Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Plant Cell Environ ; 47(4): 1379-1396, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38221869

ABSTRACT

Japanese apricot is an important subtropical deciduous fruit tree in China, widely distributed in different altitude areas. How does it adapt to the different temperature environments in these areas? In this study, we identified a low-temperature transcription factor PmCBF03 on chromosome 7 through adaptive analysis of populations at different altitudes, which has an early termination single nucleotide polymorphism mutation. There were two different types of variation, PmCBF03A type in high-altitude areas and PmCBF03T type in low-altitude areas. PmCBF03A gene increased the survival rate, Fv/Fm values, antioxidant enzyme activity, and expression levels of antioxidant enzyme genes, and reducing electrolyte leakage and accumulation of reactive oxygen species in transgenic Arabidopsis under low temperature and freezing stress. Simultaneously, PmCBF03A gene promoted the dormancy of transgenic Arabidopsis seeds than wild-type. Biochemical analysis demonstrated that PmCBF03A directly bound to the DRE/CRT element in the promoters of the PmCOR413, PmDAM6 and PmABI5 genes, promoting their transcription and enhanced the cold resistance and dormancy of the overexpressing PmCBF03A lines. While PmCBF03T gene is unable to bind to the promoters of PmDAM6 and PmABI5 genes, leading to early release of dormancy to adapt to the problem of insufficient chilling requirement in low-altitude areas.


Subject(s)
Arabidopsis , Prunus armeniaca , Prunus , Temperature , Fruit , Altitude , Prunus/genetics , Prunus/metabolism , Antioxidants/metabolism , Arabidopsis/genetics
2.
Plant J ; 110(4): 1182-1197, 2022 05.
Article in English | MEDLINE | ID: mdl-35277890

ABSTRACT

Japanese apricot (Prunus mume) is an attractive fruit tree originating from China, and its cultivation history dates back 7000 years. In this study, we investigated the genetic diversity, population structure, and genetic relationship of Japanese apricots in different regions of China and Japan. The analyses of the genetic variation between wild and cultivated populations improved our understanding of the general mechanisms of domestication and improvement. A total of 146 accessions of Japanese apricot from different geographic locations were sequenced. The genetic diversity of wild and domesticated accessions (3.60 × 10-3 and 3.51 × 10-3 , respectively) from China was high, and the effect of artificial selection pressure on domesticated accessions was small; however, the genetic diversity of artificially bred accessions decreased significantly (2.68 × 10-3 ) compared to domesticated accessions, which had an obvious improvement bottleneck effect. The chloroplast genome results showed that 41 haplotypes were detected, and Japanese apricots from the Yunnan region had the most haplotypes and the highest genetic diversity. The results revealed the dissemination route of Japanese apricot, not only along the Yangtze River basin system (from southwest China to Hunan, Jiangxi, and Anhui, and finally to the Jiangsu, Zhejiang, and Shanghai areas). Additionally, we discovered a second route for Japanese apricot dispersion, which was mostly in the Pearl River basin system, from southwest China to Libo of Guizhou and then to the Guangdong, Fujian, and Taiwan areas. This also showed that Japanese-bred accessions originated from Zhejiang, China. In addition, selective sweep analysis showed that most of the high-impact single nucleotide polymorphisms were identified in genes related to glucose metabolism, aromatic compound metabolism, flowering time, dormancy, and resistance to abiotic stress during the domestication and improvement of Japanese apricot.


Subject(s)
Prunus armeniaca , Prunus , China , Fruit/chemistry , Genomics , Plant Breeding , Prunus/genetics , Prunus armeniaca/genetics
3.
Mol Breed ; 43(5): 34, 2023 May.
Article in English | MEDLINE | ID: mdl-37312744

ABSTRACT

Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional woody flower and fruit tree restrictedly cultivated in northern area due to its inability to survive harsh winters and early springs. In the current study, RNA-seq and physiological assay were used to study the cold response of P. mume 'Xuemei'. A total of 4705 genes were identified as differentially expressed genes (DEGs) in the 21 pairwise comparisons among seven time points under 0 °C cold treatment, and 3678 of them showed differential levels compared with control at normal temperature. The gene expression profiles indicated that the number of upregulated genes increased with prolongation of treatment time throughout the whole 48 h. Hierarchical clustering suggested three obvious phases of the gene expression profiles. Gene ontology (GO) analysis of the 4705 DEGs resulted in 102 significantly enriched GO items in which the transcription activity was dominant. 225 DEGs were predicted to encode transcription factor (TF) genes. Some important TFs (ERF, CBF, WRKY, NAC, MYB, bHLH) were strongly induced during the whole cold treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis suggested that plant signal transduction pathways such as plant hormone and calcium (Ca2+) were notable. Metabolic pathways such as sugar metabolism, especially RFOs (raffinose family oligosaccharides) were activated, which was accompanied by the accumulation of soluble sugars. SOD and POD enzyme activities coupled with reactive oxygen species (ROS)-related gene expression profile implied a gradually induced ROS scavenging system under cold treatment. These results might shed light on the sensitivity to cold stress in Japanese apricot and provide new insights into hardiness studies in P. mume and its related species. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01376-2.

4.
Genomics ; 114(5): 110451, 2022 09.
Article in English | MEDLINE | ID: mdl-35988654

ABSTRACT

Japanese apricot is an imperative stone fruit plant with numerous processing importance. The failure of reproductive system is the most common cause of fruit loss, through which pistil abortion is the fundamental one. To understand this mechanism, we used a combination of transcriptomic and metabolomic approaches to investigate the biochemical and molecular basis of flavonoid biosynthesis. Due to the regulated expression of flavonoid pathway-related genes in plants, flavonoid biosynthesis is largely regulated at the transcriptional level. A total of 2272 differently expressed genes and 215 differential metabolites were found. The expression of the genes and metabolites encoding flavonoid biosynthesis was lower in abnormal pistils that are in line with the flavonoid quantification from abnormal pistils. Besides, a couple of genes were also detected related to MYB, MADS, NAC and bHLH transcription factors. Remarkably, we found 'hydroxycinnamoyl transferase (LOC103323133)' and flavonoid related metabolite '2-hydroxycinnamic acid' was lower expressed in abnormal pistil, proposing the cause of pistil abortion. Collectively, the present study delivers inclusive transcriptional and metabolic datasets that proposed valuable prospects to unravel the genetic mechanism underlying pistil abortion.


Subject(s)
Prunus armeniaca , Transcriptome , Basic Helix-Loop-Helix Transcription Factors/genetics , Coumaric Acids/metabolism , Flavonoids , Flowers/metabolism , Fruit , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Prunus armeniaca/genetics , Prunus armeniaca/metabolism , Transferases/genetics , Transferases/metabolism
5.
BMC Plant Biol ; 22(1): 354, 2022 Jul 21.
Article in English | MEDLINE | ID: mdl-35864441

ABSTRACT

BACKGROUND: Chloroplast (cp) genomes are generally considered to be conservative and play an important role in population diversity analysis in plants, but the characteristics and diversity of the different germplasm populations in Japanese apricot are still not clear. RESULTS: A total of 146 cp genomes from three groups of wild, domesticated, and bred accessions of Japanese apricot were sequenced in this study. The comparative genome analysis revealed that the 146 cp genomes were divided into 41 types, and ranged in size from 157,886 to 158,167 bp with a similar structure and composition to those of the genus Prunus. However, there were still minor differences in the cp genome that were mainly caused by the contraction and expansion of the IR region, and six types of SSR in which mono-nucleotide repeats were the most dominant type of repeats in the cp genome. The genes rpl33 and psbI, and intergenic regions of start-psbA, rps3-rpl22, and ccsA-ndhD, showed the highest nucleotide polymorphism in the whole cp genome. A total of 325 SNPs were detected in the 146 cp genomes, and more than 70% of the SNPs were in region of large single-copy (LSC). The SNPs and haplotypes in the cp genome indicated that the wild group had higher genetic diversity than the domesticated and bred groups. In addition, among wild populations, Southwest China, including Yunnan, Tibet, and Bijie of Guizhou, had the highest genetic diversity. The genetic relationship of Japanese apricot germplasm resources in different regions showed a degree of correlation with their geographical distribution. CONCLUSION: Comparative analysis of chloroplast genomes of 146 Japanese apricot resources was performed to analyze the used to explore the genetic relationship and genetic diversity among Japanese apricot resources with different geographical distributions, providing some reference for the origin and evolution of Japanese apricot.


Subject(s)
Genome, Chloroplast , Prunus armeniaca , China , Evolution, Molecular , Genome, Chloroplast/genetics , Microsatellite Repeats/genetics , Phylogeny , Plant Breeding , Prunus armeniaca/genetics
6.
Plant Mol Biol ; 105(1-2): 83-97, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32926248

ABSTRACT

KEY MESSAGE: This study is the first to demonstrate that GA4-induced dormancy release is associated with the NF-Y complex, which interacts with gibberellin inhibitor RGL2 in Japanese apricot. Seasonal dormancy is not only vital for the survival in cold winter but also affects flowering of temperate fruit trees and the dormancy release depends on the accumulation of the cold temperatures (Chilling requirement-CR). To understand the mechanism of dormancy release in deciduous fruit crops, we compared miRNA sequencing data during the transition stage from paradormancy to dormancy release in the Japanese apricot and found that the miR169 family showed significant differentially up-regulated expression during dormancy induction and was down-regulated during the dormancy release periods. The 5' RACE assay and RT-qPCR validated its target gene NUCLEAR FACTOR-Y subunit A (NF-YA), which exhibited the opposite expression pattern. Further study showed that exogenous GA4 could inhibit the expression of the gibberellic acid (GA) signal transduction suppressor PmRGL2 (RGA-LIKE 2) and promote the expression of NF-Y. Moreover, the interaction between the NF-Y family and GA inhibitor PmRGL2 was verified by the yeast-two-hybrid (Y2H) system and a bimolecular fluorescence complementarity (BiFC) experiment. These results suggest that synergistic regulation of the NF-Y and PmRGL2 complex leads to the activation of dormancy release induced by GA4. These findings will help to elucidate the functional and regulatory roles of miR169 and NF-Y complex in seasonal bud dormancy induced by GA in Japanese apricot and provide new insights for the discovery of dormancy release mechanisms in woody plants.


Subject(s)
CCAAT-Binding Factor/metabolism , MicroRNAs/metabolism , Plant Dormancy/physiology , Plant Proteins/metabolism , Prunus/metabolism , Transcription Factors/metabolism , CCAAT-Binding Factor/genetics , Cold Temperature , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Fruit/metabolism , Gene Expression Regulation, Plant , Gibberellins/metabolism , Gibberellins/pharmacology , MicroRNAs/genetics , Plant Dormancy/drug effects , Plant Dormancy/genetics , Plant Proteins/genetics , Prunus/genetics , Sequence Analysis, RNA , Transcription Factors/genetics , Transcriptome
7.
Physiol Mol Biol Plants ; 27(6): 1191-1204, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34177144

ABSTRACT

Flower development exists as a key period in the angiosperms life cycle and the proper development is considered with its reproductive success. Pistil abortion is one of the widely distributed aspects of berry plants and its basic mechanism in Japanese apricot is quite unclear and needs thorough investigation. The present study was carried out to get a deep insight into the pistil abortion mechanism in Japanese apricot using a transcriptomic approach. A large number of DEGs were identified from different development stages of normal and abortive pistils. Pair-wise comparison analysis was performed as LY1 vs DQD1, LY2 vs DQD2, and LY3 vs DQD3 and produced 3590, 2085, and 2286 transcripts, respectively. The Gene Ontology (GO) showed that different metabolic processes, plant hormones, developmental processes, and photosystem-related genes were involved in pistil abortion. The pathway analysis revealed significant enrichment of plant hormone's signal transduction and circadian rhythm pathways. Furthermore, transcription factors such as MYB, MADS-box, and NAC family showed lower expression in abortive pistils. The current study presents a new strategy for advanced research and understanding of the pistil abortion process in Japanese apricot and provides a possible reference for other deciduous fruit trees.

8.
Biosci Biotechnol Biochem ; 82(11): 2021-2029, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30027801

ABSTRACT

Japanese apricot, Prunus mume Sieb. et Zucc., biosynthesizes the l-phenylalanine-derived cyanogenic glucosides prunasin and amygdalin. Prunasin has biological properties such as anti-inflammation, but plant extraction and chemical synthesis are impractical. In this study, we identified and characterized UGT85A47 from Japanese apricot. Further, UGT85A47 was utilized for prunasin microbial production. Full-length cDNA encoding UGT85A47 was isolated from Japanese apricot after 5'- and 3'-RACE. Recombinant UGT85A47 stoichiometrically catalyzed UDP-glucose consumption and synthesis of prunasin and UDP from mandelonitrile. Escherichia coli C41(DE3) cells expressing UGT85A47 produced prunasin (0.64 g/L) from racemic mandelonitrile and glucose. In addition, co-expression of genes encoding UDP-glucose biosynthetic enzymes (phosphoglucomutase and UTP-glucose 1-phosphate uridiltransferase) and polyphosphate kinase clearly improved prunasin production up to 2.3 g/L. These results showed that our whole-cell biocatalytic system is significantly more efficient than the existing prunasin production systems, such as chemical synthesis.


Subject(s)
Escherichia coli/genetics , Glucosyltransferases/genetics , Nitriles/metabolism , Prunus armeniaca/enzymology , Uridine Diphosphate Glucose/biosynthesis , Acetonitriles/metabolism , Biotransformation , Catalysis , Cloning, Molecular , Glucosyltransferases/metabolism , Hydrogen-Ion Concentration , Temperature , Uridine Diphosphate Glucose/metabolism
9.
BMC Complement Altern Med ; 17(1): 541, 2017 Dec 19.
Article in English | MEDLINE | ID: mdl-29258493

ABSTRACT

BACKGROUND: Bamboo (Phyllostachys pubescens) leaves and Japanese apricot (Mume fructus) fruit are traditionally recognized to be safe herbs broadly used for food and medicinal purposes in Southeast Asia. Our group previously explored their antiplatelet effects. This study was designed to confirm inhibition effects of PM21 (a 2:1 mixture of bamboo leaf extract and Japanese apricot fruit extract) on platelet aggregation and evaluate its potency to use as an herbal remedy to prevent and/or treat the diseases caused by platelet aggregation and thrombus formation. METHODS: Washed platelets were prepared and platelet aggregation was induced by adding 5 µg/mL collagen. Anti-platelet effects of PM21 (75 mg/kg, 150 mg/kg, and 300 mg/kg for ex vivo and in vivo assays, and 50, 100, 200 µg/mL for in vitro assays) were evaluated. In ex vivo assays, PM21 was orally administered to rats daily after overnight fasting for 3 days and blood was collected 1 h after the final treatment. In vivo antithrombotic effect of PM21 was observed from a carrageenan induced mouse tail thrombosis model. RESULTS: In ex vivo assay, PM21 inhibited platelet aggregation significantly. PM21 showed a strong antithrombotic effect by reducing significantly the length of mouse tail thrombus. PM21 increased intracellular cAMP level and reduced the release of ATP, TXA2, and serotonin. PM21 also reduced intracellular concentration of calcium ion, fibrinogen binding to integrin αIIbß3, and phosphorylation of ERK2, p38, PLCγ2, and PI3 K. CONCLUSIONS: PM21 showed remarkable inhibitory effects on platelet aggregation and thrombus formation. Its inhibitory function seems to influence on GPVI binding to its ligand and subsequent initiation of a signaling cascade that involves activation of effector proteins and secretion of effector molecules, such as ATP, TXA2, serotonin, and Ca2+. PM21 also appears to exert its anti-platelet effect by deactivation of ERKs activation pathway as well as inhibition of fibrinogen binding to integrin αIIbß3.


Subject(s)
Blood Platelets/drug effects , Plant Extracts/pharmacology , Platelet Aggregation Inhibitors/pharmacology , Poaceae/chemistry , Prunus/chemistry , Thrombosis/metabolism , Adenosine Triphosphate/metabolism , Animals , Carrageenan/adverse effects , Cyclic AMP/metabolism , Fruit/chemistry , Male , Mice , Mice, Inbred ICR , Phosphorylation , Plant Leaves/chemistry , Rats , Rats, Sprague-Dawley
10.
J Exp Bot ; 64(16): 4953-66, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24014872

ABSTRACT

Hormones are closely associated with dormancy in deciduous fruit trees, and gibberellins (GAs) are known to be particularly important. In this study, we observed that GA4 treatment led to earlier bud break in Japanese apricot. To understand better the promoting effect of GA4 on the dormancy release of Japanese apricot flower buds, proteomic and transcriptomic approaches were used to analyse the mechanisms of dormancy release following GA4 treatment, based on two-dimensional gel electrophoresis (2-DE) and digital gene expression (DGE) profiling, respectively. More than 600 highly reproducible protein spots (P<0.05) were detected and, following GA4 treatment, 38 protein spots showed more than a 2-fold difference in expression, and 32 protein spots were confidently identified according to the databases. Compared with water treatment, many proteins that were associated with energy metabolism and oxidation-reduction showed significant changes after GA4 treatment, which might promote dormancy release. We observed that genes at the mRNA level associated with energy metabolism and oxidation-reduction also played an important role in this process. Analysis of the functions of the identified proteins and genes and the related metabolic pathways would provide a comprehensive proteomic and transcriptomic view of the coordination of dormancy release after GA4 treatment in Japanese apricot flower buds.


Subject(s)
Flowers/growth & development , Gene Expression Profiling/methods , Gibberellins/metabolism , Plant Proteins/genetics , Proteomics/methods , Prunus/genetics , Electrophoresis, Gel, Two-Dimensional/methods , Flowers/chemistry , Flowers/genetics , Flowers/metabolism , Plant Proteins/chemistry , Plant Proteins/metabolism , Prunus/chemistry , Prunus/growth & development , Prunus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL