computer-Assisted/methods , Flow Cytometry/instrumentation , Humans , Image Cytometry/instrumentation , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Software
8.
Methods ; 112: 68-74, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27582124

ABSTRACT

Adult humans need to make 2.5million red blood cells (RBCs) every second to maintain a steady state level of 25trillion circulating RBCs. Understanding normal erythropoiesis as well as diseases that afflict the erythron, such as genetic anemias, hyperproliferative disorders, and myelodysplastic syndromes, requires a robust method to delineate erythropoietic intermediates. In order to apply the power of flow cytometry to these studies, challenges of limited immunophenotypic markers, incorporation of significant changes in morphology, and maturational changes that occur along a continuum need to be met. Imaging flow cytometry (IFC) provides a solution to address these challenges. Integration of changes in immunophenotype, loss of RNA (ribosomes), and enucleation, with morphological characteristics of cell and nuclear size, can be used to delineate erythroblasts that correlate with classical histological classifications. A protocol is described that demonstrates the basic approaches of staining panel selection, mask generation and selection of features to best sequentially refine erythroid intermediates and remove contaminating cells with overlapping immunophenotype. Ultimately erythroid cells in the murine bone marrow are divided into seven sub-populations using IFC including four erythroblasts (pro-, basophilic, polychromatophilic and orthochromatic), the pyrenocyte, which contains the eliminated nucleus, the enucleated reticulocyte and the mature RBC.


Subject(s)
Bone Marrow Cells/cytology , Cell Lineage/genetics , Erythropoiesis/genetics , Flow Cytometry/methods , Image Cytometry/methods , Animals , Biomarkers/metabolism , Bone Marrow Cells/classification , Bone Marrow Cells/metabolism , Cell Cycle/genetics , Cell Differentiation , Cell Nucleus/ultrastructure , Erythroblasts/cytology , Erythroblasts/metabolism , Erythrocytes/cytology , Erythrocytes/metabolism , Flow Cytometry/instrumentation , Humans , Image Cytometry/instrumentation , Mice , Primary Cell Culture , Reticulocytes/cytology , Reticulocytes/metabolism , Ribosomes/ultrastructure , Staining and Labeling/methods
9.
Methods ; 112: 55-67, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27721015

ABSTRACT

Extracellular Vesicles (EVs) are potent bio-activators and inter-cellular communicators that play an important role in both health and disease. It is for this reason there is a strong interest in understanding their composition and origin, with the hope of using them as important biomarkers or therapeutics. Due to their very small size, heterogeneity, and large numbers there has been a need for better tools to measure them in an accurate and high throughput manner. While traditional flow cytometry has been widely used for this purpose, there are inherent problems with this approach, as these instruments have traditionally been developed to measure whole cells, which are orders of magnitude larger and express many more molecules of identifying epitopes. Imaging flow cytometry, as performed with the ImagestreamX MKII, with its combination of increased fluorescence sensitivity, low background, image confirmation ability and powerful data analysis tools, provides a great tool to accurately evaluate EVs. We present here a comprehensive approach in applying this technology to the study of EVs.


Subject(s)
Cell-Derived Microparticles/ultrastructure , Exosomes/ultrastructure , Flow Cytometry/methods , Image Cytometry/methods , Staining and Labeling/methods , User-Computer Interface , Biomarkers/metabolism , Cell Communication , Cell-Derived Microparticles/metabolism , Dendritic Cells/metabolism , Dendritic Cells/ultrastructure , Exosomes/metabolism , Flow Cytometry/instrumentation , Fluoresceins/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Gene Expression , Humans , Image Cytometry/instrumentation , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor Binding Proteins/metabolism , Primary Cell Culture , Succinimides/chemistry
10.
Methods ; 112: 18-24, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27524557

ABSTRACT

Biodosimetry is an important tool for triage in the case of large-scale radiological or nuclear emergencies, but traditional microscope-based methods can be tedious and prone to scorer fatigue. While the dicentric chromosome assay (DCA) has been adapted for use in triage situations, it is still time-consuming to create and score slides. Recent adaptations of traditional biodosimetry assays to imaging flow cytometry (IFC) methods have dramatically increased throughput. Additionally, recent improvements in image analysis algorithms in the IFC software have resulted in improved specificity for spot counting of small events. In the IFC method for the dicentric chromosome analysis (FDCA), lymphocytes isolated from whole blood samples are cultured with PHA and Colcemid. After incubation, lymphocytes are treated with a hypotonic solution and chromosomes are isolated in suspension, labelled with a centromere marker and stained for DNA content with DRAQ5. Stained individual chromosomes are analyzed on the ImageStream®X (EMD-Millipore, Billerica, MA) and mono- and dicentric chromosome populations are identified and enumerated using advanced image processing techniques. Both the preparation of the isolated chromosome suspensions as well as the image analysis methods were fine-tuned in order to optimize the FDCA. In this paper we describe the method to identify and score centromeres in individual chromosomes by IFC and show that the FDCA method may further improve throughput for triage biodosimetry in the case of large-scale radiological or nuclear emergencies.


Subject(s)
Chromosome Aberrations/radiation effects , Chromosomes, Human/radiation effects , Image Cytometry/methods , Image Interpretation, Computer-Assisted/methods , Radiation Exposure/analysis , Radiometry/methods , Anthraquinones/chemistry , Centromere/drug effects , Centromere/radiation effects , Centromere/ultrastructure , Chromosome Aberrations/drug effects , Chromosomes, Human/drug effects , Chromosomes, Human/ultrastructure , Demecolcine/pharmacology , Dose-Response Relationship, Radiation , Humans , Image Cytometry/instrumentation , Lymphocytes/drug effects , Lymphocytes/radiation effects , Phytohemagglutinins/pharmacology , Staining and Labeling/methods
11.
Methods ; 112: 1-8, 2017 01 01.
Article in English | MEDLINE | ID: mdl-27620330

ABSTRACT

Image-based flow cytometry combines the throughput of traditional flow cytometry with the ability to visually confirm findings and collect novel data that would not be possible otherwise. Since image-based flow cytometry borrows measurement parameters and analysis techniques from microscopy, it is possible to collect unique measures (i.e. nuclear translocation, co-localization, cellular synapse, cellular endocytosis, etc.) that would not be possible with traditional flow cytometry. The ability to collect unique outcomes has led many researchers to develop novel assays for the monitoring and detection of a variety of clinical conditions and diseases. In many cases, investigators have innovated and expanded classical assays to provide new insight regarding clinical conditions and chronic disease. Beyond human clinical applications, image-based flow cytometry has been used to monitor marine biology changes, nano-particles for solar cell production, and particle quality in pharmaceuticals. This review article summarizes work from the major scientists working in the field of image-based flow cytometry.


Subject(s)
Flow Cytometry/methods , Image Cytometry/methods , Image Interpretation, Computer-Assisted/methods , Malaria/diagnosis , Microscopy/methods , Apoptosis , Autophagy , Cell Communication , Extracellular Vesicles/ultrastructure , Flow Cytometry/instrumentation , Granulocytes/metabolism , Granulocytes/pathology , Hematopoiesis/genetics , Humans , Image Cytometry/instrumentation , Malaria/parasitology , Malaria/pathology , Megakaryocytes/metabolism , Megakaryocytes/pathology , Microscopy/instrumentation , Platelet Aggregation/physiology , Radiometry/methods
12.
J Hepatol ; 65(2): 305-13, 2016 08.
Article in English | MEDLINE | ID: mdl-27132171

ABSTRACT

BACKGROUND & AIMS: The lack of progress in developing and delivering new therapies for hepatocellular carcinoma (HCC) is in part attributed to the risk related avoidance of tumour biopsy at diagnosis. Circulating tumour cells (CTCs) are a potential source of tumour tissue that could aid biological or biomarker research, treatment stratification and monitoring. METHODS: An imaging flow cytometry method, using immunofluorescence of cytokeratin, EpCAM, AFP, glypican-3 and DNA-PK together with analysis of size, morphology and DNA content, for detection of HCC CTCs was developed and applied to 69 patient and 31 control samples. The presence of CTCs as a prognostic indicator was assessed in multivariate analyses encompassing recognised prognostic parameters. RESULTS: Between 1 and 1642 CTCs were detected in blood samples from 45/69 HCC patients compared to 0/31 controls. CTCs positive for the epithelial markers cytokeratin and EpCAM were detected in 29% and 18% of patients respectively, while an additional 28% of patients had CTCs negative for all markers other than size and evidence of hyperploidy. CTC number correlated significantly with tumour size and portal vein thrombosis (PVT). The median survival of patients with >1 CTC was 7.5months versus >34months for patients with <1 CTC (p<0.001, log-rank), with significance retained in a multivariate analysis (HR 2.34, 95% CI 1.005-5.425, p=0.049) including tumour size and PVT. CONCLUSIONS: The use of multiple parameters enhanced HCC CTC detection sensitivity, revealing biological associations and predictive biomarker potential that may be able to guide stratified medicine decisions and future research. LAY SUMMARY: Characteristics of tumour tissues can be used to predict outcomes for individual patients with cancer, as well as help to choose their best treatment. Biopsy of liver cancers carries risks, however, and is usually avoided. Some cancer cells enter the blood, and although they are very rare, we have developed a method of finding and characterising them in patients with liver cancer, which we hope will provide a low risk means of guiding treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Biomarkers, Tumor , Humans , Liquid Biopsy , Neoplastic Cells, Circulating
13.
Cytometry A ; 89(4): 328-37, 2016 04.
Article in English | MEDLINE | ID: mdl-26841315

ABSTRACT

The use of in vitro models to understand the interaction of bacteria with host cells is well established. In vitro bacterial infection models are often used to quantify intracellular bacterial load by lysing cell populations and subsequently enumerating the bacteria. Modern established techniques employ the use of fluorescence technologies such as flow cytometry, fluorescent microscopy, and/or confocal microscopy. However, these techniques often lack either the quantification of large data sets (microscopy) or use of gross fluorescence signal which lacks the visual confirmation that can provide additional confidence in data sets. Multispectral imaging flow cytometry (MIFC) is a novel emerging field of technology. This technology captures a bright field and fluorescence image of cells in a flow using a charged coupled device camera. It allows the analysis of tens of thousands of single cell images, making it an extremely powerful technology. Here MIFC was used as an alternative method of analyzing intracellular bacterial infection using Burkholderia thailandensis E555 as a model organism. It has been demonstrated that the data produced using traditional enumeration is comparable to data analyzed using MIFC. It has also been shown that by using MIFC it is possible to generate other data on the dynamics of the infection model rather than viable counts alone. It has been demonstrated that it is possible to inhibit the uptake of bacteria into mammalian cells and identify differences between treated and untreated cell populations. The authors believe this to be the first use of MIFC to analyze a Burkholderia bacterial species during intracellular infection. © 2016 Crown copyright. Published by Wiley Periodicals Inc. on behalf of ISAC.


Subject(s)
Burkholderia Infections/diagnosis , Flow Cytometry , Image Cytometry , Animals , Bacterial Load/methods , Burkholderia Infections/microbiology , Flow Cytometry/methods , Image Cytometry/methods , Intracellular Space , Mice , Microscopy, Fluorescence/methods
14.
Cytometry A ; 87(12): 1070-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26243567

ABSTRACT

Ionizing radiation induced foci (IRIF) are considered the most sensitive indicator for DNA double-strand break (DSB) detection. Monitoring DSB induction by low doses of ionizing radiation is important due to the increasing exposure in the general population. γH2AX and 53BP1 are commonly used molecular markers for in situ IRIF assessment. Imaging flow cytometry (IFC) via ImageStream system provides a new opportunity in this field. We analyzed the formation of 53BP1, γH2AX foci and their co-localization induced by γ-rays (2, 5, 10, 50, 200 cGy) in human lymphocytes using ImageStream and the automated microscopic system Metafer. We observed very similar sensitivity of both systems for the detection of endogenous and low-dose-induced IRIF. Statistically significant induction of γH2AX foci was found at doses of 2 and 10 cGy using ImageStream and Metafer, respectively. Statistically significant induction of 53BP1 foci was evident at doses ≥ 5 cGy when analyzed by IFC. Analysis of the co-localizing foci by ImageStream and Metafer showed statistical significance at doses ≥ 2 cGy, suggesting that foci co-localization is a sensitive parameter for DSB quantification. Assessment of γH2AX, 53BP1 foci and their co-localization by Metafer and ImageStream showed similar linear dose responses in the low-dose range up to 10 cGy, although IFC showed slightly better resolution for IRIF in this dose range. At higher doses, IFC underestimated IRIF numbers. Using the imaging ability of ImageStream, we introduced an optimized assay by gating γH2AX foci positive (with 1 or more γH2AX foci) and negative (cells without foci) cells. This assay resulted in statistically significant IRIF induction at doses ≥ 5cGy and a linear dose response up to 50 cGy. In conclusion, we provide evidence for the use of IFC as an accurate high throughput assay for the prompt detection and enumeration of endogenous and low-dose induced IRIF.


Subject(s)
DNA Damage , Flow Cytometry/methods , Gamma Rays , Histones/metabolism , Imaging, Three-Dimensional/methods , Lymphocytes/metabolism , Tumor Suppressor p53-Binding Protein 1/metabolism , Dose-Response Relationship, Radiation , Female , Humans , Lymphocytes/radiation effects , Male , Microscopy, Fluorescence , Software
15.
Methods Mol Biol ; 2713: 389-405, 2024.
Article in English | MEDLINE | ID: mdl-37639138

ABSTRACT

In vitro cocultures of macrophages and apoptotic cells (ACs) provide a practical and useful tool to study efferocytosis. Here, we describe a method for automated quantification and imaging of recognition and engulfment of apoptotic cells by primary macrophages using imaging flow cytometry (IFC). IFC-based analysis allows us to successfully quantify efferocytosis, clearly distinguishing phagocytic from nonphagocytic macrophages and, more importantly, from those in recognition stage, which is not achievable by standard flow cytometrical analysis. To this end, we established a universally employable analysis pipeline to address efferocytosis that can be easily adapted to any macrophage population from samples of different origins.


Subject(s)
Macrophages , Phagocytosis , Phagocytes , Coculture Techniques , Flow Cytometry
16.
Methods Mol Biol ; 2641: 81-100, 2023.
Article in English | MEDLINE | ID: mdl-37074643

ABSTRACT

Pyroptosis is an immunological response to infection and cellular stresses initiated by inflammasome oligomerization resulting in the release of pro-inflammatory factors including cytokines and other immune stimuli into the extracellular matrix. In order to understand the role of inflammasome activation and subsequent pyroptosis in human infection and disease pathogenesis and to explore markers of these signaling events as potential disease or response biomarkers, we must utilize quantitative, reliable, and reproducible assays to readily investigate these pathways in primary specimens. Here, we describe two methods using imaging flow cytometry for evaluation of inflammasome ASC specks in homogeneous peripheral blood monocytes and in bulk, heterogeneous peripheral blood mononuclear cells. Both methods can be applied to assess speck formation as a biomarker for inflammasome activation in primary specimens. Additionally, we describe the methods for quantification of extracellular oxidized mitochondrial DNA from primary plasma samples, serving as a proxy for pyroptosis. Collectively, these assays may be utilized to determine pyroptotic influences on viral infection and disease development or as diagnostic aids and response biomarkers.


Subject(s)
Inflammasomes , Pyroptosis , Humans , Flow Cytometry/methods , Inflammasomes/metabolism , Leukocytes, Mononuclear/metabolism , CARD Signaling Adaptor Proteins/metabolism , Enzyme-Linked Immunosorbent Assay , Biomarkers , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
17.
Methods Mol Biol ; 2635: 63-85, 2023.
Article in English | MEDLINE | ID: mdl-37074657

ABSTRACT

The causative agent of a severe pneumonia termed "Legionnaires' disease", Legionella pneumophila, replicates within protozoan and mammalian phagocytes in a specialized intracellular compartment called the Legionella-containing vacuole (LCV). This compartment does not fuse with bactericidal lysosomes but communicates extensively with several cellular vesicle trafficking pathways and eventually associates tightly with the endoplasmic reticulum. In order to comprehend in detail the complex process of LCV formation, the identification and kinetic analysis of cellular trafficking pathway markers on the pathogen vacuole are crucial. This chapter describes imaging flow cytometry (IFC)-based methods for the objective, quantitative and high-throughput analysis of different fluorescently tagged proteins or probes on the LCV. To this end, we use the haploid amoeba Dictyostelium discoideum as an infection model for L. pneumophila, to analyze either fixed intact infected host cells or LCVs from homogenized amoebae. Parental strains and isogenic mutant amoebae are compared in order to determine the contribution of a specific host factor to LCV formation. The amoebae simultaneously produce two different fluorescently tagged probes enabling tandem quantification of two LCV markers in intact amoebae or the identification of LCVs using one probe and quantification of the other probe in host cell homogenates. The IFC approach allows rapid generation of statistically robust data from thousands of pathogen vacuoles and can be applied to other infection models.


Subject(s)
Dictyostelium , Legionella pneumophila , Legionella , Legionnaires' Disease , Animals , Vacuoles/metabolism , Dictyostelium/genetics , Dictyostelium/metabolism , Flow Cytometry , Kinetics , Legionella pneumophila/genetics , Legionnaires' Disease/metabolism , Bacterial Proteins/metabolism , Mammals
18.
J Extracell Biol ; 2(9)2023 Sep.
Article in English | MEDLINE | ID: mdl-38046436

ABSTRACT

Multi-analyte liquid biopsies represent an emerging opportunity for non-invasive cancer assessment. We developed ONCE (ONe Aliquot for Circulating Elements), an approach for the isolation of extracellular vesicles (EV) and cell-free DNA (cfDNA) from a single aliquot of blood. We assessed ONCE performance to classify HER2-positive early-stage breast cancer (BrCa) patients by combining EV-associated RNA (EV-RNA) and cfDNA signals on n=64 healthy donors (HD) and non-metastatic BrCa patients. Specifically, we isolated EV-enriched samples by a charge-based (CB) method and investigated EV-RNA and cfDNA by next-generation sequencing (NGS) and by digital droplet PCR (ddPCR). Sequencing of cfDNA and EV-RNA from HER2- and HER2+ patients demonstrated concordance with in situ molecular analyses of matched tissues. Combined analysis of the two circulating analytes by ddPCR showed increased sensitivity in ERBB2/HER2 detection compared to single nucleic acid components. Multi-analyte liquid biopsy prediction performance was comparable to tissue-based sequencing results from TCGA. Also, imaging flow cytometry analysis revealed HER2 protein on the surface of EV isolated from the HER2+ BrCa plasma, thus corroborating the potential relevance of studying EV as companion analyte to cfDNA. This data confirms the relevance of combining cfDNA and EV-RNA for HER2 cancer assessment and supports the ONCE as a valuable tool for multi-analytes liquid biopsies' clinical implementation.

19.
Article in English | MEDLINE | ID: mdl-33865536

ABSTRACT

The reconstructed skin micronucleus (RSMN) assay was developed in 2006, as an in vitro alternative for genotoxicity evaluation of dermally applied chemicals or products. In the years since, significant progress has been made in the optimization of the assay, including publication of a standard protocol and extensive validation. However, the diverse morphology of skin cells makes cell preparation and scoring of micronuclei (MN) tedious and subjective, thus requiring a high level of technical expertise for evaluation. This ultimately has a negative impact on throughput and the assay would benefit by the development of an automated method which could reduce scoring subjectivity while also improving the robustness of the assay by increasing the number of cells that can be scored. Imaging flow cytometry (IFC) with the ImageStream®X Mk II can capture high-resolution transmission and fluorescent imagery of cells in suspension. This proof-of-principle study describes protocol modifications that enable such automated measurement in 3D skin cells following exposure to mitomycin C and colchicine. IFC was then used for automated image capture and the Amnis® Artificial Intelligence (AAI) software permitted identification of binucleated (BN) cells with 91% precision. On average, three times as many BN cells from control samples were evaluated using IFC compared to the standard manual analysis. When IFC MNBN cells were visually scored from within the BN cell images, their frequency compared well with manual slide scoring, showing that IFC technology can be applied to the RSMN assay. This method enables faster time to result than microscope-based scoring and the initial studies presented here demonstrate its capability for the detection of statistically significant increases in MNBN frequencies. This work therefore demonstrates the feasibility of combining IFC and AAI to automate scoring for the RSMN assay and to improve its throughput and statistical robustness.


Subject(s)
Deep Learning , Flow Cytometry/methods , Image Processing, Computer-Assisted/methods , Skin/pathology , Artificial Intelligence , Automation, Laboratory/instrumentation , Automation, Laboratory/methods , False Positive Reactions , Feasibility Studies , Flow Cytometry/instrumentation , Humans , Image Processing, Computer-Assisted/instrumentation , Micronucleus Tests/instrumentation , Micronucleus Tests/methods , Mitomycin/toxicity , Models, Biological , Mutagenicity Tests/instrumentation , Mutagenicity Tests/methods , Predictive Value of Tests , Proof of Concept Study , Skin/diagnostic imaging , Skin, Artificial , Software , Tissue Scaffolds
20.
Cancers (Basel) ; 13(24)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34945008

ABSTRACT

The isolation of circulating tumour cells (CTCs) in colorectal cancer (CRC) mostly relies on the expression of epithelial markers such as EpCAM, and phenotypic characterisation is usually performed under fluorescence microscopy with only one or two additional markers. This limits the ability to detect different CTC subpopulations based on multiple markers. The aim of this work was to develop a novel protocol combining two platforms (IsoFluxTM and ImageStream®X) to improve CTC evaluation. Cancer cell lines and peripheral blood from healthy donors were used to evaluate the efficiency of each platform independently and in combination. Peripheral blood was extracted from 16 early CRC patients (before loco-regional surgery) to demonstrate the suitability of the protocol for CTC assessment. Additionally, peripheral blood was extracted from nine patients one month after surgery to validate the utility of our protocol for identifying CTC subpopulation changes over time. Results: Our protocol had a mean recovery efficiency of 69.5% and a limit of detection of at least four cells per millilitre. We developed an analysis method to reduce noise from magnetic beads used for CTC isolation. CTCs were isolated from CRC patients with a median of 37 CTCs (IQ 13.0-85.5) at baseline. CTCs from CRC patients were significantly (p < 0.0001) larger than cytokeratin (CK)-negative cells, and patients were stratified into two groups based on BRAFV600E and PD-L1 expression on CK-positive cells. The changes observed over time included not only the number of CTCs but also their distribution into four different subpopulations defined according to BRAFV600E and PD-L1 positivity. We developed a novel protocol for semi-automatic CTC isolation and phenotypic characterisation by combining two platforms. Assessment of CTCs from early CRC patients using our protocol allowed the identification of two clusters of patients with changing phenotypes over time.

SELECTION OF CITATIONS
SEARCH DETAIL