Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 343
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Virol ; 98(10): e0064724, 2024 Oct 22.
Article in English | MEDLINE | ID: mdl-39283123

ABSTRACT

HIV-infected cells persisting in the face of suppressive antiretroviral therapy are the barrier to curing infection. Cytotoxic immunoconjugates targeted to HIV antigens on the cell surface may clear these cells. We showed efficacy in mouse and macaque models using immunotoxins, but immunogenicity blunted the effect. As an alternative, we propose antibody drug conjugates (ADCs), as used in cancer immunotherapy. In cancer, the target is a dividing cell, whereas it may not be in HIV. We screened cytotoxic drugs on human primary cells and cell lines. An anthracycline derivative, PNU-159682 (PNU), was highly cytotoxic to both proliferating and resting cells. Human anti-gp41 mAb 7B2 was conjugated to ricin A chain or PNU. The conjugates were tested in vitro for cytotoxic efficacy and anti-viral effect, and in vivo for tolerability. The specificity of killing for both conjugates was demonstrated on Env+ and Env- cells. The toxin conjugate was more potent and killed more rapidly, but 7B2-PNU was effective at levels achievable in patients. The ricin conjugate was well tolerated in mice; 7B2-PNU was toxic when administered intraperitoneally but was tolerated intravenously. We have produced an ADC with potential to target the persistent HIV reservoir in both dividing and non-dividing cells while avoiding immunogenicity. Cytotoxic anti-HIV immunoconjugates may have greatest utility as part of an "activate and purge" regimen, involving viral activation in the reservoir. This is a unique comparison of an immunotoxin and ADC targeted by the same antibody and tested in the same systems.IMPORTANCEHIV infection can be controlled with anti-retroviral therapy, but it cannot be cured. Despite years of therapy that suppresses HIV, patients again become viremic shortly after discontinuing treatment. A long-lived population of memory T cells retain the genes encoding HIV, and these cells secrete infectious HIV when no longer suppressed by therapy. This is the persistent reservoir of HIV infection. The therapies described here use anti-HIV antibodies conjugated to poisons to kill the cells in this reservoir. These poisons may be of several types, including protein toxins (immunotoxins) or anti-cancer drugs (antibody drug conjugates, ADCs). We have previously shown that an anti-HIV immunotoxin had therapeutic effects in animal models, but it elicited an anti-drug immune response. Here, we have prepared an anti-HIV ADC, which would be less likely to provoke an immune response, and show its potential for use in eliminating the persistent reservoir of HIV infection.


Subject(s)
Antibodies, Monoclonal , HIV Envelope Protein gp41 , HIV Infections , Immunoconjugates , Humans , Immunoconjugates/pharmacology , Animals , Mice , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/immunology , HIV Envelope Protein gp41/immunology , Anti-HIV Agents/pharmacology , HIV-1/immunology , HIV-1/drug effects , HIV Antibodies/immunology , Lymphocytes/immunology , Lymphocytes/drug effects , Ricin/immunology , Female , Immunotoxins/pharmacology , Immunotoxins/immunology
2.
FASEB J ; 38(13): e23759, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38949635

ABSTRACT

The epidermal growth factor receptor (EGFR) is an important target for cancer therapies. Many head and neck cancer (HNC) cells have been reported to overexpress EGFR; therefore, anti-EGFR therapies have been attempted in patients with HNC. However, its clinical efficacy is limited owing to the development of drug resistance. In this study, we developed an EGFR-targeting immunotoxin consisting of a clinically proven anti-EGFR IgG (cetuximab; CTX) and a toxin fragment (LR-LO10) derived from Pseudomonas exotoxin A (PE) using a novel site-specific conjugation technology (peptide-directed photo-crosslinking reaction), as an alternative option. The immunotoxin (CTX-LR-LO10) showed specific binding to EGFR and properties of a typical IgG, such as stability, interactions with receptors of immune cells, and pharmacokinetics, and inhibited protein synthesis via modification of elongation factor-2. Treatment of EGFR-positive HNC cells with the immunotoxin resulted in apoptotic cell death and the inhibition of cell migration and invasion. The efficacy of CTX-LR-LO10 was evaluated in xenograft mouse models, and the immunotoxin exhibited much stronger tumor suppression than CTX or LR-LO10. Transcriptome analyses revealed that the immunotoxins elicited immune responses and altered the expression of genes related to its mechanisms of action. These results support the notion that CTX-LR-LO10 may serve as a new therapeutic agent targeting EGFR-positive cancers.


Subject(s)
ADP Ribose Transferases , ErbB Receptors , Exotoxins , Head and Neck Neoplasms , Immunoglobulin G , Immunotoxins , Pseudomonas aeruginosa Exotoxin A , Virulence Factors , Humans , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , ErbB Receptors/immunology , Animals , Immunotoxins/pharmacology , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/metabolism , Mice , Immunoglobulin G/pharmacology , Cell Line, Tumor , Exotoxins/pharmacology , Xenograft Model Antitumor Assays , Cetuximab/pharmacology , Mice, Nude , Bacterial Toxins , Apoptosis/drug effects , Mice, Inbred BALB C , Female , Cell Movement/drug effects , Antineoplastic Agents/pharmacology
3.
Proc Natl Acad Sci U S A ; 119(24): e2200200119, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35675429

ABSTRACT

The human transferrin receptor (TFR) is overexpressed in most breast cancers, including preneoplastic ductal carcinoma in situ (DCIS). HB21(Fv)-PE40 is a single-chain immunotoxin (IT) engineered by fusing the variable region of a monoclonal antibody (HB21) against a TFR with a 40 kDa fragment of Pseudomonas exotoxin (PE). In humans, the administration of other TFR-targeted immunotoxins intrathecally led to inflammation and vascular leakage. We proposed that for treatment of DCIS, intraductal (i.duc) injection of HB21(Fv)-PE40 could avoid systemic toxicity while retaining its potent antitumor effects on visible and occult tumors in the entire ductal tree. Pharmacokinetic studies in mice showed that, in contrast to intravenous injection, IT was undetectable by enzyme-linked immunosorbent assay in blood following i.duc injection of up to 3.0 Āµg HB21(Fv)-PE40. We demonstrated the antitumor efficacy of HB21(Fv)-PE40 in two mammary-in-duct (MIND) models, MCF7 and SUM225, grown in NOD/SCID/gamma mice. Tumors were undetectable by In Vivo Imaging System (IVIS) imaging in intraductally treated mice within 1 wk of initiation of the regimen (IT once weekly/3 wk, 1.5 Āµg/teat). MCF7 tumor-bearing mice remained tumor free for up to 60 d of observation with i.duc IT, whereas the HB21 antibody alone or intraperitoneal IT treatment had minimal/no antitumor effects. These and similar findings in the SUM225 MIND model were substantiated by analysis of mammary gland whole mounts, histology, and immunohistochemistry for the proteins Ki67, CD31, CD71 (TFR), and Ku80. This study provides a strong preclinical foundation for conducting feasibility and safety trials in patients with stage 0 breast cancer.


Subject(s)
ADP Ribose Transferases , Bacterial Toxins , Breast Neoplasms , Carcinoma, Intraductal, Noninfiltrating , Exotoxins , Immunotoxins , Molecular Targeted Therapy , Receptors, Transferrin , Virulence Factors , ADP Ribose Transferases/administration & dosage , ADP Ribose Transferases/metabolism , Animals , Antibodies, Monoclonal/administration & dosage , Bacterial Toxins/administration & dosage , Breast Neoplasms/therapy , Carcinoma, Intraductal, Noninfiltrating/therapy , Exotoxins/administration & dosage , Female , Humans , Immunotoxins/administration & dosage , MCF-7 Cells , Mice , Mice, Inbred NOD , Mice, SCID , Receptors, Transferrin/metabolism , Virulence Factors/administration & dosage , Pseudomonas aeruginosa Exotoxin A
4.
Proc Natl Acad Sci U S A ; 119(48): e2214928119, 2022 11 29.
Article in English | MEDLINE | ID: mdl-36409889

ABSTRACT

LMB-100 is a recombinant immunotoxin composed of a Fab linked to a toxin. It kills cells expressing human mesothelin (hMSLN), which is highly expressed on the surface of mesothelioma and many other cancer cells. Clinically, we observed some patients had delayed responses to an anti-hMSLN immunotoxin treatment, suggesting the induction of anti-tumor immunity. We aimed to develop a mouse model to investigate whether immunotoxin alone can induce anti-tumor immunity and to study the mechanism of this immunity. An immunocompetent transgenic mouse was used to grow mouse mesothelioma AB1 cells expressing hMSLN in the peritoneal cavity. Mice were treated with LMB-100, and mice with complete responses (CRs) were rechallenged with tumor cells to determine whether anti-tumor immunity developed. Changes in gene expression profiles were evaluated by Nanostring, and changes in cytokines and chemokines were checked by protein arrays. The distribution of various immune cells was assessed by immunohistochemistry. Our results show that the mice with tumor reached CRs and developed anti-tumor immunity after LMB-100 treatment alone. The primary response requires CD8+ T cells, CD4+ T cells, and B cells. Transcriptional profiling shows that LMB-100 treatment reshapes the tumor immune microenvironment by upregulating chemotaxis signals. LMB-100 treatment upregulates genes associated with tertiary lymphoid structures (TLS) development and induces TLS formation in tumors. In sum, immunotoxin-mediated cell death induces anti-tumor immunity and the development of TLS, which provides insights into how immunotoxins cause tumor regressions.


Subject(s)
Immunotoxins , Mesothelioma, Malignant , Mesothelioma , Tertiary Lymphoid Structures , Humans , Mice , Animals , Immunotoxins/genetics , Immunotoxins/pharmacology , Mesothelin , CD8-Positive T-Lymphocytes , Antibodies, Monoclonal , Mesothelioma/drug therapy , Mesothelioma/genetics , Mice, Transgenic , Tumor Microenvironment
5.
J Virol ; 97(10): e0115423, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772823

ABSTRACT

IMPORTANCE: HIV infection can be effectively treated to prevent the development of AIDS, but it cannot be cured. We have attached poisons to anti-HIV antibodies to kill the infected cells that persist even after years of effective antiviral therapy. Here we show that the killing of infected cells can be markedly enhanced by the addition of soluble forms of the HIV receptor CD4 or by mimics of CD4.


Subject(s)
CD4 Antigens , Cytotoxins , HIV Antibodies , HIV Infections , HIV-1 , Immunoconjugates , Humans , CD4 Antigens/chemistry , CD4 Antigens/immunology , CD4 Antigens/therapeutic use , Cell Line , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , HIV-1/drug effects , HIV-1/immunology , Immunoconjugates/chemistry , Immunoconjugates/immunology , Immunoconjugates/therapeutic use , Molecular Weight , HIV Antibodies/chemistry , HIV Antibodies/immunology , HIV Antibodies/therapeutic use , Cytotoxins/chemistry , Cytotoxins/therapeutic use
6.
J Transl Med ; 21(1): 572, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37626430

ABSTRACT

BACKGROUND: Immunotoxins are antibody-toxin conjugates that bind to surface antigens and exert effective cytotoxic activity after internalization into tumor cells. Immunotoxins exhibit effective cytotoxicity and have been approved by the FDA to treat multiple hematological malignancies, such as hairy cell leukemia and cutaneous T-cell lymphoma. However, most of the internalized immunotoxin is degraded in lysosomes, and only approximately 5% of free toxin escapes into the cytosol to exert cytotoxicity. Many studies have improved immunotoxins by engineering the toxin fragment to reduce immunogenicity or increase stability, but how the antibody fragment contributes to the activity of immunotoxins has not been well demonstrated. METHODS: In the current study, we used 32A9 and 42A1, two anti-GPC3 antibodies with similar antigen-binding capabilities and internalization rates, to construct scFv-mPE24 immunotoxins and evaluated their in vitro and in vivo antitumor activities. Next, the antigen-binding capacity, trafficking, intracellular protein stability and release of free toxin of 32A9Ā scFv-mPE24 and 42A1Ā scFv-mPE24 were compared to elucidate their different antitumor activities. Furthermore, we used a lysosome inhibitor to evaluate the degradation behavior of 32A9Ā scFv-mPE24 and 42A1Ā scFv-mPE24. Finally, the antigen-binding patterns of 32A9 and 42A1 were compared under neutral and acidic pH conditions. RESULTS: Although 32A9 and 42A1 had similar antigen binding capacities and internalization rates, 32A9Ā scFv-mPE24 had superior antitumor activity compared to 42A1Ā scFv-mPE24. We found that 32A9Ā scFv-mPE24 exhibited faster degradation and drove efficient free toxin release compared to 42A1Ā scFv-mPE24. These phenomena were determined by the different degradation behaviors of 32A9Ā scFv-mPE24 and 42A1Ā scFv-mPE24 in lysosomes. Moreover, 32A9 was sensitive to the low-pH environment, which made the 32A9 conjugate easily lose antigen binding and undergo degradation in lysosomes, and the free toxin was then efficiently produced to exert cytotoxicity, whereas 42A1 was resistant to the acidic environment, which kept the 42A1 conjugate relatively stable in lysosomes and delayed the release of free toxin. CONCLUSIONS: These results showed that a low pH-sensitive antibody-based immunotoxin degraded faster in lysosomes, caused effective free toxin release, and led to improved cytotoxicity compared to an immunotoxin based on a normal antibody. Our findings suggested that a low pH-sensitive antibody might have an advantage in the design of immunotoxins and other lysosomal degradation-dependent antibody conjugate drugs.


Subject(s)
Hematologic Neoplasms , Immunotoxins , Humans , Immunotoxins/pharmacology , Antibodies , Cytosol , Hydrogen-Ion Concentration
7.
Mol Pharm ; 20(1): 90-100, 2023 01 02.
Article in English | MEDLINE | ID: mdl-36305716

ABSTRACT

The use of bacterial toxins as antitumor agents has received considerable attention. Immunotoxins based on antigen recognition of single-chain antibodies have been widely explored for cancer therapy. Despite their impressive killing effect on tumor cells, immunotoxins still display unspecific toxicity with undesired side effects. High levels of hypoxia-inducible factor 1α (HIF-1α) are well-known indicators of hypoxia in cancer cells. In this study, different linkers were employed to fuse the immunotoxin DAB389-4D5 scFv (DS) with the oxygen-dependent degradation domain (ODDD) of HIF-1α, a domain selectively facilitating the accumulation of HIF-1α under hypoxia, to construct the oxygen-dependent degradable immunotoxin DS-ODDD (DSO). The engineered fusion protein DSO-2 containing a linker (G4S)3 possesses the best killing effect on cancer cells under hypoxia and displayed considerably reduced nonspecific toxicity to normal cells under normoxic conditions. Flow cytometry, immunofluorescence, and immunoblot analyses demonstrated that DSO-2 was degraded via the ubiquitin-proteasome pathway regulated by the oxygen-sensitive mechanism. Western blot analysis indicated that the degradation of DSO-2 significantly decreased the activation of apoptosis-related molecules in normal cells. The engineered immunotoxin with oxygen-sensing properties developed herein is a potential therapeutic agent for cancer treatment.


Subject(s)
Immunotoxins , Proteasome Endopeptidase Complex , Humans , Hypoxia , Hypoxia-Inducible Factor 1, alpha Subunit , Immunotoxins/pharmacology , Oxygen/metabolism , Ubiquitin
8.
Microb Cell Fact ; 22(1): 100, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37198642

ABSTRACT

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) positive breast cancer is an aggressive subtype, accounting for around 20% of all breast cancers. The development of HER2-targeted therapy has substantially improved patient outcomes. Nevertheless, the increasing rate of side effects and resistance to targeted drugs limit their efficacy in clinical practice. In this study, we designed and synthesized a new immunotoxin, 4D5Fv-PE25, which targets HER2-positive breast cancer, and evaluated its effectiveness in vitro and in vivo. RESULTS: The 4D5Fv-PE25 was expressed in high-density Escherichia coli (E. coli.) using the fermentor method and refined via hydrophobicity, ion exchange, and filtration chromatography, achieving a 56.06% recovery rate. Additionally, the semi-manufactured product with 96% purity was prepared into freeze-dried powder by the lyophilized process. Flow cytometry was used to detect the expression of HER2 in SK-BR-3, BT-474, MDA-MB-231, and MDA-MB-468 breast cancer cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) method was used for cytotoxicity assay, and the half-maximal inhibitory concentration (IC50) of 4D5Fv-PE25 lyophilized products to HER2-positive cell line SK-BR-3 was 12.53 ng/mL. The 4D5Fv-PE25 was injected into xenograft tumor mice via the tail vein on the 1st, 4th, and 8th day, it indicated that the growth of tumor volume was effectively inhibited for 24 days, although the 4D5Fv-PE25 was metabolized within 60Ā min by measuring the release of 3Ā H-Thymidine radiation. CONCLUSION: we succeeded in producing the 4D5Fv-PE25 freeze-dried powder using the prokaryotic expression method, and it could be employed as a potential drug for treating HER2-positive breast cancer.


Subject(s)
Breast Neoplasms , Immunotoxins , Animals , Female , Humans , Mice , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cell Line, Tumor , Escherichia coli/metabolism , Immunotoxins/pharmacology , Powders/therapeutic use , Receptor, ErbB-2/genetics
9.
Curr Oncol Rep ; 25(4): 309-323, 2023 04.
Article in English | MEDLINE | ID: mdl-36763234

ABSTRACT

PURPOSE OF REVIEW: This review aims to summarise the pathobiological role of mesothelin and the current data on therapeutic antibodies targeting mesothelin in solid tumours. RECENT FINDINGS: High mesothelin expression is restricted to the pericardium, pleura, peritoneum and tunica vaginalis. Mesothelin does not seem to have any normal biological function in adult normal tissues. Mesothelin is highly expressed in mesothelioma, serous ovarian cancer, pancreatic cancer and some gastric cancer and adenocarcinoma of the lung and is responsible for tumour proliferation, metastasis, resistance to chemotherapy or radiation and evasion of immune system. To date, antibody, antibody drug conjugates and bispecific antibodies with immune checkpoints have been investigated in mesothelin expressing malignancies. After a couple of decades of clinical investigation in antibody targeting mesothelin, the therapeutic benefit is relatively modest. Novel delivery of mesothelin targeting agents, more potent payload in antibody drug conjugates and immune checkpoint inhibitor, may improve therapeutic benefit.


Subject(s)
Adenocarcinoma , Immunoconjugates , Humans , Adenocarcinoma/drug therapy , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/therapeutic use , Immunoconjugates/therapeutic use , Pharmaceutical Preparations , Mesothelin/immunology
10.
Mol Ther ; 30(7): 2522-2536, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35440418

ABSTRACT

Tumor necrosis factor α (TNF-α) is upregulated in a chronic inflammatory environment, including tumors, and has been recognized as a pro-tumor factor in many cancers. Applying the traditional TNF-α antibodies that neutralize TNF-α activity, however, only exerts modest anti-tumor efficacy in clinical studies. Here, we develop an innovative approach to target TNF-α that is distinct from the neutralization mechanism. We employed phage display and yeast display to select non-neutralizing antibodies that can piggyback on TNF-α and co-internalize into cells through receptor ligation. When conjugating with toxins, the antibody exhibited cytotoxicity to cancer cells in a TNF-α-dependent manner. We further implemented the immunotoxin to an E. coli vehicle specially engineered for a high secretion level. In a syngeneic murine melanoma model, the bacteria stimulated TNF-α expression that synergized with the secreted immunotoxin and greatly inhibited tumor growth. The treatment also dramatically remodeled the tumor microenvironment in favor of several anti-tumor immune cells, including N1 neutrophils, M1 macrophages, and activated CD4+ and CD8+ lymphocytes. We anticipate that our new piggyback strategy is generalizable to targeting other soluble ligands and/or conjugates with different drugs for managing a diverse set of diseases.


Subject(s)
Immunotoxins , Melanoma , Animals , Escherichia coli/genetics , Escherichia coli/metabolism , Immunotoxins/therapeutic use , Melanoma/therapy , Mice , Tumor Microenvironment , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
11.
Biotechnol Lett ; 45(4): 537-550, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36807722

ABSTRACT

PROPOSE: Human epidermal growth factor receptor 2 (HER2) is overexpressed on the surface of some kinds of cancer cells including breast cancer. In this study, we designed and produced a novel immunotoxin consisting anti-HER2 single-chain Fv (scFv) from pertuzumab and a modified form of Pseudomonas exotoxin (PE35KDEL). METHODS: The three-dimensional (3D) structure of the fusion protein (anti-HER IT) was predicted by MODELLER 9.23 and its interaction with HER2 receptor was assessed using HADDOCK web server. Anti-HER2 IT, anti-HER2 scFv, and PE35KDEL proteins were expressed by Escherichia coli BL21 (DE3). After purification of the proteins using Ni2+ affinity chromatography and refolding through dialysis, the cytotoxicity of proteins against breast cancer cell lines was examined by MTT assay. RESULTS: In-silico studies showed that (EAAAK)2 linker can efficiently prevent the formation of salt bridges between two functional domains and the constructed fusion protein has a high affinity to HER2 receptor. The optimum condition of anti-HER2 IT expression was 25Ā Ā°C and 1Ā mM IPTG. The protein was successfully purified and refolded by dialysis with a final yield of 45.7Ā mg per 1 L of bacterial culture. The cytotoxicity results showed that anti-HER2 IT was much more toxic on HER2-overexpressing cells, BT-474 (IC50 ~ 95Ā nM) compared with HER2-negative cells, MDA-MB-23 (IC50 ƋĀƒ 200Ā nM). CONCLUSION: This novel immunotoxin has the potential to be applied as a therapeutic candidate for HER2-targeted cancer therapy. However further in vitro and in vivo evaluations are still required to confirm the efficacy and safety of this protein.


Subject(s)
Breast Neoplasms , Immunotoxins , Single-Chain Antibodies , Humans , Female , Single-Chain Antibodies/genetics , Single-Chain Antibodies/chemistry , Immunotoxins/genetics , Immunotoxins/pharmacology , Receptor, ErbB-2/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use
12.
Microb Pathog ; 172: 105795, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36155065

ABSTRACT

Cancer, as a disease characterized by uncontrolled growth of cells, is recognized as one of the significant challenges in the field of health and medicine. There are various treatments for cancer like surgery, hormone therapy, chemotherapy, etc., but they have negative effects on the patient's lifestyle. Numerous side effects, and recently the emergence of drug resistance to these methods are weaknesses of these treatments. The utilization of bacteria as a treatment for cancer has attracted scientists' attention in the last decade. There are various methods of using bacteria to treat cancer, including the use of live, attenuated, or genetically engineered microbes, the use of bacterial toxins as an immunotoxin or conjugated to tumor antigens, bacteria-based cancer immunotherapy, bacterial vectors for gene-directed enzyme prodrug, and also the undeniable role of probiotics in treatment, are the cases that today are used for treatment. Bacterial therapy has shown a greater promise in cancer treatment due to its ability to lyse the tumor cells and deliver therapeutic products. However, the potential cytotoxicity of bacteria for healthy tissues, their inability to entirely lyse cancerous cells, and the possibility of mutations in their genomes are among the challenges of bacteriotherapy for cancer. Herein, we summarize the mechanism of bacteria, their potential benefits and harms, and the future of research in this field.


Subject(s)
Bacterial Toxins , Immunotoxins , Neoplasms , Prodrugs , Humans , Bacteria/genetics , Neoplasms/genetics , Bacterial Toxins/genetics , Bacterial Toxins/therapeutic use , Antigens, Neoplasm , Hormones
13.
Anal Biochem ; 653: 114776, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35679954

ABSTRACT

Targeted tumor therapy is an attractive approach for cancer treatment. Delta-like ligand 4 (DLL4) is overexpressed in tumor vasculature and plays a pivotal role in tumor neovascular development and angiogenesis during tumor progression. Immunotoxins due to their superior cell-killing ability and the relative simplicity of their preparation, have great potential in the clinical treatment of cancer. The aim of this study was to develop a novel immunotoxin against DLL4 as a cell cytotoxic agent and angiogenesis maturation inhibitor. In present study, an immunotoxin, named DLL4Nb-PE, in which a Nanobody as targeting moiety fused to the Pseudomonas exotoxin A (PE) was constructed, expressed and assessed by SDS-PAGE, western blotting, ELISA and flowcytometry. The functional assessment was carried out via MTT, apoptosis and chicken chorioallantoic membrane (CAM) assays. It was demonstrated DLL4Nb-PE specifically binds to DLL4 and recognizes DLL4-expressing MKN cells. The cytotoxicity assays showed that this molecule could induce apoptosis and kill DLL4 positive MKN cells. In addition, it inhibited neovascularization in the chicken chorioallantoic membrane. Our findings indicate designed anti-DLL4 immunotoxin has valuable potential for application to the treatment of tumors with high DLL4 expression.


Subject(s)
Immunotoxins , Neoplasms , Cell Proliferation , Exotoxins/metabolism , Exotoxins/pharmacology , Exotoxins/therapeutic use , Humans , Immunotoxins/pharmacology , Immunotoxins/therapeutic use , Neoplasms/drug therapy , Neovascularization, Pathologic/drug therapy , Pseudomonas/metabolism
14.
Cell Microbiol ; 23(8): e13339, 2021 08.
Article in English | MEDLINE | ID: mdl-33821556

ABSTRACT

Recently, we demonstrated that Pseudomonas aeruginosa Exotoxin T (ExoT) employs two distinct mechanisms to induce potent apoptotic cytotoxicity in a variety of cancer cell lines. We further demonstrated that it can significantly reduce tumour growth in an animal model for melanoma. During these studies, we observed that melanoma cells that were transfected with ExoT failed to undergo mitosis, regardless of whether they eventually succumbed to ExoT-induced apoptosis or survived in ExoT's presence. In this report, we sought to investigate ExoT's antiproliferative activity in melanoma. We delivered ExoT into B16 melanoma cells by bacteria (to show necessity) and by transfection (to show sufficiency). Our data indicate that ExoT exerts a potent antiproliferative function in melanoma cells. We show that ExoT causes cell cycle arrest in G1 interphase in melanoma cells by dampening the G1/S checkpoint proteins. Our data demonstrate that both domains of ExoT; (the ADP-ribosyltransferase (ADPRT) domain and the GTPase activating protein (GAP) domain); contribute to ExoT-induced G1 cell cycle arrest in melanoma. Finally, we show that the ADPRT-induced G1 cell cycle arrest in melanoma cells likely involves the Crk adaptor protein. Our data reveal a novel virulence function for ExoT and further highlight the therapeutic potential of ExoT against cancer.


Subject(s)
Melanoma , Pseudomonas aeruginosa , ADP Ribose Transferases , Animals , Exotoxins , G1 Phase Cell Cycle Checkpoints , HeLa Cells , Humans
15.
J Nanobiotechnology ; 20(1): 387, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35999603

ABSTRACT

The plant toxin ricin, especially its cytotoxic A chain (RTA), can be genetically engineered with targeting ligands to develop specific anti-cancer recombinant immunotoxins (RITs). Here, we used affibody molecules targeting two cancer biomarkers, the receptors HER2 and EGFR, along with the KDEL signal peptide to construct two cancer-specific ricin-based RITs, HER2Afb-RTA-KDEL and EGFRAfb-RTA-KDEL. The affibodies successfully provided target-specificity and subsequent receptor-mediated endocytosis and the KDEL signal peptide routed the RITs through the retrograde transport pathway, effectively delivering RTA to the cytosol as well as avoiding the alternate recycling pathway that typical cancer cells frequently have. The in vivo efficacy of RITs was enhanced by introducing the albumin binding domain (AlBD) to construct AlBD/HER2Afb/RTA-KDEL. Systemic administration of AlBD-containing RITs to tumor-bearing mice significantly suppressed tumor growth without any noticeable side-effects. Collectively, combining target-selective affibody molecules, a cytotoxic RTA, and an intracellularly designating peptide, we successfully developed cancer-specific and efficacious ricin-based RITs. This approach can be applied to develop novel protein-based "magic bullets" to effectively suppress tumors that are resistant to conventional anti-cancer drugs.


Subject(s)
Immunotoxins , Neoplasms , Ricin , Animals , Apoptosis , Endocytosis , Immunotoxins/metabolism , Immunotoxins/pharmacology , Mice , Neoplasms/drug therapy , Protein Sorting Signals , Ricin/pharmacology , Ricin/toxicity
16.
J Allergy Clin Immunol ; 147(1): 309-320.e6, 2021 01.
Article in English | MEDLINE | ID: mdl-32387109

ABSTRACT

BACKGROUND: Mutations in the recombinase-activating genes cause severe immunodeficiency, with a spectrum of phenotypes ranging from severe combined immunodeficiency to immune dysregulation. Hematopoietic stem cell transplantation is the only curative option, but a high risk of graft failure and poor immune reconstitution have been observed in the absence of myeloablation. OBJECTIVES: Our aim was to improve multilineage engraftment; we tested nongenotoxic conditioning with anti-CD45 mAbs conjugated with saporin CD45 (CD45-SAP). METHODS: Rag1-KO and Rag1-F971L mice, which represent models of severe combined immune deficiency and combined immune deficiency with immune dysregulation, respectively, were conditioned with CD45-SAP, CD45-SAP plus 2 Gy of total body irradiation (TBI), 2 Gy of TBI, 8 Gy of TBI, or no conditioning and treated by using transplantation with lineage-negative bone marrow cells from wild-type mice. Flow cytometry and immunohistochemistry were used to assess engraftment and immune reconstitution. Antibody responses to 2,4,6-trinitrophenyl-conjugated keyhole limpet hemocyanin were measured by ELISA, and presence of autoantibody was detected by microarray. RESULTS: Conditioning with CD45-SAP enabled high levels of multilineage engraftment in both Rag1 mutant models, allowed overcoming of B- and T-cell differentiation blocks and thymic epithelial cell defects, and induced robust cellular and humoral immunity in the periphery. CONCLUSIONS: Conditioning with CD45-SAP allows multilineage engraftment and robust immune reconstitution in mice with either null or hypomorphic Rag mutations while preserving thymic epithelial cell homeostasis.


Subject(s)
Antibodies, Monoclonal/pharmacology , Bone Marrow Transplantation , Homeodomain Proteins/genetics , Immunoconjugates/pharmacology , Leukocyte Common Antigens/antagonists & inhibitors , Saporins/pharmacology , Severe Combined Immunodeficiency/therapy , Transplantation Conditioning , Allografts , Animals , Antibodies, Monoclonal/adverse effects , Homeodomain Proteins/immunology , Immunoconjugates/adverse effects , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/immunology , Mice , Mice, Knockout , Saporins/adverse effects , Severe Combined Immunodeficiency/genetics , Severe Combined Immunodeficiency/immunology
17.
Int J Mol Sci ; 23(7)2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35409209

ABSTRACT

Histone deacetylase (HDAC) inhibitors are novel chemotherapy agents with potential utility in the treatment of neuroblastoma, the most frequent solid tumor of childhood. Previous studies have shown that the exposure of human neuroblastoma cells to some HDAC inhibitors enhanced the expression of the common neurotrophin receptor p75NTR. In the present study we investigated whether the upregulation of p75NTR could be exploited to render neuroblastoma cells susceptible to the cytotoxic action of an anti-p75NTR antibody conjugated to the toxin saporin-S6 (p75IgG-Sap). We found that two well-characterized HDAC inhibitors, valproic acid (VPA) and entinostat, were able to induce a strong expression of p75NTR in different human neuroblastoma cell lines but not in other cells, with entinostat, displaying a greater efficacy than VPA. Cell pretreatment with entinostat enhanced p75NTR internalization and intracellular saporin-S6 delivery following p75IgG-Sap exposure. The addition of p75IgG-Sap had no effect on vehicle-pretreated cells but potentiated the apoptotic cell death that was induced by entinostat. In three-dimensional neuroblastoma cell cultures, the subsequent treatment with p75IgG-Sap enhanced the inhibition of spheroid growth and the impairment of cell viability that was produced by entinostat. In athymic mice bearing neuroblastoma xenografts, chronic treatment with entinostat increased the expression of p75NTR in tumors but not in liver, kidney, heart, and cerebellum. The administration of p75IgG-Sap induced apoptosis only in tumors of mice that were pretreated with entinostat. These findings define a novel experimental strategy to selectively eliminate neuroblastoma cells based on the sequential treatment with entinostat and a toxin-conjugated anti-p75NTR antibody.


Subject(s)
Antineoplastic Agents , Immunotoxins , Neuroblastoma , Animals , Antineoplastic Agents/pharmacology , Apoptosis , Cell Line, Tumor , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Humans , Immunotoxins/pharmacology , Mice , Neuroblastoma/metabolism , Receptors, Nerve Growth Factor/metabolism , Saporins/metabolism , Up-Regulation , Valproic Acid/pharmacology
18.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555466

ABSTRACT

Immunotoxins (ITs), which are toxin-fused tumor antigen-specific antibody chimeric proteins, have been developed to selectively kill targeted cancer cells. The epidermal growth factor receptor (EGFR) is an attractive target for the development of anti-EGFR ITs against solid tumors due to its overexpression on the cell surface of various solid tumors. However, the low basal level expression of EGFR in normal tissue cells can cause undesirable on-target/off-tumor toxicity and reduce the therapeutic window of anti-EGFR ITs. Here, based on an anti-EGFR monobody with cross-reactivity to both human and murine EGFR, we developed a strategy to tailor the anti-EGFR affinity of the monobody-based ITs carrying a 24-kDa fragment of Pseudomonas exotoxin A (PE24), termed ER-PE24, to distinguish tumors that overexpress EGFR from normal tissues. Five variants of ER-PE24 were generated with different EGFR affinities (KD ≈ 0.24 nM to 104 nM), showing comparable binding activity for both human and murine EGFR. ER/0.2-PE24 with the highest affinity (KD ≈ 0.24 nM) exhibited a narrow therapeutic window of 19 pM to 93 pM, whereas ER/21-PE24 with an intermediate affinity (KD ≈ 21 nM) showed a much broader therapeutic window of 73 pM to 1.5 nM in in vitro cytotoxic assays using tumor model cell lines. In EGFR-overexpressing tumor xenograft mouse models, the maximum tolerated dose (MTD) of intravenous injection of ER/21-PE24 was found to be 0.4 mg/kg, which was fourfold higher than the MTD (0.1 mg/kg) of ER/0.2-PE24. Our study provides a strategy for the development of IT targeting tumor overexpressed antigens with basal expression in broad normal tissues by tailoring tumor antigen affinities.


Subject(s)
Antineoplastic Agents , Immunotoxins , Neoplasms , Humans , Mice , Animals , Immunotoxins/pharmacology , Immunotoxins/therapeutic use , ErbB Receptors/metabolism , Cell Line, Tumor , Antibodies , Antigens, Neoplasm , Neoplasms/drug therapy
19.
J Virol ; 94(19)2020 09 15.
Article in English | MEDLINE | ID: mdl-32669326

ABSTRACT

Regulatory T cells (Tregs) may be key contributors to the HIV/SIV latent reservoir, since they harbor high levels of HIV/SIV; reverse CD4+ T cell immune activation status, increasing the pool of resting CD4+ T cells; and impair CD8+ T cell function, favoring HIV persistence. We tested the hypothesis that Treg depletion is a valid intervention toward an HIV cure by depleted Tregs in 14 rhesus macaque (RM) controllers infected with SIVsab, the virus that naturally infects sabaeus monkeys, through different strategies: administration of an anti-CCR4 immunotoxin, two doses of an anti-CD25 immunotoxin (interleukin-2 with diphtheria toxin [IL-2-DT]), or two combinations of both. All of these treatments resulted in significant depletion of the circulating Tregs (>70%) and their partial depletion in the gut (25%) and lymph nodes (>50%). The fractions of CD4+ T cells expressing Ki -67 increased up to 80% in experiments containing IL-2-DT and only 30% in anti-CCR4-treated RMs, paralleled by increases in the inflammatory cytokines. In the absence of ART, plasma virus rebounded to 103 vRNA copies/ml by day 10 after IL-2-DT administration. A large but transient boost of the SIV-specific CD8+ T cell responses occurred in IL-2-DT-treated RMs. Such increases were minimal in the RMs receiving anti-CCR4-based regimens. Five RMs received IL-2-DT on ART, but treatment was discontinued because of high toxicity and lymphopenia. As such, while all treatments depleted a significant proportion of Tregs, the side effects in the presence of ART prevent their clinical use and call for different Treg depletion approaches. Thus, based on our data, Treg targeting as a strategy for HIV cure cannot be discarded.IMPORTANCE Regulatory T cells (Tregs) can decisively contribute to the establishment and persistence of the HIV reservoir, since they harbor high levels of HIV/SIV, increase the pool of resting CD4+ T cells by reversing their immune activation status, and impair CD8+ T cell function, favoring HIV persistence. We tested multiple Treg depletion strategies and showed that all of them are at least partially successful in depleting Tregs. As such, Treg depletion appears to be a valid intervention toward an HIV cure, reducing the size of the reservoir, reactivating the virus, and boosting cell-mediated immune responses. Yet, when Treg depletion was attempted in ART-suppressed animals, the treatment had to be discontinued due to high toxicity and lymphopenia. Therefore, while Treg targeting as a strategy for HIV cure cannot be discarded, the methodology for Treg depletion has to be revisited.


Subject(s)
Anti-Retroviral Agents/pharmacology , Simian Immunodeficiency Virus/drug effects , Simian Immunodeficiency Virus/immunology , T-Lymphocytes, Regulatory/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/metabolism , Diphtheria Toxin , Immunity, Cellular , Inflammation , Interleukin-2/pharmacology , Interleukin-2 Receptor alpha Subunit , Lymphopenia , Macaca mulatta , Primates , Receptors, CCR4 , Recombinant Fusion Proteins , Virus Latency/drug effects
20.
Cancer Cell Int ; 21(1): 470, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34488747

ABSTRACT

Understanding the molecular mechanisms of cancer biology introduces targeted therapy as a complementary method along with other conventional therapies. Recombinant immunotoxins are tumor specific antibodies that their recognizing fragment is utilized for delivering modified toxins into tumor cells. These molecules have been considered as a targeted strategy in the treatment of human cancers. HER2 tumor biomarker is a transmembrane tyrosine kinase receptor that can be used for targeted therapies in the forms of anti-HER2 monoclonal antibodies, antibody-drug conjugates and immunotoxins. There have been many studies on HER2-based immunotoxins in recent years, however, little progress has been made in the clinical field which demanded more improvements. Here, we summarized the HER2 signaling and it's targeting using immunotherapeutic agents in human cancers. Then, we specifically reviewed anti-HER2 immunotoxins, and their strengths and drawbacks to highlight their promising clinical impact.

SELECTION OF CITATIONS
SEARCH DETAIL