Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Mol Recognit ; : e3103, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39318275

ABSTRACT

The Kirsten Rat Sarcoma (KRAS) G12D mutant protein is a primary driver of pancreatic ductal adenocarcinoma, necessitating the identification of targeted drug molecules. Repurposing of drugs quickly finds new uses, speeding treatment development. This study employs microsecond molecular dynamics simulations to unveil the binding mechanisms of the FDA-approved MEK inhibitor trametinib with KRASG12D, providing insights for potential drug repurposing. The binding of trametinib was compared with clinical trial drug MRTX1133, which demonstrates exceptional activity against KRASG12D, for better understanding of interaction mechanism of trametinib with KRASG12D. The resulting stable MRTX1133-KRASG12D complex reduces root mean square deviation (RMSD) values, in Switch I and II domains, highlighting its potential for inhibiting KRASG12D. MRTX1133's robust interaction with Tyr64 and disruption of Tyr96-Tyr71-Arg68 network showcase its ability to mitigate the effects of the G12D mutation. In contrast, trametinib employs a distinctive binding mechanism involving P-loop, Switch I and II residues. Extended simulations to 1 µs reveal sustained network interactions with Tyr32, Thr58, and GDP, suggesting a role of trametinib in maintaining KRASG12D in an inactive state and impede the further cell signaling. The decomposition binding free energy values illustrate amino acids' contributions to binding energy, elucidating ligand-protein interactions and molecular stability. The machine learning approach reveals that van der Waals interactions among the residues play vital role in complex stability and the potential amino acids involved in drug-receptor interactions of each complex. These details provide a molecular-level understanding of drug binding mechanisms, offering essential knowledge for further drug repurposing and potential drug discovery.

2.
Bioorg Chem ; 148: 107460, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38781668

ABSTRACT

A series of genipin derivatives were designed and synthesized as potential inhibitors targeted KRAS G12D mutation. The majority of these compounds demonstrated potential antiproliferative effects against KRAS G12D mutant tumor cells (CT26 and A427). Notably, seven compounds exhibited the anticancer effects with IC50 values ranging from 7.06 to 9.21 µM in CT26 (KRASG12D) and A427 (KRASG12D) cells and effectively suppressed the colony formation of CT26 cells. One representative compound SK12 was selected for further investigation into biological activity and action mechanisms. SK12 markedly induced apoptosis in CT26 cells in a concentration-dependent manner. Moreover, SK12 elevated the levels of reactive oxygen species (ROS) in tumor cells and exhibited a modulatory effect on the KRAS signaling pathway, thereby inhibiting the activation of downstream phosphorylated proteins. The binding affinity of SK12 to KRAS G12D protein was further confirmed by the surface plasmon resonance (SPR) assay with a binding KD of 157 µM. SK12 also exhibited notable anticancer efficacy in a nude mice tumor model. The relative tumor proliferation rate (T/C) of the experimental group (50 mg/kg) was 31.04 % (P < 0.05), while maintaining a commendable safety profile.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Iridoids , Mice, Nude , Proto-Oncogene Proteins p21(ras) , Humans , Iridoids/pharmacology , Iridoids/chemistry , Animals , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Mice , Molecular Structure , Apoptosis/drug effects , Drug Discovery , Cell Line, Tumor , Mutation , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism
3.
Surg Today ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39083120

ABSTRACT

PURPOSE: Unresectable recurrence is a critical predictor of outcomes for colorectal cancer patients. We attempted to identify the prognostic factors, especially for unresectable recurrence-free survival (URFS) as a new endpoint, in patients with resectable colorectal liver-only metastasis (CRLOM). METHODS: We investigated patients with resectable CRLOM, who underwent an R0 resection for both CRC and CRLOM between January, 2014 and March, 2019 at a single institution. The exclusion criteria were patients who received neoadjuvant treatment, the absence of data for genetic analyses, and the presence of multiple cancers, synchronous CRC, or familial adenomatous polyposis. The prognostic factors were examined retrospectively using data on pre-hepatectomy factors, including primary tumor molecular profiling results. RESULTS: We analyzed the data of 101 patients who underwent curative-intent surgery for CRLOM. Multivariate analysis revealed that KRAS G12D mutation-positivity (hazard ratio [HR]: 7.69; p < 0.01), RYR2 mutation-positivity (HR: 4.03; p < 0.01), and KRAS G12S mutation-positivity (HR: 3.96; p = 0.03), CA19-9 > 37 U/ml before hepatectomy (HR: 3.62; p < 0.01), and primary tumor pN2 stage (HR: 3.22; p = 0.03) were significant predictors of the URFS. CONCLUSIONS: This is the first study to show that specific KRAS and RYR2 mutations were associated with the URFS.

4.
Int J Mol Sci ; 25(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473821

ABSTRACT

Mutated genes may lead to cancer development in numerous tissues. While more than 600 cancer-causing genes are known today, some of the most widespread mutations are connected to the RAS gene; RAS mutations are found in approximately 25% of all human tumors. Specifically, KRAS mutations are involved in the three most lethal cancers in the U.S., namely pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and lung adenocarcinoma. These cancers are among the most difficult to treat, and they are frequently excluded from chemotherapeutic attacks as hopeless cases. The mutated KRAS proteins have specific three-dimensional conformations, which perturb functional interaction with the GAP protein on the GAP-RAS complex surface, leading to a signaling cascade and uncontrolled cell growth. Here, we describe a gluing docking method for finding small molecules that bind to both the GAP and the mutated KRAS molecules. These small molecules glue together the GAP and the mutated KRAS molecules and may serve as new cancer drugs for the most lethal, most difficult-to-treat, carcinomas. As a proof of concept, we identify two new, drug-like small molecules with the new method; these compounds specifically inhibit the growth of the PANC-1 cell line with KRAS mutation G12D in vitro and in vivo. Importantly, the two new compounds show significantly lower IC50 and higher specificity against the G12D KRAS mutant human pancreatic cancer cell line PANC-1, as compared to the recently described selective G12D KRAS inhibitor MRTX-1133.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Pancreatic Neoplasms , Humans , Proto-Oncogene Proteins p21(ras)/metabolism , Pancreatic Neoplasms/pathology , Adenocarcinoma/genetics , Drug Development
5.
Curr Issues Mol Biol ; 45(3): 2136-2156, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36975507

ABSTRACT

The KRAS G12D mutation is very frequent in many cancers, such as pancreatic, colon and lung, and has remained undruggable for the past three decades, due to its smooth surface and lack of suitable pockets. Recent small pieces of evidence suggest that targeting the switch I/II of KRAS G12D mutant could be an efficient strategy. Therefore, in the present study, we targeted the switch I (residues 25-40) and switch II (residues 57-76) regions of KRAS G12D with dietary bioflavonoids in comparison with the reference KRAS SI/II inhibitor BI-2852. Initially, we screened 925 bioflavonoids based on drug-likeness properties, and ADME properties and selected 514 bioflavonoids for further studies. Molecular docking resulted in four lead bioflavonoids, namely 5-Dehydroxyparatocarpin K (L1), Carpachromene (L2), Sanggenone H (L3), and Kuwanol C (L4) with binding affinities of 8.8 Kcal/mol, 8.64 Kcal/mol, 8.62 Kcal/mol, and 8.58 Kcal/mol, respectively, in comparison with BI-2852 (-8.59 Kcal/mol). Further steered-molecular dynamics, molecular-dynamics simulation, toxicity, and in silico cancer-cell-line cytotoxicity predictions significantly support these four lead bioflavonoids as potential inhibitors of KRAS G12D SI/SII inhibitors. We finally conclude that these four bioflavonoids have potential inhibitory activity against the KRAS G12D mutant, and are further to be studied in vitro and in vivo, to evaluate their therapeutic potential and the utility of these compounds against KRAS G12D mutated cancers.

6.
Toxicol Appl Pharmacol ; 474: 116601, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37321326

ABSTRACT

Two potent and selective KRASG12D inhibitors, ERAS-4693 and ERAS-5024, were generated as possible clinical candidates to treat patients harboring G12D mutations in solid tumors. Both molecules exhibited strong anti-tumor activity in the KRASG12D mutant PDAC xenograft mouse models while ERAS-5024 also showed tumor growth inhibition when administered on an intermittent dosing regimen. Acute dose-limiting toxicity consistent with an allergic reaction was observed for both molecules shortly after administration at doses just above those which demonstrated anti-tumor activity, indicative of a narrow therapeutic index. A series of studies were subsequently conducted to identify a common underlying mechanism for the observed toxicity, including CETSA® (Cellular Thermal Shift Assay) as well as several functional off-target screens. Both ERAS-4693 and ERAS-5024 were identified to agonize MRGPRX2 which has been linked to pseudo-allergic reactions. In vivo toxicologic characterization of both molecules included repeat-dose studies in the rat and dog. Dose-limiting toxicities were observed in both species with ERAS-4693 and ERAS-5024 and plasma exposure levels at the maximum tolerated doses were generally below that which caused strong anti-tumor activity, supporting the initial observation of a narrow therapeutic index. Additional overlapping toxicities included a reduction in reticulocytes and clinical pathological changes suggestive of an inflammatory response. Furthermore, increases in plasma histamine were observed in dogs administered ERAS-5024, supporting the hypothesis that MRGPRX2 agonism may be the cause of the pseudo-allergic reaction. This work highlights the importance of balancing both the safety and efficacy of KRASG12D inhibitors as this class of molecules begins to enter clinical development.


Subject(s)
Hypersensitivity , Pancreatic Neoplasms , Humans , Mice , Rats , Animals , Dogs , Proto-Oncogene Proteins p21(ras)/genetics , Pancreatic Neoplasms/pathology , Mutation , Nerve Tissue Proteins , Receptors, Neuropeptide/genetics , Receptors, G-Protein-Coupled/genetics
7.
Proc Natl Acad Sci U S A ; 117(23): 12826-12835, 2020 06 09.
Article in English | MEDLINE | ID: mdl-32461371

ABSTRACT

Complete cancer regression occurs in a subset of patients following adoptive T cell therapy (ACT) of ex vivo expanded tumor-infiltrating lymphocytes (TILs). However, the low success rate presents a great challenge to broader clinical application. To provide insight into TIL-based immunotherapy, we studied a successful case of ACT where regression was observed against tumors carrying the hotspot mutation G12D in the KRAS oncogene. Four T cell receptors (TCRs) made up the TIL infusion and recognized two KRAS-G12D neoantigens, a nonamer and a decamer, all restricted by human leukocyte antigen (HLA) C*08:02. Three of them (TCR9a, 9b, and 9c) were nonamer-specific, while one was decamer-specific (TCR10). We show that only mutant G12D but not the wild-type peptides stabilized HLA-C*08:02 due to the formation of a critical anchor salt bridge to HLA-C. Therapeutic TCRs exhibited high affinities, ranging from nanomolar to low micromolar. Intriguingly, TCR binding affinities to HLA-C inversely correlated with their persistence in vivo, suggesting the importance of antigenic affinity in the function of therapeutic T cells. Crystal structures of TCR-HLA-C complexes revealed that TCR9a to 9c recognized G12D nonamer with multiple conserved contacts through shared CDR2ß and CDR3α. This allowed CDR3ß variation to confer different affinities via a variable HLA-C contact, generating an oligoclonal response. TCR10 recognized an induced and distinct G12D decamer conformation. Thus, this successful case of ACT included oligoclonal TCRs of high affinity recognizing distinct conformations of neoantigens. Our study revealed the potential of a structural approach to inform clinical efforts in targeting KRAS-G12D tumors by immunotherapy and has general implications for T cell-based immunotherapies.


Subject(s)
Antigens, Neoplasm/immunology , Immunotherapy, Adoptive/methods , Proto-Oncogene Proteins p21(ras)/genetics , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Antigen Presentation , Antigens, Neoplasm/chemistry , Binding Sites , HLA-C Antigens/chemistry , HLA-C Antigens/immunology , Humans , Jurkat Cells , Mutation, Missense , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/immunology , Protein Binding , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/immunology , Receptors, Antigen, T-Cell/chemistry
8.
Molecules ; 28(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37513471

ABSTRACT

"Undruggable" targets such as KRAS are particularly challenging in the development of drugs. We devised a novel chemical knockdown strategy, CANDDY (Chemical knockdown with Affinity aNd Degradation DYnamics) technology, which promotes protein degradation using small molecules (CANDDY molecules) that are conjugated to a degradation tag (CANDDY tag) modified from proteasome inhibitors. We demonstrated that CANDDY tags allowed for direct proteasomal target degradation independent of ubiquitination. We synthesized a KRAS-degrading CANDDY molecule, TUS-007, which induced degradation in KRAS mutants (G12D and G12V) and wild-type KRAS. We confirmed the tumor suppression effect of TUS-007 in subcutaneous xenograft models of human colon cells (KRAS G12V) with intraperitoneal administrations and in orthotopic xenograft models of human pancreatic cells (KRAS G12D) with oral administrations. Thus, CANDDY technology has the potential to therapeutically target previously undruggable proteins, providing a simpler and more practical drug targeting approach and avoiding the difficulties in matchmaking between the E3 enzyme and the target.


Subject(s)
Proteins , Proto-Oncogene Proteins p21(ras) , Animals , Humans , Proto-Oncogene Proteins p21(ras)/genetics , Disease Models, Animal , Ubiquitination , Mutation
9.
Mikrochim Acta ; 189(2): 75, 2022 01 27.
Article in English | MEDLINE | ID: mdl-35083578

ABSTRACT

Rapid and selective sensing of KRAS gene mutation which plays a crucial role in the development of colorectal, pancreatic, and lung cancers is of great significance in the early diagnosis of cancers. In the current study, we developed a simple electrochemical biosensor by differential pulse voltammetry technique for the specific detection of KRAS mutation that uses the mismatch-specific cleavage activity of T7-Endonuclease I (T7EI) coupled with horseradish peroxidase (HRP) to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) substrate in the presence of hydrogen peroxide (H2O2). In addition, we synthesized the nanocomposite composed of multi-walled carbon nanotube/chitosan-ionic liquid/gold nanoparticles (MWCNT/Chit-IL/AuNPs) on screen-printed carbon electrode surface to increase the electrode surface area and electrochemical signal. In principle, T7E1 enzyme recognized and cleaved the mismatched site formed by the presence of KRAS gene mutation, removing 5'-biotin of capture probes and subsequently reducing the differential pulse voltammetry signal compared to wild-type KRAS gene. With this proposed strategy, a limit of detection of 11.89 fM was achieved with a broad linear relationship from 100 fM to 1 µM and discriminated 0.1% of mutant genes from the wild-type target genes. This confirms that the developed biosensor is a potential platform for the detection of mutations in early disease diagnosis.


Subject(s)
Deoxyribonuclease I/metabolism , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Horseradish Peroxidase/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Breast Neoplasms , Cell Line, Tumor , Chitosan , Colonic Neoplasms , Deoxyribonuclease I/genetics , Electrodes , Female , Gene Expression Regulation, Neoplastic , Gold/chemistry , Humans , Ionic Liquids , Metal Nanoparticles/chemistry , Mutation , Nanotubes, Carbon , Signal Transduction
10.
Nano Lett ; 21(21): 9061-9068, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34672610

ABSTRACT

Cell-free DNA (cfDNA) analysis, specifically circulating tumor DNA (ctDNA) analysis, provides enormous opportunities for noninvasive early assessment of cancers. To date, PCR-based methods have led this field. However, the limited sensitivity/specificity of PCR-based methods necessitates the search for new methods. Here, we describe a direct approach to detect KRAS G12D mutated genes in clinical ctDNA samples with the utmost LOD and sensitivity/specificity. In this study, MutS protein was immobilized on the tip of an atomic force microscope (AFM), and the protein sensed the mismatched sites of the duplex formed between the capture probe on the surface and mutated DNA. A noteworthy LOD (3 copies, 0.006% allele frequency) was achieved, along with superb sensitivity/specificity (100%/100%). These observations demonstrate that force-based AFM, in combination with the protein found in nature and properly designed capture probes/blockers, represents an exciting new avenue for ctDNA analysis.


Subject(s)
Circulating Tumor DNA , Neoplasms , Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Humans , Mutation , Point Mutation , Sensitivity and Specificity
11.
Biochem Biophys Res Commun ; 526(4): 880-888, 2020 06 11.
Article in English | MEDLINE | ID: mdl-32279996

ABSTRACT

Pancreatic cancer is associated with high mortality, and pancreatic ductal adenocarcinoma (PDAC) is its most common subtype. The rapid growth of PDAC is dependent on the non-canonical pathway of glutamine (Gln) utilization, and loss of heterozygosity for KrasG12D (KrasG12D-LOH) frequently observed in PDAC is associated with an aggressive and invasive phenotype. However, it remains unclear whether KrasG12D-LOH contributes to non-canonical Gln metabolism in PDAC. Here, we showed that KrasG12D-LOH leads to a substantial increase in non-canonical Gln metabolism in PDAC cells. Importantly, we observed elevated expression of regulated in DNA damage and development 1 (REDD1), which is activated in response to hypoxia and nutrient deprivation, in KrasG12D-LOH PDAC, and that REDD1 knockdown efficiently repressed KrasG12D-LOH-regulated Gln metabolism and suppressed proliferation, migration, and invasion of KrasG12D-LOH PDAC cells. These data provide evidence that REDD1 is a downstream target of KrasG12D-LOH and is involved in promoting non-canonical Gln metabolism in PDAC.


Subject(s)
Adenocarcinoma/genetics , Carcinoma, Pancreatic Ductal/genetics , Glutamine/metabolism , Loss of Heterozygosity/genetics , Mutation/genetics , Pancreatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Transcription Factors/metabolism , Adenocarcinoma/metabolism , Apoptosis/genetics , Carcinoma, Pancreatic Ductal/metabolism , Cell Cycle/genetics , Cell Hypoxia , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Disease Progression , Gene Knockdown Techniques , Humans , Neoplasm Invasiveness , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
12.
Biochem Genet ; 57(6): 767-780, 2019 Dec.
Article in English | MEDLINE | ID: mdl-30997628

ABSTRACT

Sporadic colorectal cancer (CRC) is a fatal disease, mostly known as the silent killer, due to the fact that this disease is asymptomatic before diagnosis in advanced stage. Screening and the early detection of CRC and colorectal adenoma (CRA) by non-aggressive molecular biomarkers' signature is useful for improvement of survival rate in CRC patients. To achieve such a goal, a better understanding of distinct molecular abnormalities as candidate biomarkers in CRC development is crucial. In this study, seventy-five archived FFPE CRC samples, including colorectal adenocarcinoma, adenomatous polyps (adenoma), and adjacent non-neoplastic mucosa were collected for the investigation by Sanger sequencing at the DNA level and by real-time PCR at the RNA level. The results of the KRAS mutational analysis have shown that the majority of somatic mutations in the KRAS affect only one codon, mainly codon 12(p.G12D) with low frequency in adenomas (13.3%) versus CRCs (36%). The results of dysregulated epigenetic changes of miR-21 clearly showed upregulation of expression in colorectal adenocarcinoma, compared to non-neoplastic mucosa, in colorectal adenoma vs non-neoplastic mucosa: (p < 0.001) and in CRC versus adenoma (p < 0.001); while miR-148a expression were significantly downregulated in CRC, compared to non-neoplastic mucosa, in colorectal adenoma vs non-neoplastic mucosa, and in adenoma vs CRC (p < 0.001). Our findings support the important role of miR-21 in stages I-II of CRC, and the KRAS G12D mutant, and differential miR-148a expression, in advanced stages of CRC.


Subject(s)
Adenoma/genetics , Carcinoma/genetics , Colorectal Neoplasms/genetics , Genes, ras , MicroRNAs/genetics , Mutation , Adenoma/pathology , Carcinoma/pathology , Colorectal Neoplasms/pathology , Female , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Sequence Analysis, DNA
13.
Heliyon ; 10(7): e28495, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38617914

ABSTRACT

Oncogenic RAS mutations, commonly observed in human tumors, affect approximately 30% of cancer cases and pose a significant challenge for effective cancer treatment. Current strategies to inhibit the KRAS G12D mutation have shown limited success, emphasizing the urgent need for new therapeutic approaches. In this study, we designed and synthesized several purine and pyrimidine analogs as inhibitors for the KRAS G12D mutation. Our synthesized compounds demonstrated potent anticancer activity against cell lines with the KRAS G12D mutation, effectively impeding their growth. They also exhibited low toxicity in normal cells, indicating their selective action against cancer cells harboring the KRAS G12D mutation. Notably, the lead compound, PU1-1 induced the programmed cell death of KRAS G12D-mutated cells and reduced the levels of active KRAS and its downstream signaling proteins. Moreover, PU1-1 significantly shrunk the tumor size in a pancreatic xenograft model induced by the KRAS G12D mutation, further validating its potential as a therapeutic agent. These findings highlight the potential of purine-based KRAS G12D inhibitors as candidates for targeted cancer therapy. However, further exploration and optimization of these compounds are essential to meet the unmet clinical needs of patients with KRAS-mutant cancers.

14.
Int J Biol Macromol ; 274(Pt 2): 133374, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925182

ABSTRACT

KRAS G12D is the most common oncogenic mutation identified in several types of cancer. Therefore, design of inhibitors targeting KRAS G12D represents a promising strategy for anticancer therapy. MRTX1133 is a highly potent inhibitor (approximate experiment Kd ≈ 0.0002 nM) of KRAS G12D and is currently in Phase 1/2 study, however, pathways of the compound binding to KRAS G12D has remained unknown, and the mechanism underlying the complicated dynamic process are challenging to capture experimentally, which hinder the structure-based anti-cancer drug design. Here, using MRTX1133 as a probe, unbiased molecular dynamics (MD) was used to simulate the process of MRTX1133 spontaneously binding to KRAS G12D. In six of 42 independent MD simulation (a total of 99 µs), MRTX1133 was observed to successfully associate with KRAS G12D. The kinetically metastable states refer to the potential pathways of MRTX1133 binding to KRAS G12D were revealed by Markov state models (MSM) analysis. Additionally, 8 key residues that are essential for MRTX1133 recognition and tight binding at the preferred low energy states were identified by MM/GBSA analysis. In sum, this study provides a new perspective on understanding the pathways and mechanism of MRTX1133 binding to KRAS G12D.


Subject(s)
Markov Chains , Molecular Dynamics Simulation , Protein Binding , Proto-Oncogene Proteins p21(ras) , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Humans , Mutation , Heterocyclic Compounds, 2-Ring , Naphthalenes
15.
Cancer Cell ; 42(7): 1286-1300.e8, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38942026

ABSTRACT

KRAS G12D is the most frequently mutated oncogenic KRAS subtype in solid tumors and remains undruggable in clinical settings. Here, we developed a high affinity, selective, long-acting, and non-covalent KRAS G12D inhibitor, HRS-4642, with an affinity constant of 0.083 nM. HRS-4642 demonstrated robust efficacy against KRAS G12D-mutant cancers both in vitro and in vivo. Importantly, in a phase 1 clinical trial, HRS-4642 exhibited promising anti-tumor activity in the escalating dosing cohorts. Furthermore, the sensitization and resistance spectrum for HRS-4642 was deciphered through genome-wide CRISPR-Cas9 screening, which unveiled proteasome as a sensitization target. We further observed that the proteasome inhibitor, carfilzomib, improved the anti-tumor efficacy of HRS-4642. Additionally, HRS-4642, either as a single agent or in combination with carfilzomib, reshaped the tumor microenvironment toward an immune-permissive one. In summary, this study provides potential therapies for patients with KRAS G12D-mutant cancers, for whom effective treatments are currently lacking.


Subject(s)
Mutation , Proteasome Inhibitors , Proto-Oncogene Proteins p21(ras) , Humans , Proteasome Inhibitors/pharmacology , Proteasome Inhibitors/therapeutic use , Proto-Oncogene Proteins p21(ras)/genetics , Mice , Animals , Xenograft Model Antitumor Assays , Oligopeptides/pharmacology , Cell Line, Tumor , Female , Neoplasms/drug therapy , Neoplasms/genetics , Tumor Microenvironment/drug effects , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Proteasome Endopeptidase Complex/metabolism , Proteasome Endopeptidase Complex/genetics , Mice, Nude
16.
Cancer Lett ; 586: 216694, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38307409

ABSTRACT

The KRASG12D mutation was believed to be locked in a GTP-bound form, rendering it fully active. However, recent studies have indicated that the presence of mutant KRAS alone is insufficient; it requires additional activation through inflammatory stimuli to effectively drive the development of pancreatic ductal adenocarcinoma (PDAC). It remains unclear to what extent RAS activation occurs during the development of PDAC in the context of inflammation. Here, in a mouse model with the concurrent expression of KrasG12D/+ and inflammation mediator IKK2 in pancreatic acinar cells, we showed that, compared to KRASG12D alone, the cooperative interaction between KRASG12D and IKK2 rapidly elevated both the protein level and activity of KRASG12D and NRAS in a short term. This high level was sustained throughout the rest phase of PDAC development. These results suggest that inflammation not only rapidly augments the activity but also the protein abundance, leading to an enhanced total amount of GTP-bound RAS (KRASG12D and NRAS) in the early stage. Notably, while KRASG12D could be further activated by IKK2, not all KRASG12D proteins were in the GTP-bound state. Overall, our findings suggest that although KRASG12D is not fully active in the context of inflammation, concurrent increases in both the protein level and activity of KRASG12D as well as NRAS at the early stage by inflammation contribute to the rise in total GTP-bound RAS.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Mice , Animals , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , ras Proteins/metabolism , Pancreatic Neoplasms/pathology , Carcinoma, Pancreatic Ductal/pathology , Mutation , Inflammation/genetics , Guanosine Triphosphate
17.
Front Neurol ; 15: 1466946, 2024.
Article in English | MEDLINE | ID: mdl-39385823

ABSTRACT

The RASopathies, collectively, are a spectrum of genetic syndromes caused by mutations in genes involved in the RAS/ mitogen-activated protein kinase (MAPK) pathway, including but not limited to PTPN11, NRAS, KRAS, HRAS, BRAF, and MAP2K1. Recognized RASopathy conditions include neurofibromatosis type 1 (NF1), Noonan syndrome, capillary malformation-arteriovenous malformation syndrome, Costello syndrome, cardiofacio-cutaneous (CFC) syndrome, LEOPARD syndrome and Legius syndrome. The RASopathies often display overlapping clinical features, presumably owing to common RAS-MAPK signaling pathway activation driving dysregulated cell proliferation. Epidermal nevus syndromes (ENS) are described as the presence of epidermal nevi, in individuals also affected by extra-cutaneous organ system involvement, and there is recent recognition of mosaic RAS mutations as molecular drivers of ENS. Currently, no curative treatments exist for RASopathy driven conditions, but rather symptom-directed management is the currently accepted standard. Here, we detail a unique case of a child exhibiting diffuse spinal nerve root hypertrophy in the context of epidermal nevus syndrome driven by molecularly confirmed KRAS G12D mosaicism, treated with the MEK 1/2 inhibitor selumetinib. Herein, we report the response of this patient to targeted therapy of more than two years' duration, including stabilization of multilevel nerve root hypertrophy as well as significant improvement in epidermal nevi. While the effectiveness of MEK inhibitors such as selumetinib is established in NF1-associated inoperable plexiform neurofibromas, their use in managing hyperactive KRAS-driven epidermal nevi and hypertrophic neuropathy remains unproven, and this case, to our knowledge, is the first such case to be reported. Shared molecular dysregulation and overlapping clinical features between these conditions suggest potential for effective therapeutic application of MEK directed therapy to address a range of conditions resulting from germline and/ or mosaic expression of aberrantly regulated RAS signaling.

18.
Clin Transl Oncol ; 26(4): 836-850, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37490263

ABSTRACT

PURPOSE: Mutations in the Kirsten rat sarcoma viral (KRAS) oncogene constitute a significant driver of lung adenocarcinoma, present in 10-40% of patients, which exhibit heterogeneous clinical outcomes, mainly driven by concurrent genetic alterations. However, characterization of KRAS mutational subtypes and their impact on clinical outcomes in Latin America is limited. METHODS: A cohort study was conducted at the National Cancer Institute (INCan) of Mexico. Individuals with advance-staged of adenocarcinoma and KRAS mutations, detected by next-generation sequencing, having undergone at least one line of therapy were included for analysis. Clinical and pathological characteristics were retrieved from institutional database from June 2014 to March 2023. RESULTS: KRAS was identified in fifty-four (15.6%) of 346 patients, among which 50 cases were included for analysis. KRASG12D (n = 16, 32%) and KRASG12C (n = 16, 32%) represented the most prevalent subtypes. KRASG12D mutations were associated with female (p = 0.018), never smokers (p = 0.108), and concurrences with EGFR (25.0% vs. 17.6%, p = 0.124) and CDKN2A (18.8% vs. 14.7%, p = 0.157). KRASG12D patients showed a better ORR (66.6% vs. 30.0%; OR 4.66, 95% CI 1.23-17.60, p = 0.023) and on multivariate analysis was significantly associated with better PFS (HR 0.36, 95% CI 0.16-0.80; p = 0.012) and OS (HR 0.24, 95% CI 0.08-0.70; p = 0.009). CONCLUSIONS: To our knowledge, this study represents the first effort to comprehensively characterize the molecular heterogeneity of KRAS-mutant NSCLC in Latin American patients. Our data reinforce the current view that KRAS-mutated NSCLC is not a single oncogene-driven disease and emphasizes the prognostic impact of diverse molecular profiles in this genomically defined subset of NSCLC. Further validation is warranted in larger multicenter Latin American cohorts to confirm our findings.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proto-Oncogene Proteins p21(ras) , Female , Humans , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cohort Studies , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics
19.
Int J Biol Macromol ; 270(Pt 2): 132477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38772459

ABSTRACT

KRASG12D are the most prevalent oncogenic mutations and a promising target for solid tumor therapies. However, its inhibition exhibits tremendous challenge due to the necessity of high binding affinity to obviate the need for covalent binders. Here we report the evidence of a novel class of Imidazo[1,2-a]pyridine derivative as potentially significant novel inhibitors of KRASG12D, discovered through extensive ligand-based screening against 2-[(2R)-piperidin-2-yl]-1H-indole, an important scaffold for KRASG12D inhibition via switch-I/II (S-I/II) pocket. The proposed compounds exhibited similar binding affinities and overlapped pose configurations to 2-[(2R)-piperidin-2-yl]-1H-indole, serving as a reliable starting point for drug discovery. Comparative free energy profiles demonstrated that C4 [2-methyl-3-((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)imidazo[1,2-a]pyridine] effectively shifted the protein to a stable low-energy conformation via a prominent transition state. The conformational changes across the transition revealed the conformational shift of switch-I and II to a previously known off-like conformation of inactive KRASG12D with rmsd of 0.91 Å. These conformations were even more prominent than the privileged scaffold 2-[(2R)-piperidin-2-yl]-1H-indole. The representative structure overlay of C4 and another X-ray crystallography solved BI-2852 bound inactive KRASG12D revealed that Switch-I and II exhibited off-like conformations. The cumulative variance across the first eigenvalue that accounted for 57 % of the collective variance validated this on-to-off transition. In addition, the relative interaction of C4 binding showed consistent patterns with BI-2852. Taken together, our results support the inhibitory activity of [2-methyl-3-((5-phenyl-1H-1,2,4-triazol-3-yl)methyl)imidazo[1,2-a]pyridine] by shifting active KRASG12D to an inactive conformation.


Subject(s)
Proto-Oncogene Proteins p21(ras) , Pyridines , Pyridines/chemistry , Pyridines/pharmacology , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Protein Conformation , Molecular Docking Simulation , Protein Binding , Mutation
20.
Pharmaceuticals (Basel) ; 17(5)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38794122

ABSTRACT

Single-point mutations in the Kirsten rat sarcoma (KRAS) viral proto-oncogene are the most common cause of human cancer. In humans, oncogenic KRAS mutations are responsible for about 30% of lung, pancreatic, and colon cancers. One of the predominant mutant KRAS G12D variants is responsible for pancreatic cancer and is an attractive drug target. At the time of writing, no Food and Drug Administration (FDA) approved drugs are available for the KRAS G12D mutant. So, there is a need to develop an effective drug for KRAS G12D. The process of finding new drugs is expensive and time-consuming. On the other hand, in silico drug designing methodologies are cost-effective and less time-consuming. Herein, we employed machine learning algorithms such as K-nearest neighbor (KNN), support vector machine (SVM), and random forest (RF) for the identification of new inhibitors against the KRAS G12D mutant. A total of 82 hits were predicted as active against the KRAS G12D mutant. The active hits were docked into the active site of the KRAS G12D mutant. Furthermore, to evaluate the stability of the compounds with a good docking score, the top two complexes and the standard complex (MRTX-1133) were subjected to 200 ns MD simulation. The top two hits revealed high stability as compared to the standard compound. The binding energy of the top two hits was good as compared to the standard compound. Our identified hits have the potential to inhibit the KRAS G12D mutation and can help combat cancer. To the best of our knowledge, this is the first study in which machine-learning-based virtual screening, molecular docking, and molecular dynamics simulation were carried out for the identification of new promising inhibitors for the KRAS G12D mutant.

SELECTION OF CITATIONS
SEARCH DETAIL