Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Bacteriol ; 206(4): e0030823, 2024 04 18.
Article in English | MEDLINE | ID: mdl-38534107

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) controls lipopolysaccharide (LPS) biosynthesis by regulating proteolysis of LpxC, the rate-limiting enzyme and target of preclinical antibiotics. PbgA/YejM/LapC regulates LpxC levels and controls outer membrane (OM) LPS composition at the log-to-stationary phase transition. Suppressor substitutions in LPS assembly protein B (LapB/YciM) rescue the LPS and OM integrity defects of pbgA-mutant S. Typhimurium. We hypothesized that PbgA regulates LpxC proteolysis by controlling LapB's ability to bind LpxC as a function of the growth phase. According to existing models, when nutrients are abundant, PbgA binds and restricts LapB from interacting with LpxC and FtsH, which limits LpxC proteolysis. However, when nutrients are limited, there is debate whether LapB dissociates from PbgA to bind LpxC and FtsH to enhance degradation. We sought to examine these models and investigate how the structure of LapB enables salmonellae to control LpxC proteolysis and LPS biosynthesis. Salmonellae increase LapB levels during the stationary phase to promote LpxC degradation, which limits lipid A-core production and increases their survival. The deletion of lapB, resulting in unregulated lipid A-core production and LpxC overabundance, leads to bacterial growth retardation. Tetratricopeptide repeats near the cytosol-inner membrane interface are sufficient for LapB to bind LpxC, and remarkably, LapB and PbgA interact in both growth phases, yet LpxC only associates with LapB in the stationary phase. Our findings support that PbgA-LapB exists as a constitutive complex in S. Typhimurium, which differentially binds LpxC to control LpxC proteolysis and limit lipid A-core biosynthesis in response to changes in the environment.IMPORTANCEAntimicrobial resistance has been a costly setback for human health and agriculture. Continued pursuit of new antibiotics and targets is imperative, and an improved understanding of existing ones is necessary. LpxC is an essential target of preclinical trial antibiotics that can eliminate multidrug-resistant Gram-negative bacterial infections. LapB is a natural LpxC inhibitor that targets LpxC for degradation and limits lipopolysaccharide production in Enterobacteriaceae. Contrary to some studies, findings herein support that LapB remains in complex instead of dissociating from its presumed negative regulator, PbgA/YejM/LapC, under conditions where LpxC proteolysis is enhanced. Advanced comprehension of this critical protein-lipid signaling network will lead to future development and refinement of small molecules that can specifically interfere.


Subject(s)
Escherichia coli Proteins , Lipopolysaccharides , Humans , Lipopolysaccharides/metabolism , Lipid A , Escherichia coli/metabolism , Proteolysis , Salmonella typhimurium/metabolism , Anti-Bacterial Agents/metabolism , Amidohydrolases/metabolism , Escherichia coli Proteins/metabolism , Membrane Proteins/metabolism
2.
Int J Mol Sci ; 24(20)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37894855

ABSTRACT

Gram-negative bacteria, such as Escherichia coli, are characterized by an asymmetric outer membrane (OM) with lipopolysaccharide (LPS) located in the outer leaflet and phospholipids facing the inner leaflet. E. coli recruits LPS assembly proteins LapB, LapC and LapD in concert with FtsH protease to ensure a balanced biosynthesis of LPS and phospholipids. We recently reported that bacteria either lacking the periplasmic domain of the essential LapC protein (lapC190) or in the absence of LapD exhibit an elevated degradation of LpxC, which catalyzes the first committed step in LPS biosynthesis. To further understand the functions of LapC and LapD in regulating LPS biosynthesis, we show that the overproduction of the intact LapD suppresses the temperature sensitivity (Ts) of lapC190, but not when either its N-terminal transmembrane anchor or specific conserved amino acids in the C-terminal domain are mutated. Moreover, overexpression of srrA, marA, yceJ and yfgM genes can rescue the Ts phenotype of lapC190 bacteria by restoring LpxC amounts. We further show that MarA-mediated suppression requires the expression of mla genes, whose products participate in the maintenance of OM asymmetry, and the SrrA-mediated suppression requires the presence of cardiolipin synthase A.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Escherichia coli/metabolism , Lipopolysaccharides/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Mutation , Phospholipids/metabolism
3.
Int J Mol Sci ; 23(21)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36362320

ABSTRACT

Steroids with a nitrogen-containing heterocycle in the side chain are known as effective inhibitors of androgen signaling and/or testosterone biosynthesis, thus showing beneficial effects for the treatment of prostate cancer. In this work, a series of 3ß-hydroxy-5-ene steroids, containing an isoxazole fragment in their side chain, was synthesized. The key steps included the preparation of Weinreb amide, its conversion to acetylenic ketones, and the 1,2- or 1,4-addition of hydroxylamine, depending on the solvent used. The biological activity of the obtained compounds was studied in a number of tests, including their effects on 17α-hydroxylase and 17,20-lyase activity of human CYP17A1 and the ability of selected compounds to affect the downstream androgen receptor signaling. Three derivatives diminished the transcriptional activity of androgen receptor and displayed reasonable antiproliferative activity. The candidate compound, 24j (17R)-17-((3-(2-hydroxypropan-2-yl)isoxazol-5-yl)methyl)-androst-5-en-3ß-ol, suppressed the androgen receptor signaling and decreased its protein level in two prostate cancer cell lines, LNCaP and LAPC-4. Interaction of compounds with CYP17A1 and the androgen receptor was confirmed and described by molecular docking.


Subject(s)
Antineoplastic Agents , Prostatic Neoplasms , Male , Humans , Receptors, Androgen/metabolism , Molecular Docking Simulation , Steroid 17-alpha-Hydroxylase/metabolism , Antineoplastic Agents/chemistry , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Steroids/pharmacology , Steroids/therapeutic use , Cell Line, Tumor
4.
Int J Mol Sci ; 23(17)2022 Aug 26.
Article in English | MEDLINE | ID: mdl-36077106

ABSTRACT

Lipopolysaccharide (LPS) constitutes the major component of the outer membrane and is essential for bacteria, such as Escherichia coli. Recent work has revealed the essential roles of LapB and LapC proteins in regulating LPS amounts; although, if any additional partners are involved is unknown. Examination of proteins co-purifying with LapB identified LapD as a new partner. The purification of LapD reveals that it forms a complex with several proteins involved in LPS and phospholipid biosynthesis, including FtsH-LapA/B and Fab enzymes. Loss of LapD causes a reduction in LpxC amounts and vancomycin sensitivity, which can be restored by mutations that stabilize LpxC (mutations in lapB, ftsH and lpxC genes), revealing that LapD acts upstream of LapB-FtsH in regulating LpxC amounts. Interestingly, LapD absence results in the substantial retention of LPS in the inner membranes and synthetic lethality when either the lauroyl or the myristoyl acyl transferase is absent, which can be overcome by single-amino acid suppressor mutations in LPS flippase MsbA, suggesting LPS translocation defects in ΔlapD bacteria. Several genes whose products are involved in cell envelope homeostasis, including clsA, waaC, tig and micA, become essential in LapD's absence. Furthermore, the overproduction of acyl carrier protein AcpP or transcriptional factors DksA, SrrA can overcome certain defects of the LapD-lacking strain.


Subject(s)
Amidohydrolases/metabolism , Escherichia coli Proteins/metabolism , Lipopolysaccharides , Oxidoreductases/metabolism , Acyltransferases/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Lipopolysaccharides/metabolism , Suppression, Genetic
5.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article in English | MEDLINE | ID: mdl-35008618

ABSTRACT

The outer membrane (OM) of Gram-negative bacteria, such as Escherichia coli, is essential for their viability. Lipopolysaccharide (LPS) constitutes the major component of OM, providing the permeability barrier, and a tight balance exists between LPS and phospholipids amounts as both of these essential components use a common metabolic precursor. Hence, checkpoints are in place, right from the regulation of the first committed step in LPS biosynthesis mediated by LpxC through its turnover by FtsH and HslUV proteases in coordination with LPS assembly factors LapB and LapC. After the synthesis of LPS on the inner leaflet of the inner membrane (IM), LPS is flipped by the IM-located essential ATP-dependent transporter to the periplasmic face of IM, where it is picked up by the LPS transport complex spanning all three components of the cell envelope for its delivery to OM. MsbA exerts its intrinsic hydrocarbon ruler function as another checkpoint to transport hexa-acylated LPS as compared to underacylated LPS. Additional checkpoints in LPS assembly are: LapB-assisted coupling of LPS synthesis and translocation; cardiolipin presence when LPS is underacylated; the recruitment of RfaH transcriptional factor ensuring the transcription of LPS core biosynthetic genes; and the regulated incorporation of non-stoichiometric modifications, controlled by the stress-responsive RpoE sigma factor, small RNAs and two-component systems.


Subject(s)
Escherichia coli/metabolism , Lipopolysaccharides/biosynthesis , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Lipopolysaccharides/chemistry , Models, Biological , Mutation/genetics , Phospholipids/biosynthesis , Proteolysis
6.
Int J Mol Sci ; 22(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065855

ABSTRACT

To identify the physiological factors that limit the growth of Escherichia coli K-12 strains synthesizing minimal lipopolysaccharide (LPS), we describe the first construction of strains devoid of the entire waa locus and concomitantly lacking all three acyltransferases (LpxL/LpxM/LpxP), synthesizing minimal lipid IVA derivatives with a restricted ability to grow at around 21 °C. Suppressors restoring growth up to 37 °C of Δ(gmhD-waaA) identified two independent single-amino-acid substitutions-P50S and R310S-in the LPS flippase MsbA. Interestingly, the cardiolipin synthase-encoding gene clsA was found to be essential for the growth of ΔlpxLMP, ΔlpxL, ΔwaaA, and Δ(gmhD-waaA) bacteria, with a conditional lethal phenotype of Δ(clsA lpxM), which could be overcome by suppressor mutations in MsbA. Suppressor mutations basS A20D or basR G53V, causing a constitutive incorporation of phosphoethanolamine (P-EtN) in the lipid A, could abolish the Ca++ sensitivity of Δ(waaC eptB), thereby compensating for P-EtN absence on the second Kdo. A single-amino-acid OppA S273G substitution is shown to overcome the synthetic lethality of Δ(waaC surA) bacteria, consistent with the chaperone-like function of the OppA oligopeptide-binding protein. Furthermore, overexpression of GcvB sRNA was found to repress the accumulation of LpxC and suppress the lethality of LapAB absence. Thus, this study identifies new and limiting factors in regulating LPS biosynthesis.


Subject(s)
Escherichia coli K12/growth & development , Genes, Essential , Lipopolysaccharides/biosynthesis , Lipopolysaccharides/genetics , ATP-Binding Cassette Transporters/genetics , Acyltransferases/genetics , Amino Acid Substitution , Bacterial Proteins/genetics , Cardiolipins/genetics , Escherichia coli K12/genetics , Escherichia coli K12/metabolism , Escherichia coli Proteins/genetics , Lipoproteins/genetics , Membrane Proteins/genetics , Synthetic Lethal Mutations , Transferases (Other Substituted Phosphate Groups)/genetics
7.
Bioorg Med Chem Lett ; 30(2): 126783, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31753699

ABSTRACT

5α-Dihydrotestosterone (5α-DHT) possesses a great affinity for the androgen receptor (AR), and its binding to AR promotes the proliferation of prostate cancer (PC) cells in androgen-dependent PC. Primarily synthesized from testosterone (T) in testis, 5α-DHT could also be produced from 5α-androstane-3α,17ß-diol (3α-diol), an almost inactive androgen, following non-classical pathways. We reported the chemical synthesis of non-commercially available [4-14C]-3α-diol from [4-14C]-T, and the development of a biological assay to identify inhibitors of the 5α-DHT formation from radiolabeled 3α-diol in LAPC-4 cell PC model. We measured the inhibitory potency of 5α-androstane derivatives against the formation of 5α-DHT, and inhibition curves were obtained for the most potent compounds (IC50 = 1.2-14.1 µM). The most potent inhibitor 25 (IC50 = 1.2 µM) possesses a 4-(4-CF3-3-CH3O-benzyl)piperazinyl methyl side chain at C3ß and 17ß-OH/17α-CCH functionalities at C17 of a 5α-androstane core.


Subject(s)
Androgens/metabolism , Androstane-3,17-diol/metabolism , Dihydrotestosterone/metabolism , Androstane-3,17-diol/chemistry , Cell Line, Tumor , Dihydrotestosterone/chemistry , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Receptors, Androgen/chemistry , Receptors, Androgen/metabolism , Structure-Activity Relationship
8.
Int J Mol Sci ; 21(23)2020 Nov 29.
Article in English | MEDLINE | ID: mdl-33260377

ABSTRACT

We previously showed that lipopolysaccharide (LPS) assembly requires the essential LapB protein to regulate FtsH-mediated proteolysis of LpxC protein that catalyzes the first committed step in the LPS synthesis. To further understand the essential function of LapB and its role in LpxC turnover, multicopy suppressors of ΔlapB revealed that overproduction of HslV protease subunit prevents its lethality by proteolytic degradation of LpxC, providing the first alternative pathway of LpxC degradation. Isolation and characterization of an extragenic suppressor mutation that prevents lethality of ΔlapB by restoration of normal LPS synthesis identified a frame-shift mutation after 377 aa in the essential gene designated lapC, suggesting LapB and LapC act antagonistically. The same lapC gene was identified during selection for mutations that induce transcription from LPS defects-responsive rpoEP3 promoter, confer sensitivity to LpxC inhibitor CHIR090 and a temperature-sensitive phenotype. Suppressors of lapC mutants that restored growth at elevated temperatures mapped to lapA/lapB, lpxC and ftsH genes. Such suppressor mutations restored normal levels of LPS and prevented proteolysis of LpxC in lapC mutants. Interestingly, a lapC deletion could be constructed in strains either overproducing LpxC or in the absence of LapB, revealing that FtsH, LapB and LapC together regulate LPS synthesis by controlling LpxC amounts.


Subject(s)
Amidohydrolases/metabolism , Biocatalysis , Escherichia coli Proteins/metabolism , Lipopolysaccharides/biosynthesis , ATP-Dependent Proteases/chemistry , ATP-Dependent Proteases/metabolism , Amino Acid Motifs , Amino Acid Sequence , Biocatalysis/drug effects , Conserved Sequence , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Heat-Shock Proteins/metabolism , Hydroxamic Acids/pharmacology , Lipopolysaccharides/chemistry , Mutation/genetics , Operon/genetics , Periplasm/drug effects , Periplasm/metabolism , Phospholipids/biosynthesis , Phospholipids/chemistry , Promoter Regions, Genetic/genetics , Protein Domains , Proteolysis/drug effects , Suppression, Genetic , Temperature , Threonine/analogs & derivatives , Threonine/pharmacology , Transcription, Genetic/drug effects
9.
BMC Cancer ; 19(1): 121, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30717707

ABSTRACT

BACKGROUND: Induction chemotherapy followed by chemoradiation is a treatment option for patients with locally advanced pancreatic cancer (LAPC). However, overall survival is comparable to chemotherapy alone and local progression occurs in nearly half of all patients, suggesting chemoradiation strategies should be optimised. SCALOP-2 is a randomised phase II trial testing the role of radiotherapy dose escalation and/or the addition of the radiosensitiser nelfinavir, following induction chemotherapy of gemcitabine and nab-paclitaxel (GEMABX). A safety run-in phase (stage 1) established the nelfinavir dose to administer with chemoradiation in the randomised phase (stage 2). METHODS: Patients with locally advanced, inoperable, non-metastatic pancreatic adenocarcinoma receive three cycles of induction GEMABX chemotherapy prior to radiological assessment. Those with stable/responding disease are eligible for further trial treatment. In Stage 1, participants received one further cycle of GEMABX followed by capecitabine-chemoradiation with escalating doses of nelfinavir in a rolling-six design. Stage 2 aims to register 262 and randomise 170 patients with responding/stable disease to one of five arms: capecitabine with high- (arms C + D) or standard-dose (arms A + B) radiotherapy with (arms A + C) or without (arms B + D) nelfinavir, or three more cycles of GEMABX (arm E). Participants allocated to the chemoradiation arms receive another cycle of GEMABX before chemoradiation begins. Co-primary outcomes are 12-month overall survival (radiotherapy dose-escalation question) and progression-free survival (nelfinavir question). Secondary outcomes include toxicity, quality of life, disease response rate, resection rate, treatment compliance, and CA19-9 response. SCALOP-2 incorporates a detailed radiotherapy quality assurance programme. DISCUSSION: SCALOP-2 aims to optimise chemoradiation in LAPC and incorporates a modern induction regimen. TRIAL REGISTRATION: Eudract No: 2013-004968-56; ClinicalTrials.gov : NCT02024009.


Subject(s)
Adenocarcinoma/therapy , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Chemoradiotherapy , Induction Chemotherapy , Neoplasms, Second Primary/therapy , Pancreatic Neoplasms/therapy , Adenocarcinoma/pathology , Adenocarcinoma/physiopathology , Adolescent , Adult , Aged , Aged, 80 and over , Antineoplastic Agents/administration & dosage , Capecitabine/administration & dosage , Combined Modality Therapy , Female , Humans , Male , Middle Aged , Nelfinavir/administration & dosage , Neoplasms, Second Primary/pathology , Neoplasms, Second Primary/physiopathology , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/physiopathology , Radiation Dosage , Survival Analysis , Treatment Outcome , Young Adult
10.
J Surg Oncol ; 118(6): 1021-1026, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30259526

ABSTRACT

INTRODUCTION: One-third of the patients with pancreatic cancer present with locally advanced unresectable pancreatic cancer (LAPC). Our aim was to determine survival outcomes and toxicity after FOLFIRINOX (leucovorin, fluorouracil, irinotecan, and oxaliplatin) followed by radiotherapy (RT) in biopsy-proven patients with LAPC. METHODS: We analysed a cohort of biopsy-proven patients with LAPC, who were eligible for induction FOLFIRINOX (eight cycles) and subsequent RT (30 fractions, 60 Gy). Eligible patients underwent a staging laparoscopy to detect occult metastasis before the treatment. The primary outcome was overall survival (OS), and secondary outcomes were progression-free survival (PFS), treatment-related toxicity, and resection rate. RESULTS: Forty-four patients were diagnosed with biopsy-proven LAPC. Twenty-five patients were eligible and all underwent staging laparoscopy before the treatment. In three (12%) patients occult metastases were found. Twenty-two patients started induction FOLFIRINOX, 17 (77%) completed all cycles. Seventeen (77%) patients were treated with subsequent RT, with 16 (94%) receiving the full dosage. Three (14%) patients underwent a radical resection after the treatment. Median OS was 15.4 months (95% confidence interval [CI], 10.0-20.7), median PFS was 11 months (95% CI, 7.7-14.4). CONCLUSIONS: Median OS after FOLFIRINOX and RT was 15 months in patients with LAPC. Toxicity remains severe, however, most patients completed all eight scheduled cycles of FOLFIRINOX and RT.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/radiotherapy , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biopsy , Camptothecin/administration & dosage , Camptothecin/adverse effects , Camptothecin/analogs & derivatives , Chemoradiotherapy , Cohort Studies , Disease-Free Survival , Female , Fluorouracil/administration & dosage , Fluorouracil/adverse effects , Humans , Irinotecan , Kaplan-Meier Estimate , Leucovorin/administration & dosage , Leucovorin/adverse effects , Male , Middle Aged , Organoplatinum Compounds/administration & dosage , Organoplatinum Compounds/adverse effects , Oxaliplatin , Pancreatic Neoplasms/pathology , Retrospective Studies , Survival Rate
11.
Bioorg Med Chem ; 25(7): 2065-2073, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28254377

ABSTRACT

17ß-Hydroxysteroid dehydrogenase type 3 (17ß-HSD3) is a major player in human endocrinology, being one of the most important enzymes involved in testosterone production. To capitalize on the discovery of RM-532-105, a steroidal 17ß-HSD3 inhibitor, we explored the effect of its backbone configuration on inhibitory activity, androgenic profile, and metabolic stability. Two modifications that greatly alter the natural shape of steroids, i.e. inversion of the methyl on carbon 13 (13α-CH3 instead of 13ß-CH3) and inversion of the hydrogen on carbon 5 (5ß-H instead of 5α-H), were tested after the syntheses in 6 steps of 2 isomeric forms (5α/13α-RM-532-105 (6a) and 5ß/13ß-RM-532-105 (6b), respectively) of the 17ß-HSD3 inhibitor RM-532-105 (5α/13ß-configurations). For compound 6b, a cis/trans junction of the A/B rings did not significantly alter the inhibitory activity on 17ß-HSD3 (IC50=0.15µM) as well as the liver microsomal stability (16.6% of 6b remaining after 1h incubation) compared to RM-532-105 (IC50=0.11µM and 14.1% remaining). In contrast, a trans/cis junction of C/D rings reduced the inhibitory activity on 17ß-HSD3 (IC50=1.09µM) but increased the metabolic stability with 29.4% of compound 6a remaining after incubation. The structural modifications represented by compounds 6a and 6b did not change the non-androgenicity profile of an androsterone derivative such as RM-532-105, but slightly increased its cytotoxic activity.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , Androstanes/chemistry , Enzyme Inhibitors/pharmacology , Carbon-13 Magnetic Resonance Spectroscopy , Enzyme Inhibitors/chemistry , Humans , Male , Molecular Structure , Prostatic Neoplasms/enzymology , Proton Magnetic Resonance Spectroscopy , Spectrophotometry, Infrared
12.
J Allergy Clin Immunol ; 132(6): 1263-76; quiz 1277, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23915713

ABSTRACT

Because of its essential role in gas exchange and oxygen delivery, the lung has evolved a variety of strategies to control inflammation and maintain homeostasis. Invasion of the lung by pathogens (and in some instances exposure to certain noninfectious particulates) disrupts this equilibrium and triggers a cascade of events aimed at preventing or limiting colonization (and more importantly infection) by pathogenic microorganisms. In this review we focus on viral infection of the lung and summarize recent advances in our understanding of the triggering of innate and adaptive immune responses to viral respiratory tract infection, mechanisms of viral clearance, and the well-recognized consequences of acute viral infection complicating underlying lung diseases, such as asthma.


Subject(s)
Asthma/immunology , Asthma/physiopathology , Host-Pathogen Interactions , Lung/immunology , Pneumonia, Viral/immunology , Adaptive Immunity , Animals , Humans , Immunity, Innate , Lung/virology
13.
ESMO Open ; 9(5): 103007, 2024 May.
Article in English | MEDLINE | ID: mdl-38744101

ABSTRACT

BACKGROUND: Understanding stakeholders' perception of cure in prostate cancer (PC) is essential to preparing for effective communication about emerging treatments with curative intent. This study used artificial intelligence (AI) for landscape review and linguistic analysis of definition, context and value of cure among stakeholders in PC. MATERIALS AND METHODS: Subject-matter experts (SMEs) selected cure-related key words using Elicit, a semantic literature search engine, and extracted hits containing the key words from Medline, Sermo and Overton, representing academic researchers, health care providers (HCPs) and policymakers, respectively. NetBase Quid, a social media analytics and natural language processing tool, was used to carry out key word searches in social media (representing the general public). NetBase Quid analysed linguistics of key word-specific hit sets for key word count, geolocation and sentiments. SMEs qualitatively summarised key word-specific insights. Contextual terms frequently occurring with key words were identified and quantified. RESULTS: SMEs identified seven key words applicable to PC (number of acquired hits) across four platforms: Cure (12429), Survivor (6063), Remission (1904), Survivorship (1179), Curative intent (432), No evidence of disease (381) and Complete remission (83). Most commonly used key words were Cure by the general public and HCPs (11815 and 224 hits), Survivorship by academic researchers and Survivor by policymakers (378 hits each). All stakeholders discussed Cure and cure-related key words primarily in early-stage PC and associated them with positive sentiments. All stakeholders defined cure differently but communicated about it in relation to disease measurements (e.g. prostate-specific antigen) or surgery. Stakeholders preferred different terms when discussing cure in PC: Cure (academic researchers), Cure rates (HCPs), Potential cure and Survivor/Survivorship (policymakers) and Cure and Survivor (general public). CONCLUSION: This human-led, AI-assisted large-scale qualitative language-based research revealed that cure was commonly discussed by academic researchers, HCPs, policymakers and the general public, especially in early-stage PC. Stakeholders defined and contextualised cure in their communications differently and associated it with positive value.


Subject(s)
Artificial Intelligence , Prostatic Neoplasms , Social Media , Humans , Male , Prostatic Neoplasms/therapy , Linguistics/methods , Health Policy , Perception , Natural Language Processing
14.
Clin Transl Radiat Oncol ; 45: 100753, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38433951

ABSTRACT

Background: Pancreatic Stereotactic Body Radiotherapy (SBRT) allows for the administration of a higher biologically effective doses (BED), that would be essential to achieve durable tumor control. Escalating treatment doses need a very accurate tumor positioning and motion control during radiotherapy.The aim of this study to assess the feasibility and safety of a Simultaneous Integrated Boost (SIB) dose-escalated protocol at 45 Gy, 50 Gy and 55 Gy in 5 consecutive daily fractions, in Border Line Resectable Pancreatic Cancer (BRCP) /Locally Advanced Pancreatic Cancer (LAPC) by means of a standard LINAC platform. Methods: Patients diagnosed of BRPC/LAPC, candidates for neoadjuvant chemotherapy and SBRT, in four university hospitals of the province of Las Palmas (Canary Islands, Spain) were included in this prospective study. Radiotherapy was administered using standard technology (LINACS) with advanced positioning (Lipiodol® and metallic stent used as fiducial markers) and tumor motion control (4D, DBH, Calypso®). There were 3 planned dose-escalated SIB groups, 45 Gy/5f (9 patients) 50 Gy/5f (9 + 9 patients) and 55 Gy/5f (9 patients). The defined primary end points of the study were the safety and feasibility of the proposed treatment protocol. Secondary endpoints included radiological tumor response after SBRT, local control and survival. Results: From June 2017 to December 2022, sixty-two patients were initially assessed for eligibility in the study in the four participating centers, and 49 were candidates for chemotherapy (CHT). Forty-one were referred to radiotherapy after CHT and 33 finally were treated by escalated-dose SIB, 45 Gy (9 patients) 50 Gy (16 patients), 55 Gy(8 patients). All patients completed the scheduled treatment and no acute or late severe (≥grade3) gastrointestinal toxicity was observed.Local response was analyzed by CT/MRI two months after the end of SBRT. Ten patients (31,25 %) achieved objective response (2/9:45 Gy, 5/15:50 Gy, 3/8:55 Gy). Follow-up was closed as July 2023. Freedom from local progression at 1-2y were 89,3% (95 %CI:83,4-95,2%) and 66 % (95 %CI:54,6-77,4%) respectively. The 1-2y survival rates were 95,7% (95 %CI:91,4-100 % and 48,6% (95 %CI:37,7-59,5%) respectively. Conclusion: These promising results should be confirmed by further studies with larger sample size and extended follow-up period.

15.
Clin Transl Radiat Oncol ; 45: 100738, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38370495

ABSTRACT

Purpose: This systematic review aims to comprehensively summarize the current prospective evidence regarding Stereotactic Body Radiotherapy (SBRT) in various clinical contexts for pancreatic cancer including its use as neoadjuvant therapy for borderline resectable pancreatic cancer (BRPC), induction therapy for locally advanced pancreatic cancer (LAPC), salvage therapy for isolated local recurrence (ILR), adjuvant therapy after radical resection, and as a palliative treatment. Special attention is given to the application of magnetic resonance-guided radiotherapy (MRgRT). Methods: Following PRISMA guidelines, a systematic review of the Medline database via PubMed was conducted focusing on prospective studies published within the past decade. Data were extracted concerning study characteristics, outcome measures, toxicity profiles, SBRT dosage and fractionation regimens, as well as additional systemic therapies. Results and conclusion: 31 studies with in total 1,571 patients were included in this review encompassing 14 studies for LAPC, 9 for neoadjuvant treatment, 2 for adjuvant treatment, 2 for ILR, with an additional 4 studies evaluating MRgRT. In LAPC, SBRT demonstrates encouraging results, characterized by favorable local control rates. Several studies even report conversion to resectable disease with substantial resection rates reaching 39%. The adoption of MRgRT may provide a solution to the challenge to deliver ablative doses while minimizing severe toxicities. In BRPC, select prospective studies combining preoperative ablative-dose SBRT with modern induction systemic therapies have achieved remarkable resection rates of up to 80%. MRgRT also holds potential in this context. Adjuvant SBRT does not appear to confer relevant advantages over chemotherapy. While prospective data for SBRT in ILR and for palliative pain relief are limited, they corroborate positive findings from retrospective studies.

16.
Cancer Lett ; 587: 216657, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38336289

ABSTRACT

Metastatic colonization by circulating cancer cells is a highly inefficient process. To colonize distant organs, disseminating cancer cells must overcome many obstacles in foreign microenvironments, and only a small fraction of them survives this process. How these disseminating cancer cells cope with stress and initiate metastatic process is not fully understood. In this study, we report that the metastatic onset of prostate cancer cells is associated with the dynamic conversion of metabolism signaling pathways governed by the energy sensors AMPK and mTOR. While in circulation in blood flow, the disseminating cancer cells display decreased mTOR and increased AMPK activities that protect them from stress-induced death. However, after metastatic onset, the mTOR-AMPK activities are reversed, enabling mTOR-dependent tumor growth. Suppression of this dynamic conversion by co-targeting of AMPK and mTOR signaling significantly suppresses prostate cancer cell and tumor organoid growth in vitro and experimental metastasis in vivo, suggesting that this can be a therapeutic approach against metastasizing prostate cancer.


Subject(s)
AMP-Activated Protein Kinases , Prostatic Neoplasms , Male , Humans , AMP-Activated Protein Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , Signal Transduction , Prostatic Neoplasms/pathology , Tumor Microenvironment
17.
Transl Androl Urol ; 13(7): 1219-1227, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39100834

ABSTRACT

Background: Multiparametric magnetic resonance imaging (mpMRI) is a commonly used method to diagnose pelvic lymph node metastasis (PLNM) in prostate cancer (PCa) patients, but there are few comparative studies on mpMRI and 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography (PET)/computed tomography (CT) in locally advanced PCa (LAPC) patients. Therefore, we designed a retrospective study to compare the diagnostic value of 68Ga-PSMA PET/CT and mpMRI for PLNM of LAPC. Methods: A retrospective study was performed on 50 patients with LAPC who underwent radical prostatectomy (RP) in Tongji Hospital from 2021 to 2023. All patients underwent PET/CT and mpMRI examination, and were diagnosed as LAPC before surgery, followed by robot-assisted laparoscopic prostatectomy or laparoscopic RP and extended pelvic lymph node dissection (ePLND). Routine postoperative pathological examination was performed. According to the results, the sensitivity, specificity, positive predictive value, and negative predictive value of 68Ga-PSMA PET/CT and mpMRI for the diagnosis of PLNM of LAPC were compared. Results: Among the 50 patients, the mean age was 65.5±10.3 years, the preoperative total serum prostate-specific antigen (PSA) was 30.7±12.3 ng/mL, and the Gleason score was 7 [7, 8]. The difference in diagnostic efficacy between 68Ga-PSMA PET/CT and mpMRI in the preoperative diagnosis of PLNM of PCa was determined by postoperative pathological results. Based on the number of patients who developed PLNM, the sensitivity, specificity, positive predictive value, and negative predictive value of 68Ga-PSMA PET/CT were as follows: 93.75%, 100.00%, 100.00%, 97.14%, and 68.75%, 97.06%, 91.67%, 86.84% for mpMRI, respectively. Based on the number of pelvic metastatic lymph nodes, the sensitivity, specificity, positive predictive value, and negative predictive value of 68Ga-PSMA PET/CT were 95.24%, 100.00%, 100.00%, 99.48%, and 65.08%, 99.13%, 89.13%, 96.30% for mpMRI, respectively. It turned out that PET/CT was more sensitive than mpMRI in detecting PLNM of PCa, and the difference was statistically significant. Conclusions: 68Ga-PSMA PET/CT is more sensitive than mpMRI in the detection of PLNM in patients with LAPC. It is a promising method in the diagnosis and preoperative assessment of PLNM in LAPC.

18.
Clin Colorectal Cancer ; 22(1): 12-23, 2023 03.
Article in English | MEDLINE | ID: mdl-36804206

ABSTRACT

Survival outcomes for localized pancreatic adenocarcinoma remains poor. Multimodality therapeutic regimens are critical to maximizing survival outcomes for these patients, which includes the use of systemic therapy, surgery, and radiation. In this review, the evolution of radiation techniques are discussed with a focus on modern techniques such as intensity modulated radiation and stereotactic body radiation therapy. However, the current role of radiation within the most common clinical scenarios for pancreatic cancer in the neoadjuvant, definitive, and adjuvant settings continues to be highly debated. The role of radiation in these settings is reviewed in the context of historical and modern clinical studies. In addition, emerging concepts including dose-escalated radiation, magnetic resonance-guided radiation therapy, and particle therapy are discussed to promote an understanding of how such concepts may change the role of radiation in the future.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Radiosurgery , Humans , Pancreatic Neoplasms/pathology , Adenocarcinoma/pathology , Neoadjuvant Therapy , Radiosurgery/methods , Pancreatic Neoplasms
19.
Cancers (Basel) ; 15(24)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38136347

ABSTRACT

INTRODUCTION: Locally advanced unresectable pancreatic cancer (LAPC) has a dismal prognosis, with intratumoral therapies showing limited benefits. We assume that the dense stroma within these tumors hampers drug dispersion. AIM: This study explores the efficacy of multisite intratumoral injections in improving a drug's distribution while minimizing its side effects. METHODS AND RESULTS: In mice with orthotopic LAPC tumors, weekly intratumoral injections of oxaliplatin at four separate sites reduced the tumor growth by 46% compared with saline (p < 0.003). Oxaliplatin exhibited the greatest impact on the tumor microenvironment relative to gemcitabine, Abraxane, or their combination, with increased necrosis, apoptosis, fibroblasts, inflammation, and infiltrating lymphocytes (p < 0.008). When combined with intravenous FOLFIRINOX (FFX), multisite intratumoral oxaliplatin reduced the tumor weight by 35% compared with single-site injection (p = 0.007). No additional visible toxicity was observed even at a 10-fold occurrence of intratumoral treatment. This co-modality treatment significantly improved survival compared with other groups (p = 0.007). CONCLUSIONS: Multisite intratumoral therapy in tandem with systemic treatment holds promise for reducing the tumor size and enhancing the overall survival in LAPC.

20.
Front Pharmacol ; 14: 1281067, 2023.
Article in English | MEDLINE | ID: mdl-38293667

ABSTRACT

Small molecule compounds targeting multiple kinases involved in neoangiogenesis have shown survival benefits in patients with unresectable hepatocellular carcinoma (HCC). Nonetheless, despite the beneficial effects of multikinase inhibitors (MKIs), a lack of boosting adjuvant limits their objective response rate. Lipid conjugates have been used to improve delivery efficacy or pharmaceutical benefits for decades. However, the feasibility of utilizing lipid-drug conjugates (LDCs) in HCC regimens remains untested. In this study, oral feeding of linoleate-fluorescein isothiocyanate conjugates showed that the compound was well distributed in a spontaneous HCC mouse model. Therefore, a rationale design was developed for chemically synthesizing a linoleate-pazopanib conjugate (LAPC). The LAPC showed a significantly improved cytotoxicity compared to the parental drug pazopanib. Pazopanib's angiogenic suppressing signals were not observed in LAPC-treated HCC cells, potentially suggesting an altered mechanism of action (MOA). In an efficacy trial comparing placebo, oral pazopanib, and LAPC treatments in the hepatitis B virus transgene-related spontaneous HCC mouse model (HBVtg-HCC), the LAPC treatment demonstrated superior tumor ablating capacity in comparison to both placebo and pazopanib treatments, without any discernible systemic toxicity. The LAPC exposure is associated with an apoptosis marker (Terminal deoxynucleotidyl transferase dUTP nick end labeling [TUNEL]) and an enhanced ferroptosis (glutathione peroxidase 4 [GPX4]) potential in HBVtg-HCC tumors. Therefore, the LAPC showed excellent HCC ablative efficacy with altered MOA. The molecular mechanisms of the LAPC and LDCs for HCC therapeutics are of great academic interest. Further comprehensive preclinical trials (e.g., chemical-manufacture-control, toxicity, distribution, and pharmacokinetics/pharmacodynamics) are expected.

SELECTION OF CITATIONS
SEARCH DETAIL