ABSTRACT
Old mine waste repositories can present health and/or environmental issues linked to their erosion, inducing dissemination of metals and metalloids in air and water that can be attenuated through phytostabilization. Here, the effect of this widespread phytomanagement option on the biogeochemistry of a Pb-rich mine waste was evaluated with a laboratory pilot-scale experiment giving access to the non-saturated and saturated zones below the rhizosphere compartment. Amendment of the tailings surface with biochar, manure and iron-oxide-rich ochre promoted growth of the seeded Agrostis capillaris plants. These events were accompanied by an increase of pH and a decrease of Pb concentration in pore water of the surface layer, and by a transient increase of Pb, Zn, and Ba concentrations in the deeper saturated levels. Macroscopic and microscopic observations (SEM) suggest that Pb was immobilized in A. capillaris rhizosphere through mechanical entrapment of tailing particles. Microbial taxonomic and metabolic diversities increased in the amended phytostabilized surface levels, with a rise of the proportion of heterotrophic micro-organisms. Below the surface, a transient modification of microbial communities was observed in the non-saturated and saturated levels, however 11 months after seeding, the prokaryotic community of the deepest saturated zone was close to that of the initial tailings. pH and water saturation seemed to be the main parameters driving prokaryotic communities' structures. Results obtained at pilot-scale will help to precisely evaluate the impacts of phytostabilization on the temporal evolution of reactions driving the fate of pollutants inside the tailings dumps.
Subject(s)
Microbiota , Soil Pollutants , Biodegradation, Environmental , Lead , Soil/chemistry , Soil Pollutants/analysis , WaterABSTRACT
New research applications involving the use of cellulosic material derived from maize stalk for on-site treatment of leachate were evaluated for specific removal of Cu(II) and Fe(III) from real, highly polluted tailing pond and mine wastewater samples. Two major issues generated by anthropic mining activities were also tackled: wastewater metal content decrease to improve water quality and subsequently metal specific recovery, increasing the economic efficiency of metal production by using a green technology for residual management. Rapid saturation of the maize stalk mass determined in batch studies and the mine pilot experiment led to diminished metal concentrations in the second pilot experiment, where Cu(II) and Pb(II) from synthetic solutions were monitored in order to test biomaterial performances. In addition, in the second pilot experiment, maize stalk removed Pb(II) in the first 36 h, below the determination limit of the analytical method. The biomaterial bed in the column was saturated after 252 h of inflow solution. FTIR-ATR, TG and SEM techniques probed the interaction between maize stalk polar groups C=O, -OH, C-O and tailing water metallic ions by large FTIR band displacements, intensity decrease and shape changes, modification of thermal stability and by changes in the appearance of adsorbent microstructure images owing mainly to ion exchange mechanism.