Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Biol Chem ; 299(3): 102965, 2023 03.
Article in English | MEDLINE | ID: mdl-36736424

ABSTRACT

Connexin (Cx)-forming channels play essential roles in maintaining lens homeostasis and transparency. We showed here channel-independent roles of Cx50 in cell-cell adhesion and confirmed the second extracellular (E2) domain as a critical domain for cell adhesion function. We found that cell adhesion decreased in cells expressing chimeric Cx50 in which the E2 domain was swapped with the E2 domain of either Cx43 or Cx46. In contrast, adhesion increased in cells expressing chimeric Cx43 and Cx46 with the Cx50 (E2) domain. This function is Cx channel-independent and Cx50 E2 domain-dependent cell adhesion acting in both homotypic and heterotypic manners. In addition, we generated eight site mutations of unique residues between Cx50 and the other two lens Cxs and found that mutation of any one of the residues abolished the adhesive function. Moreover, expression of adhesive-impaired mutants decreased adhesion-related proteins, N-cadherin and Ɵ-catenin. Expression of the adhesion-impaired Cx50W188P mutant in embryonic chick lens caused enlarged extracellular spaces, distorted fiber organization, delayed nuclear condensation, and cortical cataracts. In summary, the results from both inĀ vitro and inĀ vivo studies demonstrate the importance of the adhesive function of Cx50 in the lens.


Subject(s)
Cell Adhesion , Connexins , Lens, Crystalline , Cell Adhesion Molecules/metabolism , Cell Differentiation , Connexins/metabolism , Eye Proteins/metabolism , Gap Junctions/metabolism , Lens, Crystalline/metabolism , Cadherins/metabolism
2.
Exp Eye Res ; 240: 109828, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354944

ABSTRACT

Transport of water is critical for maintaining the transparency of the avascular lens, and the lens is known to express at least five distinctly different water channels from the Aquaporin (AQP) family of proteins. In this study we report on the identification of a sixth lens AQP, AQP3 an aquaglyceroporin, which in addition to water also transports glycerol and H2O2. AQP3 was identified at the transcript level and protein levels using RT-PCR and Western blotting, respectively, in the mouse, rat, bovine and human lens, showing that its expression is conserved in the mammalian lens. Western blotting showed AQP3 in the lens exists as 25Ā kDa non-glycosylated and 37Ā kDa glycosylated monomeric forms in all lens species. To identify the regions in the lens where AQP3 is expressed Western blotting was repeated using epithelial, outer cortical and inner cortical/core fractions isolated from the mouse lens. AQP3 was found in all lens regions, with the highest signal of non-glycosylated AQP3 being found in the epithelium. While in the inner cortex/core region AQP3 signal was not only lower but was predominately from the glycosylated form of AQP3. Immunolabelling of lens sections with AQP3 antibodies confirmed that AQP3 is found in all regions of the adult mouse, and also revealed that the subcellular distribution of AQP3 changes as a function of fiber cell differentiation. In epithelial and peripheral fiber cells of the outer cortex AQP3 labelling was predominately associated with membrane vesicles in the cytoplasm, but in the deeper regions of the lens AQP3 labelling was associated with the plasma membranes of fiber cells located in the inner cortex and core of the lens. To determine how this adult pattern of AQP3 subcellular distribution was established, immunolabelling for AQP3 was performed on embryonic and postnatal lenses. AQP3 expression was first detected on embryonic day (E) 11 in the membranes of primary fiber cells that have started to elongate and fill the lumen of the lens vesicle, while later at E16 the AQP3 labelling in the primary fiber cells had shifted to a predominately cytoplasmic location. In the following postnatal (P) stages of lens growth at P3 and P6, AQP3 labelling remained cytoplasmic across all regions of the lens and it was not until P15 when the pattern of localisation of AQP3 changed to an adult distribution with cytoplasmic labelling detected in the outer cortex and membrane localisation detected in the inner cortex and core of the lens. Comparison of the AQP3 labelling pattern to those obtained previously for AQP0 and AQP5 showed that the subcellular distribution was more similar to AQP5 than AQP0, but there were still significant differences that suggest AQP3 may have unique roles in the maintenance of lens transparency.


Subject(s)
Aquaporin 3 , Lens, Crystalline , Animals , Cattle , Humans , Mice , Rats , Aquaglyceroporins/metabolism , Aquaporin 3/genetics , Aquaporin 3/metabolism , Hydrogen Peroxide/metabolism , Lens, Crystalline/metabolism , Mammals , Water/metabolism
3.
Mol Biol Rep ; 50(5): 4551-4564, 2023 May.
Article in English | MEDLINE | ID: mdl-36877352

ABSTRACT

The thorough degeneration of organelles in the core of the lens is certainly a hallmark event during the lens development. Organelles degradation in the terminal differentiation process of lens fiber cells to form an organelle-free zone is critical for lens maturation and transparency. Several mechanisms have been proposed to expand our understanding of lens organelles degradation, including apoptotic pathways, the participation of ribozyme, proteolytic enzyme and phospholipase A and acyltransferase, and the newly discovered roles for autophagy. Autophagy is a lysosome-dependent degradation reaction during which the "useless" cellular components are degraded and recycled. These cellular components, such as incorrectly folded proteins, damaged organelles and other macromolecules, are first engulfed by the autophagosome before being further delivered to lysosomes for degradation. Although autophagy has been recognized involving in organelle degradation of the lens, the detailed functions remain to be discovered. Recent advances have revealed that autophagy not only plays a vital role in the intracellular quality control of the lens but is also involved in the degradation of nonnuclear organelles in the process of lens fiber cell differentiation. Herein, we first review the potential mechanisms of organelle-free zone formation, then discuss the roles of autophagy in intracellular quality control and cataract formation, and finally substantially summarize the potential involvement of autophagy in the development of organelle-free zone formation.


Subject(s)
Cataract , Lens, Crystalline , Humans , Organelles/metabolism , Lens, Crystalline/metabolism , Autophagy , Cataract/metabolism , Lysosomes , Proteins/metabolism
4.
Dev Dyn ; 250(2): 249-262, 2021 02.
Article in English | MEDLINE | ID: mdl-32562595

ABSTRACT

BACKGROUND: During embryonic development, complex changes in cell behavior generate the final form of the tissues. Extension of cell protrusions have been described as an important component in this process. Cellular protrusions have been associated with generation of traction, intercellular communication or establishment of signaling gradients. Here, we describe and compare in detail from live imaging data the dynamics of protrusions in the surface ectoderm of chick and mouse embryos. In particular, we explore the differences between cells surrounding the lens placode and other regions of the head. RESULTS: Our results showed that protrusions from the eye region in mouse embryos are longer than those in chick embryos. In addition, protrusions from regions where there are no significant changes in tissue shape are longer and more stable than protrusions that surround the invaginating lens placode. We did not find a clear directionality to the protrusions in any region. Finally, we observed intercellular trafficking of membrane puncta in the protrusions of both embryos in all the regions analyzed. CONCLUSIONS: In summary, the results presented here suggest that the dynamics of these protrusions adapt to their surroundings and possibly contribute to intercellular communication in embryonic cephalic epithelia.


Subject(s)
Cell Surface Extensions , Ectoderm/cytology , Animals , Chick Embryo , Mice , Morphogenesis
5.
Development ; 145(1)2018 01 09.
Article in English | MEDLINE | ID: mdl-29217756

ABSTRACT

Cataracts cause vision loss and blindness by impairing the ability of the ocular lens to focus light onto the retina. Various cataract risk factors have been identified, including drug treatments, age, smoking and diabetes. However, the molecular events responsible for these different forms of cataract are ill-defined, and the advent of modern cataract surgery in the 1960s virtually eliminated access to human lenses for research. Here, we demonstrate large-scale production of light-focusing human micro-lenses from spheroidal masses of human lens epithelial cells purified from differentiating pluripotent stem cells. The purified lens cells and micro-lenses display similar morphology, cellular arrangement, mRNA expression and protein expression to human lens cells and lenses. Exposing the micro-lenses to the emergent cystic fibrosis drug Vx-770 reduces micro-lens transparency and focusing ability. These human micro-lenses provide a powerful and large-scale platform for defining molecular disease mechanisms caused by cataract risk factors, for anti-cataract drug screening and for clinically relevant toxicity assays.


Subject(s)
Aminophenols/adverse effects , Cataract/chemically induced , Cataract/metabolism , Lens, Crystalline/metabolism , Models, Biological , Pluripotent Stem Cells/metabolism , Quinolones/adverse effects , Aminophenols/pharmacology , Cataract/pathology , Humans , Lens, Crystalline/pathology , Pluripotent Stem Cells/pathology , Quinolones/pharmacology
6.
Biochem Biophys Res Commun ; 529(3): 603-607, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32736680

ABSTRACT

The Crk and CrkL adaptor proteins have SH2 and SH3 domains and play essential overlapping, as well as distinct, roles in many biological processes, ranging from cell structure and motility to proliferation. Conditional ablation of both Crk and CrkL in neuronal progenitor cells, using a Nestin-Cre transgene, resulted in severe defects in postnatal eye development, including progressive eye closure, lens rupture, and retinal malformation. These phenotypes were not observed in the presence of a single wild-type allele of either Crk or CrkL. We found that the lens in knockout mice started to rupture and disintegrate between postnatal days 7 and 12, although the structure of the retina was relatively well maintained. As the lens deteriorated further, the outer nuclear layer in the posterior of the retina enlarged and developed ruffles. Cre recombination occurred in the lens and retina of the knockout mice. Furthermore, the posterior lens capsule of the knockout mouse was thinner at postnatal days 0.5 and 3, suggesting that the defective lens capsule caused rupturing of the lens near the posterior pole. These results indicate that Crk and CrkL play essential overlapping roles in postnatal lens development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Lens Capsule, Crystalline/metabolism , Proto-Oncogene Proteins c-crk/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Lens Capsule, Crystalline/growth & development , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins c-crk/genetics , Time Factors
7.
Exp Eye Res ; 191: 107917, 2020 02.
Article in English | MEDLINE | ID: mdl-31923414

ABSTRACT

The transparent and refractive properties of the ocular lens are dependent on its precise cellular structure, supported by the regulation of lens cellular processes of proliferation and differentiation that are essential throughout life. The ERK/MAPK-signalling pathway plays a crucial role in regulating lens cell proliferation and differentiation, and in turn is regulated by inhibitory molecules including the Spred family of proteins to modulate and attenuate the impact of growth factor stimulation. Given Spreds are strongly and distinctly expressed in lens, along with their established inhibitory role in a range of different tissues, we investigated the role these antagonists play in regulating lens cell proliferation and differentiation, and their contribution to lens structure and growth. Using established mice lines deficient for either or both Spred 1 and Spred 2, we demonstrate their role in regulating lens development by negatively regulating ERK1/2 activity. Mice deficient for both Spred 1 and Spred 2 have impaired lens and eye development, displaying irregular lens epithelial and fibre cell activity as a result of increased levels of phosphorylated ERK1/2. While Spred 1 and Spred 2 do not appear to be necessary for induction and early stages of lens morphogenesis (prior to E11.5), nor for the formation of the primary fibre cells, they are required for the continuous embryonic growth and differentiation of the lens.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Eye/embryology , Lens, Crystalline/embryology , Morphogenesis/physiology , Repressor Proteins/physiology , Animals , Cell Differentiation/physiology , Cell Proliferation/physiology , Female , Genotyping Techniques , MAP Kinase Signaling System/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphorylation , Polymerase Chain Reaction
8.
Hum Genomics ; 13(1): 10, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30770771

ABSTRACT

BACKGROUND: Despite a number of different transgenes that can mediate DNA deletion in the developing lens, each has unique features that can make a given transgenic line more or less appropriate for particular studies. The purpose of this work encompasses both a review of transgenes that lead to the expression of Cre recombinase in the lens and a comparative analysis of currently available transgenic lines with a particular emphasis on the Le-Cre and P0-3.9GFPCre lines that can mediate DNA deletion in the lens placode. Although both of these transgenes are driven by elements of the Pax6 P0 promoter, the Le-Cre transgene consistently leads to ocular abnormalities in homozygous state and can lead to ocular defects on some genetic backgrounds when hemizygous. RESULT: Although both P0-3.9GFPCre and Le-Cre hemizygous transgenic mice undergo normal eye development on an FVB/N genetic background, Le-Cre homozygotes uniquely exhibit microphthalmia. Examination of the expression patterns of these two transgenes revealed similar expression in the developing eye and pancreas. However, lineage tracing revealed widespread non-ocular CRE reporter gene expression in the P0-3.9GFPCre transgenic mice that results from stochastic CRE expression in the P0-3.9GFPCre embryos prior to lens placode formation. Postnatal hemizygous Le-Cre transgenic lenses express higher levels of CRE transcript and protein than the hemizygous lenses of P0-3.9GFPCre mice. Transcriptome analysis revealed that Le-Cre hemizygous lenses deregulated the expression of 15 murine genes, several of which are associated with apoptosis. In contrast, P0-3.9GFPCre hemizygous lenses only deregulated two murine genes. No known PAX6-responsive genes or genes directly associated with lens differentiation were deregulated in the hemizygous Le-Cre lenses. CONCLUSIONS: Although P0-3.9GFPCre transgenic mice appear free from ocular abnormalities, extensive non-ocular CRE expression represents a potential problem for conditional gene deletion studies using this transgene. The higher level of CRE expression in Le-Cre lenses versus P0-3.9GFPCre lenses may explain abnormal lens development in homozygous Le-Cre mice. Given the lack of deregulation of PAX6-responsive transcripts, we suggest that abnormal eye development in Le-Cre transgenic mice stems from CRE toxicity. Our studies reinforce the requirement for appropriate CRE-only expressing controls when using CRE as a driver of conditional gene targeting strategies.


Subject(s)
Gene Deletion , Integrases/genetics , Lens, Crystalline/physiology , Mice, Transgenic , Animals , Female , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Lens, Crystalline/embryology , Lens, Crystalline/physiopathology , Mice, Inbred Strains
9.
Graefes Arch Clin Exp Ophthalmol ; 258(12): 2737-2751, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32789677

ABSTRACT

PURPOSE: The present study investigated a pathogenic mutation and its mechanism on membranous cataract in a congenital membranous cataract family. METHODS: An autosomal dominant four-generation Chinese congenital membranous cataract family was recruited and whole-exome sequencing was performed to screen for sequence variants. Candidate variants were validated using polymerase chain reaction and Sanger sequencing. Wild-type and mutant low-density lipoprotein receptor-related protein 5-like (LRP5L) plasmids were constructed and transfected into human lens epithelial cells (HLE B-3) and human anterior lens capsules. The cell lysates, nuclear and cytoplasmic proteins, and basement membrane components of HLE B-3 cells were harvested. LRP5L and laminin ƎĀ³1 were knocked down in HLE B-3 cells using specific small-interfering RNA. The protein expression levels of LRP5L, laminin ƎĀ³1, and c-MAF were detected using immunoblotting and immunofluorescence. RESULTS: We identified a novel suspected pathogenic mutation in LRP5L (c.107C > G, p.P36R) in the congenital membranous cataract family. This mutation was absent in 300 normal controls and 300 age-related cataract patients. Bioinformatics analysis with PolyPhen-2 and SIFT suggested that LRP5L-P36R was pathogenic. LRP5L upregulated laminin ƎĀ³1 expression in the cytoplasmic proteins of HLE B-3 cells and human anterior lens capsules, and LRP5L-P36R inhibited the effects of LRP5L. LRP5L upregulated c-MAF expression in the nucleus and cytoplasm of HLE B-3 cells, and LRP5L-P36R inhibited c-MAF expression via inhibition of laminin ƎĀ³1. CONCLUSION: Our study identified a novel gene, LRP5L, associated with congenital membranous cataract, and its mutant LRP5L-P36R contributed to membranous cataract development via inhibition of laminin ƎĀ³1 and c-MAF.


Subject(s)
Cataract , Laminin , Asian People , Cataract/genetics , Humans , Laminin/genetics , Mutation , Mutation, Missense , Pedigree , Proto-Oncogene Proteins c-maf/genetics
10.
J Biol Chem ; 293(2): 740-753, 2018 01 12.
Article in English | MEDLINE | ID: mdl-29162721

ABSTRACT

Genetic mutations in the human small heat shock protein αB-crystallin have been implicated in autosomal cataracts and skeletal myopathies, including heart muscle diseases (cardiomyopathy). Although these mutations lead to modulation of their chaperone activity in vitro, the in vivo functions of αB-crystallin in the maintenance of both lens transparency and muscle integrity remain unclear. This lack of information has hindered a mechanistic understanding of these diseases. To better define the functional roles of αB-crystallin, we generated loss-of-function zebrafish mutant lines by utilizing the CRISPR/Cas9 system to specifically disrupt the two αB-crystallin genes, αBa and αBb We observed lens abnormalities in the mutant lines of both genes, and the penetrance of the lens phenotype was higher in αBa than αBb mutants. This finding is in contrast with the lack of a phenotype previously reported in αB-crystallin knock-out mice and suggests that the elevated chaperone activity of the two zebrafish orthologs is critical for lens development. Besides its key role in the lens, we uncovered another critical role for αB-crystallin in providing stress tolerance to the heart. The αB-crystallin mutants exhibited hypersusceptibility to develop pericardial edema when challenged by crowding stress or exposed to elevated cortisol stress, both of which activate glucocorticoid receptor signaling. Our work illuminates the involvement of αB-crystallin in stress tolerance of the heart presumably through the proteostasis network and reinforces the critical role of the chaperone activity of αB-crystallin in the maintenance of lens transparency.


Subject(s)
Lens, Crystalline/pathology , Pericardium/pathology , alpha-Crystallin A Chain/physiology , alpha-Crystallin B Chain/physiology , Animals , Cardiomyopathies/pathology , Edema/metabolism , Glucocorticoids/metabolism , Image Processing, Computer-Assisted , Lens, Crystalline/metabolism , Molecular Chaperones/metabolism , Mutation , Myocardium/metabolism , Pericardium/metabolism , Phenotype , Receptors, Glucocorticoid/metabolism , Signal Transduction , Stress, Physiological , Transgenes , Zebrafish , alpha-Crystallin A Chain/genetics , alpha-Crystallin B Chain/genetics
11.
Exp Eye Res ; 186: 107707, 2019 09.
Article in English | MEDLINE | ID: mdl-31229503

ABSTRACT

The transient receptor protein vanilloid channels, TRPV1 and TRPV4, have recently been shown to be mechanosensors in the ocular lens that act to transduce physical changes in lens volume and internal hydrostatic pressure into the activation of signalling pathways in lens epithelial cells. These pathways in turn regulate ion and water transport to ensure that the optical properties of the lens remain constant. Despite the functional evidence that implicate the roles of TRPV1 and TRPV4 in the lens, their respective cellular expression patterns in the different regions of the lens has to date not been fully characterised. Using Western blotting we have confirmed that TRPV1 and TRPV4 are expressed throughout all regions (epithelium, outer cortex, inner cortex/core) of the adult mouse lens. Subsequent immunolabeling of lens cryosections confirmed that TRPV1 and TRPV4 are expressed throughout all regions of the lens, but revealed differentiation-dependent differences in the subcellular expression of the two channels in the different regions. In the epithelium and outer cortex, intense TRPV1 and TRPV4 labeling was predominately associated with the cytoplasm. In a discrete zone in the inner cortex, labeling for both proteins was greatly diminished, but could be enhanced by incubating sections with the detergent Triton X-100 to reveal TRPV1 and TRPV4 labelling that was associated with the membrane. This suggests that in this region of the lens there is a potential interacting protein that masks the binding of the TRPV1 and TRPV4 antibodies to their respective epitopes in the lens inner cortex. In the core of the lens, which contains the embryonic nucleus, TRPV1 and TRPV4 labelling was associated exclusively with fibre cell membranes. This labelling in the lens core of the adult mouse lens appeared to originate in early development as a similar membrane labelling was observed at embryonic day 10 (E10) of the cells in the lens vesicle that subsequently forms the embryonic nucleus in the adult lens. During subsequent stages of embryonic development TRPV1 and TRPV4 remained membranous in the inner cortex and core, while showing labelling that was associated with the cytoplasm in the superficial outer cortical region. The extent of cytoplasmic labelling for TRPV4, but not TRPV1, in this cortical region could however be dynamically regulated by cutting the zonules that normally attach the lens to the ciliary body. We have shown an early onset and continuous expression of TRPV1 and TRPV4 across all lens regions, and that TRPV4 can be dynamically trafficked into the membranes of differentiating fibre cells, results that suggests that these mechanosensitive channels may also be functionally active in lens fibre cells.


Subject(s)
Lens, Crystalline/metabolism , TRPV Cation Channels/metabolism , Animals , Cell Membrane/metabolism , Cytoplasm/metabolism , Eye Proteins/metabolism , Immunohistochemistry , Lens, Crystalline/embryology , Mice , Models, Animal
12.
Differentiation ; 102: 40-52, 2018.
Article in English | MEDLINE | ID: mdl-30059908

ABSTRACT

Presenilins (Psen1 and Psen2 in mice) are polytopic transmembrane proteins that act in the ƎĀ³-secretase complex to make intra-membrane cleavages of their substrates, including the well-studied Notch receptors. Such processing releases the Notch intracellular domain, allowing it to physically relocate from the cell membrane to the nucleus where it acts in a transcriptional activating complex to regulate downstream genes in the signal-receiving cell. Previous studies of Notch pathway mutants for Jagged1, Notch2, and Rbpj demonstrated that canonical signaling is a necessary component of normal mouse lens development. However, the central role of Psens within the ƎĀ³-secretase complex has never been explored in any developing eye tissue or cell type. By directly comparing Psen single and double mutant phenotypes during mouse lens development, we found a stronger requirement for Psen1, although both genes are needed for progenitor cell growth and to prevent apoptosis. We also uncovered a novel genetic interaction between Psen1 and Jagged1. By quantifying protein and mRNA levels of key Notch pathway genes in Psen1/2 or Jagged1 mutant lenses, we identified multiple points in the overall signaling cascade where feedback regulation can occur. Our data are consistent with the loss of particular genes indirectly influencing the transcription level of another. However, we conclude that regulating Notch2 protein levels is particularly important during normal signaling, supporting the importance of post-translational regulatory mechanisms in this tissue.


Subject(s)
Cell Membrane/metabolism , Lens, Crystalline/metabolism , Presenilins/genetics , Receptor, Notch2/metabolism , Receptors, Notch/genetics , Signal Transduction , Animals , Cell Cycle/genetics , Lens, Crystalline/embryology , Mice, Transgenic , Receptor, Notch2/genetics , Signal Transduction/genetics
13.
Dev Dyn ; 247(1): 212-221, 2018 01.
Article in English | MEDLINE | ID: mdl-28675662

ABSTRACT

BACKGROUND: Notch signaling is broadly required during embryogenesis, frequently activating the transcription of two basic helix-loop-helix transcription factors, Hes1 and Hes5. But, it remains unresolved when and where Hes1 and Hes5 act alone or together during development. Here, we analyzed a Hes5-green fluorescent protein (GFP) bacterial artificial chromosome (BAC) transgenic mouse, as a proxy for endogenous Hes5. We directly compared transgenic GFP expression with Hes1, and particular markers of embryonic lens and retina development. RESULTS: Hes5-GFP is dynamic within subsets of retinal and lens progenitor cells, and differentiating retinal ganglion neurons, in contrast to Hes1 found in all progenitor cells. In the adult retina, only MĆ¼ller glia express Hes5-GFP. Finally, Hes5-GFP is up-regulated in Hes1 germline mutants, consistent with previous demonstration that Hes1 suppresses Hes5 transcription. CONCLUSIONS: Hes5-GFP BAC transgenic mice are useful for identifying Hes5-expressing cells. Although Hes5-GFP and Hes1 are coexpressed in particular developmental contexts, we also noted cohorts of lens or retinal cells expressing just one factor. The dynamic Hes5-GFP expression pattern, coupled with its derepressed expression in Hes1 mutants, suggests that this transgene contains the relevant cis-regulatory elements that regulate endogenous Hes5 in the mouse lens and retina. Developmental Dynamics 247:212-221, 2018. Ā© 2017 Wiley Periodicals, Inc.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Lens, Crystalline/metabolism , Organogenesis/physiology , Repressor Proteins/metabolism , Retina/metabolism , Transcription Factor HES-1/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Regulation, Developmental , Lens, Crystalline/embryology , Mice , Mice, Transgenic , Repressor Proteins/genetics , Retina/embryology , Signal Transduction/physiology , Transcription Factor HES-1/genetics
14.
Clin Genet ; 93(3): 682-686, 2018 03.
Article in English | MEDLINE | ID: mdl-28940338

ABSTRACT

Congenital cataract (CC) is clinically and genetically highly heterogeneous. Here, we enrolled a consanguineous kindred (LUCC15) from Pakistan, with 3 affected individuals suffering with CC. Exome sequencing revealed a transition mutation [c.149 T > C; p.(Ile50Thr)] in INPP5K. Inositol polyphosphate-5-phosphatase K, encoded by INPP5K, is involved in dephosphorylation of phosphatidylinositol (PtdIns) 4,5-bisphosphate, and PtdIns 3,4,5-trisphosphate. Recently, pathogenic variants in INPP5K have been reported in families with congenital muscular dystrophies, intellectual disability, and cataract. In our family LUCC15, mild to moderate intellectual disability along with speech impairment was observed in 2 affected individuals. Magnetic resonance imaging of brain and muscles tissues did not reveal any cerebellar or muscular atrophy. However, electromyography of both upper and lower limbs revealed irritable myopathy. Comparison of clinical phenotype of all the known affected individuals, including LUCC15 family, homozygous for INPP5K alleles revealed reduced penetrance of muscular dystrophy and intellectual disability. Similarly, skeletal muscle abnormalities were highly variable among inpp5ka zebrafish mutants analyzed in this study. These phenotypic variabilities may be due to epigenetic factors and/or genetic modifiers.


Subject(s)
Cataract/congenital , Genes, Recessive , Genetic Variation , Phosphoric Monoester Hydrolases/genetics , Adolescent , Animals , Cataract/genetics , Child , Child, Preschool , Computational Biology/methods , Consanguinity , Female , Humans , Infant , Loss of Function Mutation , Magnetic Resonance Imaging , Male , Pakistan , Pedigree , Phenotype , Phosphoric Monoester Hydrolases/chemistry , Exome Sequencing , Zebrafish
15.
Exp Eye Res ; 156: 58-71, 2017 03.
Article in English | MEDLINE | ID: mdl-26971460

ABSTRACT

The eye lens is a transparent and avascular organ in the front of the eye that is responsible for focusing light onto the retina in order to transmit a clear image. A monolayer of epithelial cells covers the anterior hemisphere of the lens, and the bulk of the lens is made up of elongated and differentiated fiber cells. Lens fiber cells are very long and thin cells that are supported by sophisticated cytoskeletal networks, including actin filaments at cell junctions and the spectrin-actin network of the membrane skeleton. In this review, we highlight the proteins that regulate diverse actin filament networks in the lens and discuss how these actin cytoskeletal structures assemble and function in epithelial and fiber cells. We then discuss methods that have been used to study actin in the lens and unanswered questions that can be addressed with novel techniques.


Subject(s)
Actin Cytoskeleton/physiology , Lens, Crystalline/embryology , Animals , Cell Differentiation/physiology , Epithelial Cells/metabolism , Humans , Lens, Crystalline/cytology , Lens, Crystalline/growth & development , Microfilament Proteins/metabolism
16.
Cell Mol Neurobiol ; 37(6): 979-984, 2017 Aug.
Article in English | MEDLINE | ID: mdl-27858287

ABSTRACT

Epigenetics pertains to heritable alterations in genomic structural modifications without altering genomic DNA sequence. The studies of epigenetic mechanisms include DNA methylation, histone modifications, and microRNAs. DNA methylation may contribute to silencing gene expression which is a major mechanism of epigenetic gene regulation. DNA methylation regulatory mechanisms in lens development and pathogenesis of cataract represent exciting areas of research that have opened new avenues for association with aging and environment. This review addresses our current understanding of the major mechanisms and function of DNA methylation in lens development, age-related cataract, secondary cataract, and complicated cataract. By understanding the role of DNA methylation in the lens disease and development, it is expected to open up a new therapeutic approach to clinical treatment of cataract.


Subject(s)
Cataract/genetics , DNA Methylation/genetics , Lens, Crystalline/embryology , Lens, Crystalline/pathology , Aging/pathology , Animals , Humans
17.
Dev Biol ; 406(2): 129-46, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26375880

ABSTRACT

Sprouty proteins function as negative regulators of the receptor tyrosine kinase (RTK)-mediated Ras/Raf/MAPK pathway in many varied physiological and developmental processes, inhibiting growth factor-induced cellular proliferation, migration and differentiation. Like other negative regulators, Sprouty proteins are expressed in various organs during development, including the eye; ubiquitously expressed in the optic vesicle, lens pit, optic cup and lens vesicle. Given the synexpression of different antagonists (e.g, Sprouty, Sef, Spred) in the developing lens, to gain a better understanding of their specific role, in particular, their ability to regulate ocular growth factor signaling in lens cells, we characterized transgenic mice overexpressing Sprouty1 or Sprouty2 in the eye. Overexpression of Sprouty in the lens resulted in reduced lens and eye size during ocular morphogenesis, influenced by changes to the lens epithelium, aberrant fiber cell differentiation and compromised de novo maintenance of the lens capsule. Here we demonstrate an important inhibitory role for Sprouty in the regulation of lens cell proliferation and fiber differentiation in situ, potentially through its ability to modulate FGF- (and even EGF-) mediated MAPK/ERK1/2 signaling in lens cells. Whilst growth factor regulation of lens cell proliferation and fiber differentiation are required for orchestrating lens morphogenesis and growth, in turn, antagonists such as Sprouty are just as important for regulating the intracellular signaling pathways driving lens cellular processes.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Gene Expression Regulation, Developmental/genetics , Lens, Crystalline/embryology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Morphogenesis/genetics , Phenotype , Phosphoproteins/genetics , Phosphoproteins/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Animals , Blotting, Western , Bromodeoxyuridine , Cell Differentiation/genetics , Cell Proliferation/genetics , Fluorescent Antibody Technique , Histological Techniques , Lens, Crystalline/cytology , MAP Kinase Signaling System/genetics , Mice , Mice, Transgenic , Morphogenesis/physiology
18.
Dev Biol ; 408(1): 41-55, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26455409

ABSTRACT

The C-terminal Eps15 homology domain-containing (EHD) proteins play a key role in endocytic recycling, a fundamental cellular process that ensures the return of endocytosed membrane components and receptors back to the cell surface. To define the in vivo biological functions of EHD1, we have generated Ehd1 knockout mice and previously reported a requirement of EHD1 for spermatogenesis. Here, we show that approximately 56% of the Ehd1-null mice displayed gross ocular abnormalities, including anophthalmia, aphakia, microphthalmia and congenital cataracts. Histological characterization of ocular abnormalities showed pleiotropic defects that include a smaller or absent lens, persistence of lens stalk and hyaloid vasculature, and deformed optic cups. To test whether these profound ocular defects resulted from the loss of EHD1 in the lens or in non-lenticular tissues, we deleted the Ehd1 gene selectively in the presumptive lens ectoderm using Le-Cre. Conditional Ehd1 deletion in the lens resulted in developmental defects that included thin epithelial layers, small lenses and absence of corneal endothelium. Ehd1 deletion in the lens also resulted in reduced lens epithelial proliferation, survival and expression of junctional proteins E-cadherin and ZO-1. Finally, Le-Cre-mediated deletion of Ehd1 in the lens led to defects in corneal endothelial differentiation. Taken together, these data reveal a unique role for EHD1 in early lens development and suggest a previously unknown link between the endocytic recycling pathway and regulation of key developmental processes including proliferation, differentiation and morphogenesis.


Subject(s)
Endocytosis , Lens, Crystalline/embryology , Lens, Crystalline/metabolism , Vesicular Transport Proteins/metabolism , Animals , Cataract/complications , Cataract/embryology , Cataract/genetics , Cataract/pathology , Cell Differentiation , Cell Polarity , Cell Survival , Embryo, Mammalian/pathology , Endothelium, Corneal/metabolism , Endothelium, Corneal/pathology , Epithelial Cells/pathology , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Gene Deletion , Gene Expression Regulation, Developmental , Lens, Crystalline/pathology , Mice, Knockout , Microphthalmos/complications , Microphthalmos/embryology , Microphthalmos/genetics , Phenotype , Vesicular Transport Proteins/deficiency
19.
Dev Biol ; 396(1): 19-30, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25263199

ABSTRACT

Although forming a heterodimer or heterooligomer is essential for MDM2 and MDMX to fully control p53 during early embryogenesis, deletion of either MDM2 or MDMX in specific tissues using the loxp-Cre system reveals phenotypic diversity during organ morphogenesis, which can be completely rescued by loss of p53, suggesting the spatiotemporal independence and specificity of the regulation of p53 by MDM2 and MDMX. In this study, we investigated the role of the MDM2-MDMX-p53 pathway in the developing lens that is a relatively independent region integrating cell proliferation, differentiation and apoptosis. Using the mice expressing Cre recombinase specifically in the lens epithelial cells (LECs) beginning at E9.5, we demonstrated that deletion of either MDM2 or MDMX induces apoptosis of LEC and reduces cell proliferation, resulting in lens developmental defect that finally progresses into aphakia. Specifically, the lens defect caused by MDM2 deletion was evident at E10, occurring earlier than that caused by MDMX deletion. These lens defects were completely rescued by loss of two alleles of p53, but not one allele of p53. These results demonstrate that both MDM2 and MDMX are required for monitoring p53 activity during lens development, and they may function independently or synergistically to control p53 and maintain normal lens morphogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Lens, Crystalline/embryology , Proto-Oncogene Proteins c-mdm2/metabolism , Retinoblastoma Protein/metabolism , Tumor Suppressor Protein p53/metabolism , Alleles , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , Homozygote , Lens, Crystalline/abnormalities , Mice , Mice, Transgenic , Morphogenesis , Phenotype , Time Factors
20.
Exp Eye Res ; 138: 104-13, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26149094

ABSTRACT

αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts.


Subject(s)
Embryo, Nonmammalian/physiology , Gene Expression Regulation, Developmental/physiology , Lens, Crystalline/embryology , Zebrafish/embryology , alpha-Crystallin A Chain/physiology , Animals , Animals, Genetically Modified , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Gene Knockout Techniques , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL